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ABSTRACT Localization of wireless capsule endoscope (WCE) while it travels through the Gastrointestinal
(GI) tract is required to find the exact location of the intestinal lesions. In this paper, we propose a method of
localizing the WCE in the small intestine by applying machine learning-based regression algorithms on the
ultra-wideband (UWB) and medical implant communication service (MICS) band signal. The path loss of
the signals received by sensor receivers placed on the body surface is used as the input features to find the 3D
x-y-z position of the WCE. To improve the accuracy of localization, we estimate the smoothed path loss by
applying local linear regression moving average (LLRMA) and local weighted linear regression (LWLR) on
the scattered path loss to minimize the path loss deviations caused by the dielectric properties of human body
tissues. Then, we apply five machine learning regression algorithms namely Decision Tree (DT), Random
Forest (RF), Extreme Gradient Boosting (XGB), Linear Regression (LR), and K-Nearest Neighbors (KNN)
on both the scattered and smoothed path loss to localize 2443 mapped positions of the WCE in the small
intestine trajectory model. We also analyze the impact of the number of sensor receivers and the network
topology of the sensor array on the accuracy of localization. It is observed that the localization accuracy
is significantly improved by applying all the regression algorithms on the smoothed path loss data. For the
smoothed dataset, the best accuracy with 0.21 mm and 0.22 mm root mean square error (RMSE) is achieved
by applying the KNN regression method on UWB and MICS path loss model, respectively using 48 sensor
receivers. Additionally, it is also observed that with the UWB and MICS path loss, KNN shows 0.22 mm
and 0.27 mm RMSE on the smoothed path loss using only 8 sensor receivers with a computational time of
0.004 sec and 0.005 sec, respectively.

INDEX TERMS WCE localization, computational and artificial intelligence, machine learning regression.

I. INTRODUCTION
The wireless capsule endoscope is used to diagnose the
lesions in the GI tract. For proper diagnosis, the exact position
of the lesions is required to be known which can be obtained
by localizing the WCE in the GI tract while it travels through
it. Several state-of-the-art works on WCE localization are
reported in the literature [1], [2]. The WCE can be localized
using the magnetic field strength, the radio signal strength
indicator (RSSI), time of arrival (TOA), direction of arrival
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(DOA), time difference of arrival (TDOA), hybrid method,
etc. [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16].

IEEE 802.15.6 standard RF frequency bands are rec-
ommended for wireless body area networks (WBAN)
applications with a wide range of data rates with low energy
consumption, lower range, and large number of nodes with
security features [17]. Therefore, we focus on RF-basedWCE
localization using IEEE 802.15.6 standard frequency bands
as it does not have any known adverse health effects and it
ensures high data rate secure wireless communication using
miniature nodes with extremely low power consumption.
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Federal Communications Commission (FCC) recommends
the medical implant communication service (MICS) band
for implant applications [17]. Short-range, high-data-rate
wireless communication using UWB frequency bands is
also defined in the IEEE standard 802.15.6 in the vicinity
of, or inside, a human body [17] and is suitable and safe
for implantable devices with less interference with other
radio devices [18]. The UWB signal propagation models for
implantable devices are presented in [17], [19], and [20].
The RSSI of the externally placed sensor receivers on the

body surface can be used to localize the WCE while it travels
through the GI tract using either triangulation, trilateration or
weighted centroid localization (WCL) techniques [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32]. In [21]
and [22], the authors use the signal strength measured by
the wearable antenna array to find the 2D position of the
in-vivo RF signal using triangulation and report an average
error of 37.7 mm. The authors in [11] propose RSSI-based
triangulation for WCE localization using 8-64 receiver
sensors with a three-dimensional range of 268 × 323 ×

312 mm and report root mean square error (RMSE) of 34 mm
using 64 sensors. The authors in [23], [24], [25], [26], and
[27] propose MICS path loss-based and the authors in [28]
and [29] propose UWB path loss-based WCE localization
using weighted centroid localization (WCL) with 3D sensor
array of multiple receivers. In [23], the authors use 600 ×

600 × 600 mm dimension sensor array for WCE localization
and report 5.15 mm average error with known path loss
parameters and prior knowledge of distance and real positions
for the position calibration. In [24] and [25], the authors
proposeWCE localization with a 920×920×920mm sensor
array and report 6.27 mm and 7.28 mm average localization
error, respectively. However, in [24] and [25], the distance is
calculated using known path loss parameters and the degree
of distance in [24] and the calibration coefficient in [25] are
calculated either by using the maximum value of distance
or by using linear least square regression of the estimated
and real positions of the capsule. Thus, the methods in [23],
[24], and [25] are not robust to path loss estimation errors
and are dependent on prior knowledge of the distance and
real positions. In [26] and [27], the authors use 920 × 920 ×

920 mm sensor array and propose different MICS band path
loss estimation methods to localize the WCE with 24.53 mm
and 23.6 mm RMSE, respectively using the estimated path
loss raised to a degree. However, the authors in [26] propose
a heuristic method of degree estimation that is dependent
on the maximum value of path loss and the maximum
distance. The authors in [28] and [29] apply the MIMO
diversity scheme and maximum likelihood (ML) estimation
method to mitigate the effect of UWB path loss deviations
and propose path loss-based position-bounded WCL for
WCE localization using 920 × 920 × 920 mm sensor
array and report 5.14 mm, and 6.2 mm RMSE, respectively.
However, due to the size and space limitation, higher-order
diversity antennas are difficult to be equipped in the capsule,
and only 3-dB diversity gain is recommended in [33] for

space diversity due to the high correlation between different
on-body receiver locations. Moreover, the position bounds in
[27], [28], and [29] and the calibration process in [28] are
dependent on the small intestine’s known dimension. Further
in [28] and [29], the authors use the UWB propagation model
developed for the human chest [19] which is not suitable
for path loss modeling in the small intestine. In [31], the
authors propose UWB RSS-based localization of WCE using
a centroid algorithm and analyze the impact of the number
of sensors and their locations on positioning accuracy. The
authors in [31] report 34.12 mm RMSE using 20 sensors to
estimate 64 positions of WCE in the small intestine where
48 positions are used to optimize the nonlinearity exponent
of the localization algorithm and the remaining 16 positions
are used to test the performance. In [32], the authors
propose UWB smoothed path loss degree-based weighted
centroid localization (SPLD-WCL) for WCE localization
and also compute the cramer rao lower bound (CRLB) as
the benchmark of accuracy to evaluate the performance.
The authors in [32] report 6.83 mm RMSE using 48 sensor
receivers using 200× 200× 200 mm dimension sensor array.
However, the proposed methods in [23], [24], [25], [26], [27],
[28], [29], [30], [31], and [32] require the reference positions
of the sensor receivers to estimate the position of the WCE
using WCL, and the accuracy of the proposed methods is
greatly influenced by the reference positions of the sensor
receivers. In [13], a hybrid method using camera motion
tracking and RSSI-based WCE localization is proposed with
an average localization error of 23 mm. In [16], the authors
propose fusion-based hybrid localization using vision and
IMU sensors and report 9.5 mm RMSE.

The above localization methods are influenced by the
RF signal propagation due to the non-homogeneous tissue
properties of the human body. In [34], the authors exploit
spatial sparsity to estimate the position of the emitter in
200 × 200 mm range using the tissue-adaptive method
without estimating the time of arrival (ToA) or path loss.
The authors in [34] use convex optimization theory and l1-
norm minimization to estimate position and report less than
7.5 mm RMSE with perfectly known tissue structure and less
than 8.8 mm with approximately known tissue structure with
some levels of uncertainties. In [35] and [36], new approaches
that are robust to channel estimation errors are proposed
using RSSI-based maximum likelihood (ML) localization
using finite impulse response (FIR) and particle filter to find
the transition model of the capsule within 400 × 400 ×

200 mm range and report 15 mm RMSE using FIR filter and
7mmRMSE using particle filter-based approach. The authors
in [37] propose UWB RSS-based WCE localization using
compressive sensing and variable noise level (VNL) kalman
filter and report 35-60 mm localization error based on the
frequency of operation.

Recently, deep learning and machine learning algorithms
are applied in genetics and other biomedical applications
for the prediction, classification, and localization of different
particles and objects [38], [39], [40], [41], [42], [43], [44].
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Among those, few methods using artificial intelligence and
neural network are reported on GI organ classification and
WCE localization using the WCE images or videos [41],
[42], [43], [44]. In [41] and [42], the authors apply different
classification tools such as neural networks, brute force, and
vector quantization algorithms to classify different regions of
the GI tract by recognizing the MPEG-7 image descriptor
features of the images received from the WCE and apply
principle component analysis to reduce the dimension of
the features. The authors in [41] report 86.12% average
accuracy using neural network and the authors in [42]
report 95.19% and 94.49% average accuracy using brute
force and vector quantization, respectively. In [43], the
authors propose the geometric visual odometry (VO) method
forWCE localization in the GI lumen and extend the artificial
neural network (ANN) to augment the geometric method to
achieve higher accuracy and obtain mean absolute error of
0.79±0.51 cm, for a distance of 19.6 cm. The authors in [44]
propose a deep learning algorithm to classify GI organs and
report average accuracy of 0.98, 0.96, 0.87, and 0.87 for the
esophagus, stomach, small bowel, and colon, respectively.

In summary, though there have been several works on
WCE localization, the accuracy of the methods is highly
influenced by human body channel parameters, distance,
and reference positions. Additionally, to the best of our
knowledge, no research works are reported in the literature
on WCE localization using artificial intelligence or neural
networks on the RSSI or path loss data. Hence, a data-driven
localization approach that is independent of human body
channel, distance, and reference positions might be a good
candidate for WCE. Therefore, there is a scope to apply
machine learning or deep learning-based algorithms on the
RSSI or path loss data and observe the accuracy of WCE
localization.

In this paper, we propose a novel method of WCE
localization by applying the path loss smoothing andmachine
learning regression algorithms on the smoothed path loss
data. We develop the proposed WCE localization platform
in MATLAB which includes a 3D small intestine trajectory
model and a 3D sensor array of 4 to 48 sensor receivers
that are used to measure the RSSI of the received signal
and to obtain the path loss data. In this paper, we generate
the scattered path loss data for 2443 traveling positions
of the WCE in the small intestine trajectory model in
1 mm resolution considering six different sensor placement
topologies and three different dimensions of the sensor array
for different human body size. The distance between the
mapped positions of the WCE in the small intestine and
the reference positions of the sensor receivers are used to
generate the UWB and MICS path loss using the path loss
statistics extracted in [20] and [45] using the in-body to
on-body in-vivo measurements scenario and the deep tissue
implant to body surface scenario, respectively. However, due
to the body tissue properties, the path loss is highly deviated
which is required to be minimized to improve the localization
accuracy. We apply two path loss smoothing methods namely

local linear regression moving average (LLRMA) and local
weighted linear regression (LWLR) to minimize the path
loss deviation by finding the best-fitted path loss. Finally,
five machine learning regression methods namely Decision
Tree (DT), Random Forest (RF), Extreme Gradient Boosting
(XGB), Linear Regression (LR), and K-Nearest Neighbors
(KNN) are applied on the scattered as well as on the smoothed
path loss to predict the position of the WCE in the small
intestine. Five-fold cross-validation is applied using all eight
scenarios to verify the accuracy of localization at 2443 target
points of the capsule. As we can see that for all the sensor
placement topologies and dimensions of the sensor array,
a significantly high accuracy of localization is obtained by
applying ML regression method on the smoothed path loss.
Using a minimum of 8 sensor receivers, we obtain 0.22 mm
and 0.27 mm RMSE using KNN on the LWLR smoothed
path loss in only 0.004 sec and 0.005 sec computational time
using UWB and MICS band path loss, respectively. Whereas
using 48 sensor receivers, KNN obtains 0.21mm and 0.22mm
RMSE with UWB and MICS path loss, respectively. Thus,
it is observed that our proposed WCE localization method
using ML regression on the smoothed path loss can obtain
significantly high accuracy without any prior knowledge of
channel parameters, distances, reference positions, sensor
placement topology, and dimensions of the human body.

II. SYSTEM MODEL
We propose a path loss-based WCE localization system
using path loss smoothing methods and machine learning
regression. The proposed system model is shown in Figure 1.
In our proposed system, the WCE travels through the small
intestine model and a set of sensor receivers are used
to receive the RF signal propagated from the WCE. The
small intestine is modeled and mapped with 2443 traveling
positions of the capsule. The sensor receivers are placed
on the body surface or a wearable sensor array around
the waist to measure the received signal strength indicator
(RSSI) of the received signals. The path loss is computed
using the measured RSSI of the sensor receivers. The path
loss is modeled considering the body tissue properties for
in-body to on-body in-vivo measurement scenarios. Due to
the body tissue properties, the generated path loss is randomly
scattered around a mean. To localize the WCE accurately,
we apply two path loss smoothing methods to minimize the
path loss deviations. The smoothed path loss is then split into
training and test datasets and applied to the machine-learning
regression models for WCE localization.

In our proposed WCE localization system, the path loss
between the capsule transmitter and sensor receivers is used
to localize the position of the WCE in the small intestine.
Thus, in our system, path loss data is used as the input variable
and the 3D position of the WCE in the small intestine is used
as the output variable. Practically, we obtain the path loss
data by measuring the RSSI of the 48 sensor receivers and
the transmitted power of the WCE as shown below

Li(dB) = PT (dBm) − RSSI (dBm), (1)
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FIGURE 1. System block diagram.

where Li is the path loss between the WCE and the ith sensor
receiver and PT is the transmitted power of the capsule.
We generate the input and output datasets for simulation using
the following path loss model and the small intestine model.

A. PATH LOSS MODEL
Path loss attenuates with the distance between the transmitter
and receivers. The signal propagation path loss between the
capsule transmitter and the body-surrounded sensor receivers
is scattered due to the material dielectric properties of
different human body layers. We use both UWB and MICS
band path loss models to generate the path loss between the
capsule transmitter and sensor receivers.

1) UWB PATH LOSS MODEL
The UWB scattered path loss can be represented using the
following linear path loss model,

Li = α

(
ri
r0

)
+ L(r0) + X (0, σ 2

L ), (2)

where, α, ri, r0, and L(r0) denotes the fitting constant, the
separation distance between the capsule transmitter (Tx) and
the ith sensor receiver (Rx), reference Tx-Rx distance and
the path loss in dB at reference distance r0, respectively. The
statistical distributionX (0, σ 2

L ) of the shadowing term follows
a Gaussian distribution model with zero mean and standard
deviation of σL . The best-fitted mean path loss excluding the
scattering term X (0, σ 2

L ) can be expressed as

L(ri) =α

(
ri
r0

)
+ L(r0). (3)

2) MICS PATH LOSS MODEL
We use the following logarithmic path loss model to represent
the MICS band scattered path loss,

Li = 10γ log10

(
ri
r0

)
+ L(r0) + X (0, σ 2

L ), (4)

where, γ , ri, r0, L(r0) and X (0, σ 2
L ) denote the logarithmic

path loss exponent, the Tx-Rx separation distance, the refer-
ence distance, the reference path loss in dB, and the scattering
termwith zeromean and σL path loss deviations, respectively.
The best-fitted mean path loss can be expressed as

L(ri) =10γ log10

(
ri
r0

)
+ L(r0). (5)

The standard deviation, σL of both the UWB and MICS path
loss can be given as

σL =

√√√√ 1
N

N∑
i=1

(Li − L(ri))2, (6)

where N is the total number of sensor receivers.

B. SMALL INTESTINE TRAJECTORY MODEL
We develop a spiral-shaped 3D small intestine model to map
the x-y-z coordinate positions of the capsule transmitter using
the following three equations

xr = acos(t), (7)

yr = b− dsin(2t), (8)

zr = ht, (9)

where t is from−15 to 3π with 0.01 increment. Depending on
the value of a, b, d, and h, the dimension of the small intestine
model can be changed.

C. 3D SENSOR ARRAY
We consider a body-surrounded 3D sensor array including
8 to 48 sensor receivers to receive the RF signal transmitted
from the capsule transmitter. We apply six (06) different
topologies of sensor placement as shown in Figure 2. We also
consider three different dimensions of the sensor array and
two different dimensions of the small intestine for normal,
overweight, and obese human body size as illustrated in
Figure 3 and summarized in Table 1.
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TABLE 1. Dimension of the sensor array and small intestine.

FIGURE 2. Sensor placement topologies.

FIGURE 3. Dimension of the sensor array and the small intestine; (a) Normal body size: Sensor array (200 × 200 × 200 mm) and small intestine
(120 × 70 × 120 mm), (b) Overweight body size: Sensor array (400 × 400 × 200 mm) and small intestine (200 × 100 × 170 mm), (c) Obese body size:
Sensor array (600 × 600 × 200 mm) and small intestine (200 × 100 × 170 mm).

III. DATA GENERATION
As the path loss attenuates with the distance between the
transmitter and sensor receivers, we consider path loss as a
measure of distance. We generate the path loss as the input
datasets and the real positions of the capsule transmitter as
the output datasets of theWCE localization system. The input
and output data generation process is explained below.

A. PATH LOSS DATA GENERATION
We generate both the UWB and MICS band path loss
datasets as the input of the system. Short-range, wireless
communication using UWB frequency inside a human body
is specified in the IEEE standard 802.15.6 and characterized
by very low power consumption, the smaller size of the
antennas, and a higher data rate [17], [20]. In [20], the
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TABLE 2. UWB and MICS path loss model for ingestible devices [20], [45].

statistics of the linear path loss model as shown in eq. (2)
are extracted for the UWB frequency band covering from
3.1 to 6 GHz using in-vivo measurements. During the in-vivo
measurements, the on-body receiving antennas are placed
on the abdomen and the in-body positions are located to be
surrounded by either colon or small bowel indistinctly. The
extracted statistics of the UWB path loss are specified in
Table 2.
MICS band is recommended for in-body communication

for implant applications [17]. In [45], the authors use a 3D
visualization platform to extract the path loss statistics of the
MICS band logarithmic path loss model as shown in eq. (4).
The 3D platform in [45] includes a three-dimensional human
body model, a three-dimensional full-wave electromagnetic
field simulator (i.e. HFSS 1), and an implantable (or body
surface antenna). The 3D human body model includes
frequency-dependent dielectric properties of 300+ parts in a
male human body with 2 mm resolution. The statistics of the
MICS band path loss using deep tissue scenario are specified
in Table 2. The deep tissue implant scenario considers
endoscopy capsule applications for the upper stomach and
lower stomach.

We generate the UWB and MICS band scattered path loss
for varying positions of the WCE in the small intestine using
eqs. (2) and (4) using the path loss statistics as specified in
Table 2. The Tx-Rx separation distance rij for 2443 varying
positions of the WCE is calculated as shown below

ri =

√
(xr − xi)2 + (yr−yi)2 + (zr − zi)2, (10)

where, (xr , yr , zr ) are the coordinates of the real position of
the capsule transmitter and (xi, yi, zi) are the coordinates of
the reference position of the ith sensor receiver.

We generate the UWB and MICS band path loss for
2443 varying positions of the WCE in the small intestine
considering six topologies of sensor deployment as shown
in Figure 2 and the three dimensions of the sensor array and
small intestine as presented in Table 1 and Figure 3.

B. POSITION DATA GENERATION
We generate 2443 mapped 3D positions of the WCE in the
small intestine trajectory model using eqs. (7), (8) and (9)
considering two different dimensions of the small intestine
for different body sizes. The parameters used to generate the
x-y-z coordinate positions for the two dimensions of the small
intestine are given in Table 3. To generalize the proposed
methods with large and more varied datasets, the mapped
positions are localized using 8 different sensor placement

TABLE 3. Small intestine trajectory model parameters.

topologies by varying the dimensions and positions of the
sensor receivers as shown in Figures 2 and 3. By varying the
dimensions and positions of the sensor receivers, the Tx-Rx
separation distance as shown in eq. 10 and the scattered path
loss as shown in eqs 2 and 4 are also varied. Thus, 8 different
datasets are generated for 8 different scenarios as summarized
in Table 4.

IV. DATA SMOOTHING
We apply the following two data smoothing methods to
minimize the deviations of path loss.

A. LOCAL LINEAR REGRESSION MOVING AVERAGE
Path loss is estimated as a measure of Tx-Rx distance and to
compute the weight of the reference positions of the sensor
receivers. The propagation path loss is scattered due to the
shadowing effect caused by the non-homogeneous human
tissue dielectric properties. To get an accurate estimate of
the path loss, the scattering of the path loss is required to
be minimized. The capsule travelsM possible points through
the small intestine. The best-fitted path loss of the adjacent
traveling location points can be estimated as

L ik = c1k + c2, (11)

where, k = (j − nL) : (j + nR) is the range of nR +

nL + 1 adjacent location points of the capsule at jth instant
assuming nR = nL , nL is the lower bound and nR is the
upper bound of the adjacent location points, c1 and c2 are the
path loss exponents. The matrix of the measured path loss of
adjacent location points and the set of the nR+nL+1 adjacent
location points are expressed as

L =


Li(j−nL )
Li(j−nL+1)

...

Li(j+nR−1)
Li(j+nR)

 and K =


j− nL
j− nL+1

...

j+ nR−1
j+ nR

 (12)

The path loss exponents are estimated by using linear least
square regression of the scattered path loss measured at the
adjacent location points of the capsule as follows

C = (KTK )−1KTL, (13)

where, C is the matrix containing the path loss exponents
c1 and c2 as follows

C =

(
c1
c2

)
(14)

Using the extracted path loss exponents c1 and c2, we can
estimate the smoothed path loss, PLij between the ith sensor
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TABLE 4. Different variables containing the generated and smoothed datasets.

receiver and jth location point by averaging the best fitted
mean path loss of the adjacent location points as

PLij =
1

(nR + nL + 1)

j+nR∑
k=j−nL

L ik

=
1

(nR + nL + 1)

j+nR∑
k=j−nL

(c1k + c2). (15)

We also apply the following kernel adaptation method to set
the lower bound and upper bound of the span.

If j < nth then nR = j− 1;

nL = nth;

else if j > M − nth then nL = M − j;

nR = nth;

else nR = nL = nth; (16)

where, nth is set as the lower bound and upper bound of the
span for most of the location points. However, for few of
location points near the start and destination of the capsule,
the lower bound and upper bound of the span is updated as
shown in eq. (16).

B. LOCAL WEIGHTED LINEAR REGRESSION
Local weighted linear least square regression is a
non-parametric regression that finds the best-fitted smooth
curve for fitting to the local neighboring data points in a span
using weighted least squares. It defines a regression weight
function for the data points contained within the span and
assigns less weight to points further away or the outliers [46],
[47]. The best-fitted path loss for the k local traveling points
can be expressed using the following linear equation,

L im = γBm, m = 1, 2 . . . k (17)

where, Bm is the mth local point in a span and γ is the fitting
constant. The local weighted linear regression finds γ to

minimize the following

k∑
m=1

wm(Lim − γBm)2,

where, wm are the weight of the k local points. More weights
are assigned to points near the target and less weight is
assigned to points further away. The weight is defined by the
tricube function as follows

wm =

(
1 −

∣∣∣∣ (Bj − Bm)
d(B)

∣∣∣∣3
)3

, (18)

where Bj is the particular data point at which we are
evaluating the regression and d(B) is the distance of the data
point Bj to the most distant data point within the span. The
weight is defined in such a way that the data point to be
smoothed has the largest weight and the data points outside
the span have zero weight. If the vector of the path loss of
the neighboring points is L, the vector of the k local points
within a span is B and their corresponding weight vector is
W, then γ can be determined using locally weighted linear
least square as follows

γ = (BTWB)−1BTWL. (19)

Now the smoothed path loss of 2443 traveling location points
can be computed using the best-fitted path loss of the specific
location point as follows

PLij = L ij
= γBj. (20)

Table 4 summarizes the contents, dimensions, and quantity of
the generated and smoothed datasets for the 8 scenarios.

V. WCE LOCALIZATION USING ML REGRESSION
We apply five machine-learning regression algorithms for
WCE localization. The methodologies are explained below.

VOLUME 11, 2023 124649



U. Hany et al.: Path Loss Based WCE Localization Using Machine Learning Regression

A. DATA MANIPULATION AND FEATURE SELECTION
The following data manipulation and feature selection
methods are applied.

1) DATA LABELING AND CONCATENATION
In ourWCE localization system, there are 48 sensor receivers
to receive the RF signal transmitted by the capsule transmitter
from 2443 varying positions of WCE in the small intestine.
To compare the accuracy of different scenarios based on the
body size and sensor placement topology, we generate the
received signal path loss for 8 different scenarios.

In our proposed regression models, the scattered path
loss of the received signals by the 48 sensor receivers
are used as the input features and the 3-dimensional x-y-z
coordinate positions of theWCE are used as the output labels.
To compare the accuracy, we also use the smoothed path loss
of the 48 sensor receivers as the input features and the x-y-z
positions as the output labels.

Finally, the path loss data of 48 sensor receivers (input
features) and the corresponding x-y-z coordinate positions
(output labels) are concatenated in a single data file.
The concatenated data files include all the path loss data
of 48 sensor receivers and their corresponding 3D x-y-z
coordinate positions.

2) FEATURE SELECTION
Feature selection discards less important features of the data.
We apply feature selection to select the most important
features of the data. We consider the input features measured
by the 8 sensor receivers at the corner points of the
sensor array first and then increase the number of input
features from 8 to 48 sensor receivers with an increment
of 8 to analyze the performance. We also consider the
4 input features of the front-side sensor receivers to analyze
the performance. In this way, we analyze the impact
of the number of sensor receivers and the input features on the
accuracy of localization. We also could identify the important
features and the minimum number of input features required
to achieve the expected level of localization accuracy.

B. K-FOLD CROSS VALIDATION
The k-fold cross-validation is applied to split the datasets and
to validate the test accuracy of all the datasets [48].

The datasets are split into training and test datasets. In the
training phase, the input features of 8 to 48 sensor receivers or
the path loss data are trained with the output labels or the 3D
x-y-z position of the WCE. In the test phase, input features
or path loss data are used to predict the x-y-z positions. The
real x-y-z positions or output labels of the test data are used
to verify the accuracy of localization. Both the scattered and
smoothed path loss datasets are trained and tested using the
k-fold cross-validation method.

We apply 5-fold cross-validation as follows:

1) The datasets are shuffled to 42 random states.

FIGURE 4. Data manipulation, feature selection, and k-fold cross
validation.

2) We split the datasets into 5 groups each containing 20%
of the total datasets.

3) For each of the groups:

a) One of the group is taken as the test data set.
b) The remaining groups are taken as a training data

set.
c) 5 Machine learning models are fitted on the

training datasets and test datasets are evaluated.
d) The evaluation score is recorded.

4) We evaluate the performance of themodel by averaging
the score of each sample group.

The system flow diagram of the data manipulation, feature
selection, and k-fold cross-validation is shown in Figure 4.

C. MACHINE LEARNING REGRESSION METHODS
We apply several machine learning (ML) regression models
for WCE localization to analyze the accuracy and com-
putational effectiveness of the algorithms. Our proposed
localization system model has a scope of having more
than one input feature to localize the WCE in consecutive
positions in the small intestine. Therefore, we employ five
ML regression models namely Decision Tree (DT), Random
Forest (RF), Extreme Gradient Boosting (XGB), Linear
Regression (LR), and K-Nearest Neighbors (KNN) that are
used to predict a continuous outcome based on the value
of one or more input variables [49], [50], [51]. Regression
analysis falls under supervised learning where the algorithm
is trained with both input variables or features and output
variables or labels [49]. In the training phase, we train the
path loss input features to the corresponding labels of x-y-z
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FIGURE 5. UWB scattered and smoothed path loss as a function of
distance.

FIGURE 6. MICS scattered and smoothed path loss as a function of
distance.

positions. In the test phase, the path loss data are applied to the
ML regression models to predict the 3D position of theWCE.
We apply both scattered and smoothed path loss using UWB
and MICS bands to evaluate the performance of the applied
ML regression models. We also evaluate the performance of
the regression models by varying the input features or the
number of sensor receivers.

VI. PERFORMANCE METRICS
We apply the Coefficient of Determination, R2 to measure
the accuracy of path loss estimation using the two smoothing
methods. Usually, errors are used as the performance metric

for regression problems.We use three performance metrics to
evaluate the performance of the applied ML-based regression
methods for WCE localization. The performance metrics are
discussed below.

A. COEFFICIENT OF DETERMINATION, R2

The coefficient of determination R2 measures how well
a statistical model predicts an outcome. The outcome is
represented by the model’s dependent variable. The lowest
possible value of R2 is 0, and the highest possible value is
1. The better a model is at making predictions, the closer
the R2 will be to 1. The formula for the coefficient of
determination is as follows:

R2 = 1 −
RSS
TSS

, (21)

where RSS is the sum of squared residuals and TSS is the total
sum of squares. We use R2 to verify the performance of the
proposed path loss estimation or smoothing methods. For the
path loss estimation method, we calculate the coefficient of
determination of path loss, R2 as follows:

R2

= 1−

∑
(Scattered path loss - Smoothed path loss)2∑

(Scattered path loss - Mean of scattered path loss)2

= 1 −

∑
(Lij − PLij)2∑
(Lij − L̂ij)2

. (22)

B. ROOT MEAN SQUARED ERROR (RMSE)
Root Mean Squared Error (RMSE) is the square root of the
mean or average of the squared differences between predicted
and expected target values in a dataset. It is calculated as
follows.

RMSE =

√√√√ 1
M

M∑
j

(Pj − P̂j)2. (23)

where Pj is the jth is the expected real x-y-z coordinate
positions of the WCE in the dataset, P̂j is the jth predicted
positions. The difference between these two values is
squared, which results in a positive error value. The squaring
also magnifies the larger errors.

VII. SIMULATION AND RESULTS
The proposed WCE localization system is developed in
MATLAB and Python using a variety of popular data
analysis tools and libraries. The libraries of Python include
pandas, scipy.io, numpy, matplotlib. The regression models
are developed using Scikit-Learn tools. The computational
environment of simulation, training, and testing is based
on a 64-bit Windows operating system with an x64-based
Intel(R) Core(TM) i7-12700 CPU with 2.10 GHz processor
and 32.00 GB of installed RAM. In addition, we leverage the
NVIDIA GeForce RTX 3070 GPU for efficient computation.

The path loss data and position data are generated and
smoothed in MATLAB. We generate the path loss datasets
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TABLE 5. R2 score of the path loss smoothing methods.

using UWB and MICS path loss models as shown in
eqs. (2) and (4) using the path loss parameters as specified in
Table 2. The x-y-z coordinate positions in the small intestine
are mapped using eqs. (7), (8) and (9) using the parameters
as specified in Table 3. The path loss data and position
data generation process is explained in Section III and the
generated data variable are summarized in Table 4.

The path loss is randomly scattered due to the
non-homogeneous human body tissue properties. Therefore,
we apply two path loss smoothing methods: local linear
regression moving average (LLRMA) and local weighted
linear regression (LWLR). Figures 5 and 6 demonstrate
the scattered path loss and the smoothed path loss using
as a function of distance using UWB and MICS path loss
models, respectively. As we can see in Figures 5 and 6
that the raw path loss is highly scattered around a mean
and the two path loss smoothing methods minimizes the
deviations significantly. We compute the R2 score for the
UWB and MICS path loss smoothing methods using eq. (22)
for sensor topology (c) as shown in Figure 2(c). The R2-
scores of the smoothing methods are included in Table 5. It is
observed from Table 5 that both smoothing methods perform
reasonably well for both UWB and MICS channel models.

The data manipulation, feature selection, and cross-
validation are applied in Python. The input path loss
features of the 48 sensor receivers and the output labels
are concatenated and cross-validated to split the data into
5 groups of 20% data and keep one of the groups as the test
dataset and the remaining groups as the training datasets as
shown in Figure 4. Then, we apply 5 different ML-based
regression algorithms DT, RF, XGB, LR, and KNN on the
training datasets and evaluated them with the test datasets.
Each test set’s performance score is then averaged to find the
overall score.

A. PARAMETER SETTINGS
Each model is configured with specific parameters that
contribute a crucial role in their performance. The Deci-
sion tree (DT) regression model is constructed using the
squared_error criterion, whichminimizes the sum of squared
errors during the tree construction process. The maximum
depth of the decision tree is configured as None or not
restricted allowing the tree to grow until all the nodes are pure
or until a specified stopping criterion is met. Additionally, the
best split strategy is utilized to determine the optimal splitting
point at each node.

The Random forest (RF) regressor is built with 100 deci-
sion trees (n_estimators : 100) and employed the squared
error criterion for node splitting (criterion : squared_error).

The maximum number of features considered at each split
is set to 1.0, indicating that all features were eligible for
selection (max_features : 1.0). The bootstrap sampling
technique was applied to create each tree (bootstrap : True),
and no restrictions were imposed on the maximum depth of
the trees (max_depth : None).

The XGBoost (XGB) regressor utilizes the objective
function of ’reg : squarederror’ to optimize the squared
error loss during training. It employed 100 gradient-boosted
trees (n_estimators : 100) and had no specified random seed
for reproducibility (random_state : None). Other parameters
were left with their default values.

In the case of Linear regression (LR), no specific
parameter values were provided. The default settings were
employed, including the option for fitting the intercept term
(fit_intercept : True) and allowing the model to utilize
multiple CPU cores if available (n_jobs : None).
Lastly, for the K-Nearest Neighbors (KNN) regres-

sion model, the number of neighbors considered is 5
(n_neighbors : 5), and the distance metric used for
measuring similarity between data points is the Euclidean
distance (metric : minkowski). The weights assigned to the
neighbors were uniform (weights : uniform), meaning that all
neighboring points have equal influence on the prediction.

B. PERFORMANCE USING REGULAR PATTERN
We consider six (06) different sensor placement topologies as
shown in Figure 2 (a)-(f) considering the different strategies
of sensor deployment. First, we consider that the sensor
receivers are placed on plain surfaces of a regular pattern
sensor array fixed on a wearable jacket or belt as shown
in topologies (a) to (d) in Fig. 2. In sensor topology (a),
the sensor receivers are placed as a cluster at the corner
points of the cubic sensor array whereas in topology (b),
the sensor receivers are placed on all the surfaces and edges
of the cubic sensor array. Table 6 presents the obtained
RMSE scores and computational time by applying the ML
regression on the UWB scattered and smoothed path loss
features using topologies (a) and (b). As we can see from
the results in Table 6 that the RMSE drops significantly
by applying the smoothing method LLRMA, whereas the
computational time taken by the scattered and smoothed path
loss is almost the same. However, as it is not easy to place the
sensor receivers on the right and left surfaces of the sensor
array, we propose topologies (c) and (d) where the sensor
receivers are placed only on the front and back surfaces (x-z
plane) and edges of the cubic array. The RMSE scores and
computational time for both UWB and MICS path loss using
topologies (c) and (d) are summarized in Table 7. To choose
the best topology among the 04 sensor topologies (a) to
(d) of regular patterns, the evaluation scores as presented in
Table 6 and 7 are compared. For better visualization, Figure 7
compares the RMSE of the four topologies using the five
ML regression methods on LLRMA smoothed path loss.
It is observed that the RMSE scores and the computational
time using the four regular sensor topologies are very close
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TABLE 6. Evaluation scores using regular pattern sensor topologies (a) and (b) with normal human body dimensions.

TABLE 7. Evaluation scores using regular pattern sensor topologies (c) and (d) with normal human body dimensions.

FIGURE 7. RMSE comparison of the four sensor topologies (a)-(d) using regular pattern.

to each other and KNN performs the best among the five
regression methods with low computational time. Therefore,
considering the real body shape, as it is easy to deploy
the sensor receivers on the front and back surfaces of the
sensor array, it may be concluded that topologies (c) and (d)

are suitable regular pattern sensor topologies for the human
body.

Table 7 also presents the RMSE scores by applying
LWLR smoothing method on both UWB and MICS path
loss considering normal body dimensions. To visualize the
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FIGURE 8. Improvement of accuracy using LLRMA and LWLR smoothing methods on both UWB and MICS path loss
considering regular sensor topology (c).

improvement of accuracy, Figure 8 compares the RMSE
using both scattered and smoothed path loss of UWB and
MICS models with regular sensor topology (c). It is observed
that the accuracy is improved significantly by applying
the LLRMA and LWLR smoothing. The best accuracy is
obtained using KNN on the LWLR smoothed path loss of
UWB and MICS channel model with 0.21 mm and 0.22 mm
RMSE, respectively.

C. PERFORMANCE USING IRREGULAR PATTERN
Considering the sensor receivers to be placed on the body
surface, we apply the irregular pattern sensor topologies
(e) and (f) as shown in Figure 2. That is, in irregular
sensor topologies, sensor receivers are placed considering
the original human body shape and curvatures. Table 8
presents the performance using topologies (e) and (f) in
terms of RMSE and the computational times using both
UWB and MICS path loss models. It is apparent from the
results in Table 8 that using the irregular pattern sensor
array, the localization accuracy improves significantly by
applying the smoothing methods (LLRMA and LWLR) on
both the UWB andMICS path loss as observed for the regular
pattern as well. Among the ML regression methods, KNN
performs the best with RMSE 0.21 mm and 0.22 mm using
UWB and MICS channel models, respectively using LWLR
smoothing.

D. PERFORMANCE WITH DIFFERENT DIMENSIONS
We also vary the dimension of the sensor array considering
normal, overweight, and obese human body size as shown
in Figure 3. The varying dimension of the sensor array and
small intestine for the normal, overweight, and obese body
size is summarized in Table 1. The evaluation scores using
a normal body size are presented in Table 7. The evaluation
scores for overweight and obese human bodies are included
in Table 9. The RMSE using LWLR smoothed path loss with

normal, overweight, and obese human body dimensions are
compared in Figure 9. As we can see that the KNN performs
the best for all dimensions of human body sizes using both
MICS and UWB LWLR path loss models.

From the results as presented in Tables 6 to 9 for regular
and irregular patterns of sensor topologies using different
dimensions, it is observed that KNN performs the best among
all the ML methods with low computational time. It is also
observed from the results in Tables 6 to 9 that using 48 sensor
receivers, the computational time taken by the ML methods
using both scattered and smoothed path loss is almost the
same. Thus, it is apparent that the computational time does
not depend on the smoothing methods or dimensions, rather
it depends on the dimensionality of the input data.

E. PERFORMANCE OF FEATURE SELECTION USING
DIFFERENT NUMBER OF SENSOR RECEIVERS
We evaluate the performance of the WCE localization
methods by varying the number of sensor receivers to vary the
input features from 8 to 48 for each of the sensor topologies as
shown in Figs. 2(c) and 2(f). The performance is also verified
using 4 sensor receivers on the sensor array’s front side
(x-z plane). The number of sensor receivers is varied to select
the most important and minimum required input features for
WCE localization. The performances of the UWB and MICS
path loss model with the regular pattern sensor topology
(c) and irregular sensor topology (f) using the increasing
number of sensor receivers are presented in Figures 10 and
11, respectively. As we can see in Figures 10 and 11 that
for all the ML regression methods, the RMSE decreases
with the increasing number of sensor receivers using both
UWBandMICS scattered path loss.Whereas using smoothed
path loss (LLRMA and LWLR), the performance slightly
improves with the number of sensor receivers using all the
ML regression methods of WCE localization. It is worth
mentioning that using 4 sensor receivers, 0.22 mm and
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TABLE 8. Evaluation scores using irregular pattern sensor topologies (e) and (f) with normal human body dimensions.

TABLE 9. Evaluation scores using regular pattern sensor topology (c) with overweight and obese human body dimensions.

FIGURE 9. RMSE using the sensor array and small intestine dimension of normal, overweight, and obese human bodies.

1.32 mm RMSE are obtained using KNN on the LWLR
smoothed path loss for UWB and MICS channel models,
respectively. However, a drastic improvement in terms of
RMSE is observed by using 8 sensor receivers compared

to 4 sensor receivers for most of the cases. Thus it may be
concluded for most of the cases that though the best accuracy
is obtained using 48 input features or sensor receivers,
a minimum of 8 sensor receivers (at the corner points of the
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TABLE 10. Evaluation scores using regular sensor topology (c) and irregular sensor topology (f) with 8 sensor receivers.

FIGURE 10. UWB and MICS model performance on sensor topology
(c) using different number of sensor receivers.

sensor array) or input features are required to localize the
WCE with reasonably high accuracy.

Table 10 includes the RMSE score and computational
time using 8 sensor receivers of the corner points of the
sensor topology (c) and (f) using both UWB and MICS path
loss models. It is observed in Table 10 that using 8 sensor
receivers, the computational time is reduced significantly as
compared to the time taken using 48 sensor receivers as
presented in Tables 7 and 8. It is also observed in Table 10
that using sensor topology (c), the linear regression (LR)

FIGURE 11. UWB and MICS model performance on sensor topology
(f) using different number of sensor receivers.

method requires the least computational time of 0.003 sec
and 0.004 sec to obtain 1.209 mm and 7.85 mm RMSE using
UWB andMICS LWLR path loss, respectively using 8 sensor
receivers. Whereas using 8 sensor receivers, KNN obtains
the best accuracy with RMSE 0.219 mm in 0.005 sec and
0.23 mm in 0.005 sec using UWB and MICS LWLR path
loss, respectively.

Table 11 compares the proposed WCE localization meth-
ods to the existing state-of-the-art works using different
technologies. From the comparisons, it is observed in
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TABLE 11. Comparison of the proposed method of WCE localization to other works in the literature.
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Table 11 that the proposed methods can localize the WCE
with very high accuracy as compared to other RF-based
methods in the literature. Among the proposed methods,
KNN performs the best using both MICS and UWB LWLR
smoothed path loss.

VIII. CONCLUSION
In this paper, we have proposed path loss-based WCE
localization method using machine learning (ML) regression.
First, we generated UWB and MICS band path loss data for
2443 3D positions of the WCE in the small intestine. Then,
we applied local linear regression moving average (LLRMA)
and local weighted linear regression (LWLR) for path loss
data smoothing. Next, data labeling and concatenation have
been applied for data manipulation. We varied the number of
sensor receivers from 4 to 48 to select the required features
and to analyze the computational time. The 5-fold cross-
validation method has been applied to split the datasets into
5 sets and to evaluate the test accuracy using all the datasets.
Finally, we have applied five ML regression methods namely
DT, RF, XGB, LR, and KNN on the scattered as well as
on the smoothed path loss data to detect the 3D position of
the WCE. It is observed that the performance of the ML
regression algorithms improved significantly by using both
LLRMAand LWLR smoothingmethods. Among the fiveML
algorithms, KNN performs the best with minimum RMSE
in low computational time using both UWB and MICS band
path loss features of 4 to 48 sensor receivers.We observed that
the accuracy is improved slightly by increasing the number
of sensor receivers or input features. However, a drastic
improvement in terms of RMSE is observed by using 8 sensor
receivers compared to 4 sensor receivers for most of the cases.
From the evaluation results, it is found that using the irregular
topology (f) with 8 sensor receivers, KNN performs with
0.22 mm and 0.27 mm RMSE in the least computational time
0.004 sec and 0.005 sec using LWLR smoothing on the UWB
and MICS path loss models, respectively. Whereas by using
48 sensor receivers, KNN performs the best with 0.21 mm
and 0.22 mm RMSE in 0.036 sec and 0.034 sec time using
UWB and MICS channel models, respectively. Thus, it may
be concluded that using our proposed method, significantly
high localization accuracy is possible to be achieved in
very low computational time using only 8 sensor receivers
without any prior knowledge of the channel parameters or
any unknown parameters and bounds, reference positions
of sensor receivers, sensor placement topologies, and the
dimensions. However, future works on practical validation of
the proposed WCE localization method is required using real
data and ground truth positions.
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