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ABSTRACT This study proposes an innovative integration of the Car-to-Car Network-Hierarchical
deep neural network (CtCNET-HDRNN) model with Fifth generation (5G) and Dedicated Short-Range
Communications (DSRC) systems, streamlining computational efficiency in edge computing. CtCNET-
HDRNN is a specialized deep learning model designed for vehicular communication, allowing vehicles
to exchange information seamlessly in a connected environment. It harnesses an adaptive learning rate
and regularization within the model’s advanced training methodology, ensuring optimal data fit, superior
generalization, and efficient convergence. A key novelty lies in the introduction of a Sparse Deep Recurrent
Neural Network (SDRNN), which significantly reduces computational complexity by pruning insignificant
connections, making it suitable for deployment on resource-constrained edge devices. SDRNN is a variant of
recurrent neural networks designed to minimize computational burden while maintaining high performance
in time-series data analysis. Furthermore, this research presents an original integration model, adeptly
merging the CtCNET-HDRNN model with the Millimeter wave (mmWave) of 5G and Monte Carlo for
DSRC systems for seamless data transmission. The mmWave technology offers high-speed communication
capabilities, while Monte Carlo enables adaptive collision avoidance and efficient channel access control
for vehicular networks. Beyond immediate computational gains, this integrated model also contributes
significantly to edge computing research and practical applications, promising enhanced system performance
and improved user experience in vehicular communication scenarios. The proposed approach opens new
possibilities for efficient and reliable communication in connected vehicles, laying the foundation for safer
and smarter transportation systems.

INDEX TERMS 5G, DSRC, V2V, AI/ML, deep learning, AIoT, deep reinforcement learning, RNN, VANET.

I. INTRODUCTION
Cooperative Intelligent Transportation Systems (C-ITS) are
emerging as a means to enhance road safety and reduce
congestion [1]. To achieve these goals, two types of
technology have been introduced, i.e. Dedicated Short Range

The associate editor coordinating the review of this manuscript and

approving it for publication was Nurul I. Sarkar .

Communication (DSRC) and Long Term Vehicle Evolution
[2]. These technologies are implemented using different
supporting units at critical points, providing facilities such
as collision warning, road construction warning, overhead
heavy vehicle warning, and lane changing warning. They
assist drivers through Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) communication [3]. Further, DSRC,
designated for the 5.9GHz band [4], is a significant
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advancement in the automotive sector as it allows data trans-
mission directly between two devices without intermediaries.
This feature is particularly beneficial in rural and remote
areas where telecommunications infrastructure is limited.
DSRC is akin to sending a text message to a phone 300meters
away without using a cellular network. Furthermore, due
to the absence of intermediaries, DSRC is known for its
extremely low latency [5]. However, DSRC has limitations;
in dense traffic environments, it experiences high channel
interference, leading to reduced packet transmission quality
and potential delays in conveying crucial information to
vehicles [6].
In addition, due to the advanced capabilities of 5G,

V2V and Vehicle-to-Everything (V2X) communications are
expected to shift entirely to 5G for connectivity [7]. Complex
vehicle communication frameworks require instantaneous,
two-way communication between vehicles. A practical
demonstration of the 5G CAR project was observed by
UTAC-TEQMO (a company for connected vehicles with
testing centers across France, the UK, the USA, and Northern
Finland) in June 2019 [8]. The demonstration showcased
improved lane-changing features and information exchange
with a centralized planning system. It guided individual
actions such as acceleration, deceleration, and lane merging
using 5G as the underlying technology [9]. Nevertheless,
5G spectrum availability is limited in densely connected
vehicular environments [10].
However, increased traffic may lead to DSRC failure or

5G spectrum limitations on an individual basis, accompanied
by heightened computational complexities. As a result, it is
essential to develop an efficient integrated scheme for V2V
communication using both mmWave and DSRC systems.
Further, modern deep learning solutions can be employed
to mitigate mutual interference and support V2V systems
comprehensively. Abbreviations used in this study can be
depicted in Table 1.

The remainder of this paper is organized as follows:
Section II presents a review of related work. The motivation
behind our study and the contributions of our work are
discussed in Section III. Our proposed system model is
articulated in Section IV. Section V contains the results of our
study and a discussion of these findings. Finally, we draw our
conclusions in Section VI.

II. RELATED WORK
DSRC is pivotal in V2V communication, and integrating
it with mmWave communication and DL is necessary
for addressing the challenges of path loss, computational
complexity, and seamless connectivity in dense vehicular
networks. Several studies have focused on integrating
DSRC and mmWave communication to maintain vehicular
connectivity and overcome the dynamic nature of vehicular
communication [11], [12]. However, the current work has
not fully addressed the limitations related to computational
complexity, path loss, and seamless handover between
networks in dense V2V environments.

TABLE 1. Nomenclature.

Recent research efforts have explored the potential
of 5G technology, specifically mmWave communication,
to improve V2V communication and address the computa-
tional issues associated with Markovian models [13], [14].
Millimeter wave (mmWave) bands have been studied for their
ability to satisfy the high data rate and latency requirements
of the V2V industry. However, mmWave communication also
presents challenges, such as increased path loss and poor
frequency responses, which need to be addressed for efficient
V2V communication.

Machine Learning (ML) and Deep Learning (DL) tech-
niques have been employed to tackle path loss issues
in mmWave communication for V2V environments [15].
These techniques have shown promise in predicting and
mitigating path loss, which is critical for the performance
of dense vehicular networks. Nevertheless, the current work
has not efficiently connected path loss mitigation to the
computational power of neural networks and vehicular
management systems, leaving a research gap.

To address the computational complexity and seamless
connectivity challenges in dense vehicular networks, some
studies have proposed the integration of DSRC and mmWave
communication using reinforcement learning (Q-learning)
for V2V communications and mmWave for vehicle-to-
infrastructure (V2I) communications [16]. Although these
solutions show promise, they still lack efficient handover
management and seamless connectivity, especially for safety
message exchange in high-speed scenarios.

In the domain of V2V communication, a plethora of
alternative techniques have been explored to address the
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issues of path loss optimization, collision avoidance, and
more.

For path loss optimization, in addition to the stochastic
models and probabilistic approaches, some studies have
considered beamforming techniques to enhance the signal
quality and reduce the path loss in mmWave communication
[17]. Beamforming can focus the signal energy towards a
specific direction, thereby reducing path loss. However, in a
highly dynamic vehicular environment, it is challenging to
maintain accurate beam alignment.

Concerning collision avoidance, researchers have exam-
ined the use of vehicular ad-hoc networks (VANETs) that
leverage the power of collaborative intelligence. They use
real-time data sharing between vehicles to anticipate and
avoid potential collisions [18]. While such systems provide
real-time communication among vehicles, they suffer from
latency issues in high-speed vehicular networks. Further-
more, VANETs face security challenges, including privacy
preservation and data integrity.

Some studies have also explored the usage of edge
computing and fog computing for improving computational
performance and reducing latency in V2V communication
[19]. These computing paradigms aim to distribute com-
puting tasks closer to the network’s edge, thus reducing
the load on the core network. However, such solutions still
face challenges related to scalability, resource allocation, and
interoperability with existing network infrastructure.

Consequently, the integration of mmWave communication,
DSRC, and deep learning is necessary to address the chal-
lenges of path loss, computational complexity, and seamless
connectivity in dense vehicular networks. The current work
has not yet provided a comprehensive solution that considers
these factors, leaving a research gap that warrants further
investigation. By focusing on the development of an efficient
integrated scheme for V2V communication using mmWave,
DSRC systems, and modern deep learning solutions, we can
address these challenges and improve the performance and
safety of V2V communication in various environments [13],
[20], [21], [22], [23], [24]. Table referenced (2) provides a
succinct overview, comparing our research with contempo-
rary, state-of-the-art studies. It uses distinct parameters to
highlight how our study integrates innovative techniques and
stands in relation to other contributions in the field.

III. MOTIVATIONS AND OUR CONTRIBUTIONS
To address the research gaps and improve performance in
dense vehicular networks, we focus on three significant
challenges:
1) Appropriate gain value selection and prediction for vary-

ing speeds: Current methods do not provide an efficient
way to adapt antenna gain values as vehicular speeds
change. We propose using a Bayesian Neural Network
to predict accurate antenna gain values for optimized
communication among V2V links, which can adapt to
changing vehicle speeds and lane change scenarios.

2) Computational complexity and reliability in Q-Learning
for DSRC: Existing Q-Learning techniques for DSRC
improve throughput analysis and average latency but
consume significant computational resources due to
recursive iterations. In dense vehicular networks, this
leads to an unreliable server crash probability of
more than 33.67%. We propose a Gated Recurrent
Unit (GRU)-based Recurrent Neural Network (RNN)
to reduce computational complexity and improve
performance. By incorporating GRU layers into the
RNN, we can achieve an effective data rate using
data samples from previous observations and minimize
computational overhead.

3) Path loss optimization for mmWave: The current usage
of Long Short-Term Memory (LSTM) networks for
optimizing path loss in mmWave communication is
not efficient. We propose a car-to-car deep RNN
for path loss optimization in mmWave communi-
cation. We utilize active base stations and perform
channel estimation to create the channel vector with
parameters such as Angle of Arrival (AoA), Angle
of Departure (AoD), and path loss. Analyzing speed
variations between 20 m/s and 40 m/s, we aim to
decrease V2V computational complexity and improve
performance.

To address these challenges, we make the following
contributions:
• We propose a Car-to-Car deep Hierarchical Recurrent
Neural Network (CtCNet-HDRNN) that integrates a
Gated Recurrent Unit-based Recurrent Neural Network
(GRU-RNN) to optimize path loss in mmWave commu-
nication, reduce computational complexity, and improve
speed stability in V2V communication systems. The
HDRNN incorporates novel algorithms and computa-
tional models for enhanced channel estimation accuracy
using active base stations and parameters such as Angle
of Arrival (AoA), Angle of Departure (AoD), and path
loss.

• We develop an antenna gain prediction model using a
Bayesian Neural Network that accurately determines
appropriate gain values for optimized V2V communi-
cation links in varying speed scenarios. This model,
in conjunction with system simulations at five different
frequencies, ensures reliable communication even at
speeds above 180 km/h.

• We design and implement an integrated communica-
tion model that combines mmWave of 5G, DSRC,
and CtCNet-HDRNN for efficient and reliable V2V
communication. By leveraging the strengths of different
communication technologies, we address key challenges
and limitations in existing systems and enhance vehic-
ular network performance and safety. Furthermore,
we employ a Monte Carlo-based approach to assess
the performance of the proposed solutions in a DSRC
channel environment.
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TABLE 2. Comparison of our study with previous state-of-the-art studies.

IV. SYSTEM MODEL
The detailed architecture of the system model is shown in
Figure 1. Heterogeneous networks, consisting of two or more
connected radio access networks, are known as RANs. The
constituent RANs of our proposed 5G network will likely
include a mmWave cellular network and existing DSRC
networks. The mmWave will support overtaking scenarios on
highways where DSRC sometimes fails. In addition, DSRC
will be responsible for safety protocols. The DL optimization
will further improve the path loss of mmWave, resulting
in a safe vehicular network with low computational power
requirements.

The DL optimization can help improve the path loss of
mmWave communication by intelligently adjusting various
parameters and configurations to adapt to the unique
challenges posed by mmWave propagation. Major reasons
why DL optimization can improve further the path loss of
mmWave are: In mmWave communication, beamforming
is essential for focusing the signal’s energy towards the
intended receiver, which can help overcome path loss.
The DL algorithms can learn the optimal beamforming
configurations based on the environment and communication
requirements, thus reducing the path loss. Deep learning
techniques can intelligently select the best channel for
communication, considering factors like channel avail-
ability, channel quality, and interference. By choosing a
channel with lower path loss, deep learning optimization
can improve the overall communication performance in
mmWave systems. Deep learning can be used to optimize
the gain of the antennas used in mmWave communication
systems. By predicting the optimal antenna gain based on
the environment and communication requirements, deep
learning can reduce path loss and improve communication
performance.

The architecture’s components and their functionalities
will be explained in the following sections.

A. PROPOSED 5G MM-WAVE MODEL FOR VEHICULAR
DESIGN WITH ANTENNA GAIN PREDICTION
Future researchers may carry out practical demonstrations in
this section. However, this paper will discuss the detailed
implementation of simulation work using different algo-
rithms, focusing on a 2-dimensional approach.

First, we will examine the data rates of the 5G mmWave,
which can safely support high-speed overtaking environ-
ments. Next, we will enhance gain optimization for range
optimization of antennas using a deep learning module.
In overtaking scenarios, a specific data rate is necessary to
ensure safety. According to research [44], the required data
rate threshold is 1 Gbps per few tens of meters. This research
had two significant gaps, which our study addresses. First,
the comparison analysis did not consider fixed antenna gain,
which is not practical. Second, the research did not examine
data rates for speeds greater than 160 km/h concerning range
optimization for safe scenarios.

A 2-way channel model is used for fundamental analyses.
The direct wave consists of the path length denoted by R(d),
and the ground reflection wave’s length is R(r). Antenna
selection at the receiving side considers different heights,
H(r1) and H(r2), to eliminate the fading effect produced in
2-dimensional propagation concerning the vehicle’s location,
as shown in Figure 2.

Simulation analysis was carried out for V2V with various
antenna strengths and bandwidth introduction. Five different
frequency bands were considered: 5GHz, 30GHz, 45GHz,
50GHz, and 60GHz. The antenna spacing for selection varies
according to each frequency’s wavelength.

Propagation losses and high noise are observed even at
high carrier frequencies. However, fixed antenna gain for
high frequency and bandwidth are stable parameters for
safe autonomous vehicles. The reason for fixed antenna
observance is to extract the most optimized frequency
band for single-frequency usage with focused optimization
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FIGURE 1. System model of integrated mmWave, DSRC and Proposed model stack with enhance pathloss optimization model feedback.

FIGURE 2. 2-way design analysis of transmitting and receiving vehicles
with reference to ground space.

instead of different bands with poor optimization. A practical
example of this scenario is the World Trade Centre Antenna
structure designed byMotorola’s design firm. Those antennas
were placed near the top of the tower, near the edge. Each
antenna can have any number of systems feeding into it
without interfering with fixed antenna gain. In addition,
waveguides were utilized in microwaves. The task was
immense, well-coordinated, and successful.

Secondly, range optimization during overtaking scenar-
ios on the highway was a critical concern and obstacle
in mmWave of 5G. A deep learning solution was pro-
posed to predict appropriate antenna parameters based on
situation-based circumstances to address this issue. The
predictive inspection predicts antenna gain for appropriate
overtaking scenarios with a minimum loss between V2V
links.

A Bayesian Neural Network is an extension of traditional
neural networks that incorporates probabilistic modeling.
Unlike standard feedforward neural networks that produce
deterministic outputs, BNNs produce probability distribu-
tions over the model’s parameters. This allows BNNs to
capture uncertainty and provide more robust predictions,
especially when dealing with limited data or noisy environ-
ments.

The architecture of the Bayesian Neural Network used
in our antenna gain prediction model consists of multiple
layers of interconnected neurons. Each neuron has associated
weight and bias parameters, and the connections between
neurons are represented by probability distributions. To train
the BNN, we employ a variation of the Stochastic Gradient
Langevin Dynamics (SGLD) algorithm, which combines
stochastic gradient descent with a Langevin Monte Carlo
sampling technique. This training approach enables us
to sample from the posterior distribution of the model’s
parameters and iteratively refine them over the course of
training.

The training process involves propagating input data
through the network, calculating the loss function, and
then adjusting the model’s parameters using the sampled
gradients obtained from the Langevin sampling. This process
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is repeated over multiple iterations to refine the model’s
parameters and improve the prediction accuracy.

Through the Bayesian approach, our antenna gain predic-
tion model can not only make accurate predictions but also
quantify the uncertainty associated with each prediction. This
is particularly valuable in dynamic vehicular environments,
where vehicle speeds may change rapidly, and reliable
communication is essential.

Overall, the Bayesian Neural Network architecture and
the training methodology provide a robust and techni-
cally sound foundation for our antenna gain prediction
model. By harnessing the power of probabilistic modeling
and uncertainty quantification, our approach enhances the
technical soundness and clarity of functionality, enabling
optimized communication and improved performance in
dense vehicular networks. The workflow can be depicted in
Figure 3.

Let Rd and Rr represent the direct path length and the
ground reflection path length, respectively. The total path loss
L(f ) for a 2-way channel model can be represented as:

L(f ) = Lpath(f ,Rd ,G)+ Lreflection(f ,Rr ,G)+ Lnoise(f )
(1)

where f is the frequency, G is the antenna gain, and Lpath,
Lreflection, and Lnoise are the path loss, reflection loss, and
noise loss, respectively.

The data rate D required for safe overtaking can be
described as:

D ≥
1Gbps
dthreshold

(2)

where dthreshold is the distance threshold (in tens of meters)
for maintaining safety during overtaking scenarios.

The deep learning model aims to find the optimal antenna
gain G∗, which minimizes the overall propagation loss L(f )
for a given scenario:

G∗ = argmin
G
L(f ,G) (3)

By employing the deep learning model, the system can
adaptively adjust the antenna gain based on the real-time
scenario, improving the reliability and safety of the V2V
communication during high-speed overtaking maneuvers.

B. V2V WITH DSRC CHANNEL ACCESS VIA PROPOSED
MONTE CARLO METHOD
Demand for less infrastructure-intensive wireless networking
has increased, especially for vehicle communication carrying
safety-related messages. IEEE 802.11 contains many proto-
cols, standardized as IEEE 802.11p at 5.9GHz, known as a
Dedicated Short-Range Communication band.

Packet collisions impact the reliability of data transmission
and reception. A collision occurs when two or more
transmitters within range of the same receiver attempt to
broadcast a packet simultaneously. The receiver receives no
message, disrupting communications andwasting bandwidth.
The MAC (Medium Access Control) protocol is a vital

FIGURE 3. Optimized gain prediction: An illustration of the system model.

link layer component. The DSRC standard allows for a
maximum transmission range of 1-kilometre Line-of-Sight.
Paired with the OCB mode’s unlimited operation, this
could result in constructing highly dense vehicle networks,
particularly in urban areas, making solving the channel
access control problem more challenging. As DSRC-based
vehicular networks are designed to handle safety-related
signals with limited relevance duration, a reliable channel-
sharing strategy with low-latency exchanges is necessary.
Synchronization-based MAC protocols like TDMA may be
more effective in V2V networks due to a lack of infrastructure
and high mobility. As a result, contention-based channel-
sharing systems like CSMA appear more suitable. Moreover,
the proposed Q-Learning techniques are effective [16] but
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still have limitations in processing chains of Markov packets
for better results, as this action increases computational
complexity affecting vehicular links.

Our research aims to develop a self-learning collision
avoidance system using the Monte Carlo method. MAC
protocol is a set of structures to regulate the PHY of
radio analyzers. The Distribution Coordination Function
is a crucial principle of MAC used by IEEE 802.11.
CSMA/CA algorithms are used to share pinpoint channels
for several stations. Before attempting to broadcast, the
node chooses a backoff integer at random from a uniform
distribution spanning the interval [0, CW], with the initial CW
(Contention Window) value equal to CWMIN, then counts
down for backoff time slot intervals. The backoff value will
be reduced only when the channel is free; otherwise, the
counter will remain frozen until the medium becomes idle
again.When transmitting stations use a significant CW value,
it suggests a decreased chance of interference. There is a
decreased likelihood that two or more stations may draw
the same back off at random and broadcast simultaneously,
causing congestion and packet loss. However, a larger backoff
also implies that the station will likely wait longer before
broadcasting a packet, increasing overall transmission delay
and causing contention and packet loss when several stations
are transmitting simultaneously.

To propose a novel mathematical model for the
self-learning collision avoidance system using the Monte
Carlo method, let’s first define the parameters for our model:

Let N be the total number of vehicles in the network,
Ct be the total number of collisions at time t , and Pij be
the probability of transitioning from state i to state j (i.e.,
from i collisions to j collisions). The goal is to minimize the
expected number of collisions.

We can model the collision avoidance system using
a discrete-time Markov chain (DTMC) with state space
S = 0, 1, 2, . . . ,N , where each state represents the
number of simultaneous packet transmissions. The transition
probabilities Pij can be calculated using the Monte Carlo
method based on historical data and channel conditions.

To model the backoff strategy, let Bi represent the random
backoff time for vehicle i, drawn from a uniform distribution
U (0,CWi). The CW value for each vehicle can be updated
dynamically based on the current state of the Markov chain
and the estimated collision probabilities.

The objective is to find an optimal policy π∗ that
minimizes the expected number of collisions over a finite
time horizon T . This can be formulated as a Markov
Decision Process (MDP) with state space S, action space
A = a1, a2, . . . , aN , transition probabilities Paij, and reward
function R(s, a), where R(s, a) = −Ct if action a results in a
collision at time t .
The optimal policy π∗ can be found using Reinforcement

Learning (RL) techniques such as Q-learning or the Monte
Carlo method. In each iteration of the learning process,
vehicles update their CW values based on the observed
collision probabilities, and the MDP transitions to a new

Algorithm 1 Self-Learning Collision Avoidance Using
Proposed Monte Carlo Method
Require: N : total number of vehicles in the network

T : finite time horizon
CWmin: minimum contention window
α: learning rate
γ : discount factor
ϵ: exploration rate
Q(s, a): state-action value function

1: for each vehicle i ∈ {1, 2, . . . ,N } do
2: Initialize CWi = CWmin and state si = 0 (no collisions)
3: end for
4: for t = 1 to T do
5: for each vehicle i do
6: if rand() < ϵ then
7: Choose a random action ai ∈ A
8: else
9: ai← argmaxaQ(si, a)
10: end if
11: Calculate the backoff time Bi ∼ U (0,CWi)
12: Transmit the packet after waiting for Bi time slots
13: end for
14: Observe the new state s′ (number of collisions) and the

reward R(s, a) = −Ct
15: for each vehicle i do
16: Update the Q-value:Q(si, ai)← Q(si, ai)+α[R(s, a)

+γ maxa′ Q(s′, a′)− Q(si, ai)]
17: Here, α represents the learning rate determining how

much of the newly acquired knowledge will replace the
previous value. If α is set to 1, the new knowledge
completely replaces the previous value; if it’s set to 0,
the new knowledge is ignored. This learning rate can be
fixed or can be adaptively modified as per the learning
process. The term R(s, a) + γ maxa′ Q(s′, a′) represents
the learned value. Here, R(s, a) is the reward for taking
action a in state s, and maxa′ Q(s′, a′) is the estimate
of the optimal future value from the next state s′. γ
is the discount factor, which determines how much
importance we want to give to future rewards. A high
value for the discount factor (close to 1) captures the
long-term effective award, while a smaller value (close
to 0) makes our agent ‘‘myopic’’ (or short-sighted) by
only considering current rewards.

18: Update the state: si← s′

19: end for
20: end for=0

state. The algorithm converges when the collision probability
reaches a predefined threshold or after a maximum number
of iterations.

The proposed mathematical model captures the dynamics
of the collision avoidance system and allows for adaptive
behavior of the vehicles based on the current channel
conditions and network state. The self-learning approach
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FIGURE 4. Flowchart of self-learning collision avoidance using proposed
monte carlo method.

using the Monte Carlo method helps to minimize the
expected number of collisions while maintaining low-latency
communication in the vehicular network.

The flow of the self-learning collision avoidance
Algorithm 1 and Figure 4 using the Monte Carlo method
starts by initializing the parameters such as the total number
of vehicles in the network, the finite time horizon, minimum
contention window, learning rate, discount factor, exploration
rate, and the state-action value function. Parameters can also
be illustrated in Table 3. Each vehicle in the network will
have its contention window and initial state (no collisions)
initialized.

The algorithm then iterates over the time horizon, and for
each vehicle, it checks if the channel is idle. If the channel is

TABLE 3. Essential parameters for the implementation of the
self-learning collision avoidance algorithm.

idle, the vehicle will choose an action based on its current
state and the exploration rate. This action can be either to
transmit or to wait, and it is selected according to the vehicle’s
state-action value function.

After selecting an action, the vehicle updates its contention
window based on the chosen action and calculates the
expected reward. The vehicle then observes the new state
(collision or no collision) and updates the state-action value
function using the learning rate, discount factor, and observed
reward.

At the end of each time step, the algorithm updates the
exploration rate to balance exploration and exploitation. The
process continues, iterating over the time horizon, allowing
vehicles to learn from their actions and adjust their contention
window to minimize collisions and improve the overall
network performance.

C. PROPOSED CTCNET-HDRNN WITH NOVEL GRU-BASED
CHANNEL TRACKING MECHANISM
To address the challenges in mmWave communications for
5G systems, we propose a deep learning-based channel
estimation and tracking technique using a Deep Recurrent
Neural Network (D-RNN) and a Gated Recurrent Unit (GRU)
for channel tracking. This approach minimizes training
overhead and computational complexity.

Our proposed architecture uses an omnidirectional antenna
pattern to receive uplink training pilots, simplifying the
initial training process and allowing for efficient reception in
dynamic environments.

The optimization objective is to minimize path loss while
reducing computational complexity, with constraints related
to hardware limitations, time overheads, and minimizing
training costs. An adaptive learning rate and regulariza-
tion term are introduced to improve generalization and
adaptability.

We achieved optimal data fit, superior generalization,
and efficient convergence through the utilization of adap-
tive learning rate and regularization techniques within the
advanced training methodology of our model. Specifically,
the adaptive learning rate dynamically adjusts the rate of
learning during training, allowing the model to converge effi-
ciently while avoiding overshooting and divergence issues.
On the other hand, regularization techniques help prevent
overfitting and enhance generalization by adding penalties
to the loss function based on the complexity of the model.
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FIGURE 5. Input mapping with respect to weights of RNN.

By combining these approaches, our CtCNET-HDRNN
model optimizes data processing, improving performance
and reliability in dense vehicular networks. The adaptive
learning rate and regularization contribute to enhanced
convergence, which ensures accurate predictions and reliable
communication among vehicles, even in scenarios with
varying speeds and lane changes.

A novel GRU-based channel tracking mechanism is
employed to optimize path loss in mmWave 5G systems.
The GRU model determines how much previous data should
be passed to the future for accurate estimations, removing
unnecessary data and increasing computational optimization.

To further advance the model’s performance, we introduce
a hierarchical deep recurrent neural network (HDRNN),
augmented with multi-scale attention mechanisms. This
innovative design choice ensures the network’s capability
to assimilate both transient (short-term) and persistent
(long-term) patterns present within the input sequence.
Consequently, it offers heightened accuracy and robustness in
its predictive outputs. To fortify the model against common
pitfalls, we integrate dropout regularization—a technique that
randomly omits a fraction of units during training, thereby
preventing co-adaptation of hidden units. Additionally, layer
normalization is employed. Unlike batch normalization that
operates on the batch dimension, layer normalization stan-
dardizes features along the feature dimension. This ensures
consistent mean and variance for each feature, reducing
internal covariate shift and bolstering the model’s stability.
The meticulous arrangement of input and output concerning
the RNN weights is illustrated in Figure 5

Input and output mapping according to RNN weights can
be shown in Figure 5.
For the nth Base Station (BS), the received signal is

represented as:

xomnin = [aTn · bn · ypilot ]+ [aTn · cn] (4)

Optimization variables include network parameters like
beamforming methods and deep learning algorithms. The
optimization objective is to minimize path loss in mmWave
5G systems while reducing computational complexity. Con-
straints considered involve hardware limitations, time-based
overheads, and training cost minimization.

The D-RNN output is expressed as:

B̂ = α(α1(A) : ϵ) (5)

where B̂ shows DNN output estimation, ϵ represents the lth
layer’s parameters.

The universally received signal x is the input feature
represented as:

xomnin = [xomni1 , .., xomniN ] (6)

where xomnin denotes the Omni-received signal from all
BS. Consequently, all coordinating BSs’ projected mmWave
channels can be obtained as b = [b(1), .., b(n)]. The optimal
ϵ is found by training and minimizing the loss function.

The loss function is expressed by:

Loss(ϵ) =
1
VLy

V−1∑
v=0

((B̂− B))2 (7)

In the equation above, ϵ is an optimizing factor achieved by
minimizing Loss ϵ through rigorous training. L represents the
vector length.

A novel GRU-based channel tracking mechanism is
introduced to further optimize path loss in mmWave 5G
systems. GRU has the advantage of utilizing fewer training
parameters, requiring less memory, and providing faster
execution, which is essential for dense V2V environments.
Additionally, GRU’s performance is competitive compared to
LSTM, which has a higher computational complexity

The update GRU gates is represented as:

at = ϱ(Rz · xt + ϱ(M z
· ht−1) (8)

where xt is the input for the network, Rz represents weights,
and t − 1 denotes previous information combined with ϱ as
the activation function.

Updated gates help the model determine the amount of
previous data to be passed to the future for appropriate
estimations. This is beneficial for carrying error-free data to
avoid collision analysis, thus helping to remove unnecessary
data from the past to increase computational optimization.
The equation representing this scenario is as follows:

bt = ϱ(Rz · x + ϱ(M z
· ht−1) (9)

Moreover, bt is observed as a reset gate. A novel memory
content is developed, considering the density of connected
cars as follows:

S ′t = tanh(Rz · x + ϱ(M z
⊙ ht−1)(V2VDF − V2V − CL)

(10)

The V2V DF represents the density factor of the cur-
rent situation minus V2V-CL (connected links) to extract
failure events due to path loss for appropriate target point
processing. After summing all the aforementioned steps,
a non-linear activation function is applied, which is necessary
for mmWave 5G to cater to the non-linear behaviors of
communication waves. The results are incorporated into a
channel tracking system using GRU; by this method, predic-
tion is enhanced and inversely proportional to computational
complexity, as shown in the following formula:

OP =
1

CC − [V2V ]
(11)
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where OP represents optimized prediction and CC denotes
computational complexity extracted by the proposed GRU-
based method.

Introducing an adaptive learning rate and a regularization
term is crucial for enhancing our model’s performance. The
adaptive learning rate, applied using the Adam optimization
algorithm, refines the step size during training, allowing
for better convergence rates and more effective optimization
landscape navigation. Consequently, the model can adapt
more efficiently to varying environments.

Additionally, we incorporate regularization to deter over-
fitting and promote simpler model representations. We used
the Adam optimization algorithm, which calculates an
adaptive learning rate for each parameter:

mt = β1mt−1 + (1− β1)∇ϵLoss(ϵ) (12)

vt = β2vt−1 + (1− β2)(∇ϵLoss(ϵ))2 (13)

ϵ ← ϵ −
η

√
vt + ϵ

mt (14)

where mt and vt are the first and second moment estimates,
β1 and β2 are exponential decay rates, η is the learning rate,
and ϵ is a small constant to prevent division by zero.
By including an L2 regularization term, also known as

weight decay, in the loss function, we penalize large weights,
reducing the risk of overfitting. As a result, the model
becomes more robust and generalizes better to unseen data:

Lossreg(ϵ) = Loss(ϵ)+
λ

2

L∑
l=1

nl∑
i=1

nl−1∑
j=1

(W 2
l,ij) (15)

where Lossreg(ϵ) is the regularized loss function, λ is the
regularization parameter, L is the number of layers, nl is
the number of neurons in layer l, and Wl,ij is the weight
connecting neuron i in layer l to neuron j in layer l − 1.
Further optimization is needed for the model, specifically

when dealing with mmWave 5G systems, due to the inherent
challenges in these communication environments. mmWave
signals are highly sensitive to obstacles and experience
significant path loss. Additionally, rapid changes in the
environment can lead to fluctuations in channel conditions,
which can negatively impact the performance of the wireless
communication system.

Integrating a multi-head attention mechanism into the
model can address these challenges more effectively.
By allowing the model to selectively focus on different input
sequence segments, the multi-head attention mechanism
can capture both long-range and short-range dependencies
between various time steps. This is particularly important in
mmWave 5G systems, as the rapid fluctuations in channel
conditions require the model to adapt and learn from
both recent and historical data in order to make accurate
predictions.

By incorporating the multi-head attention mechanism, the
model can better handle the complex and dynamic nature
of mmWave 5G environments, leading to improved path

Algorithm 2 Proposed CtCNET by HDRNN
Require: Training data: D
= {(x1, y1), (x2, y2), . . . , (xN , yN )}, learning rate: η,
epochs: T , regularization parameter: λ, adaptive
learning rate parameters: µ1, µ2, and ϵ

1: Initialize network parameters 2 randomly
2: for t = 1, . . . ,T do
3: Shuffle the training data D
4: foreach mini-batch (xMB, yMB) in D do
5: Perform forward propagation to compute

predictions ŷMB
6: Compute gradients: gt ← ∇2Lossreg(2)
7: Update first moment estimate: mt ← µ1mt−1

+(1− µ1)gt
8: Update second moment estimate: vt ← µ2vt−1

+(1− µ2)g2t
9: Compute bias-corrected first moment estimate:

m̂t ←
mt

1−µt1
10: Compute bias-corrected secondmoment estimate:

v̂t ←
vt

1−µt2
11: Update parameters: 2← 2− η m̂t√

v̂t+ϵ
12: end for
13: end for=0

loss optimization and, ultimately, more efficient and reliable
wireless communication.

Attention(Q,K ,V ) = Softmax(
QKT
√
dk

)V (16)

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)WO

(17)

where Q, K , and V are the query, key, and value matrices, dk
is the key dimension, headi is the output of the i-th attention
head, and WO is the output weight matrix. The multi-head
attention mechanism will be integrated into the GRU cell,
allowing the model to better capture temporal dependencies
in the input sequence.

Incorporating the multi-head attention mechanism into a
hierarchical deep recurrent neural network (HDRNN) can
better capture the complex dependencies in mmWave 5G
systems. The HDRNN is structured with several layers of
stacked GRUs, each designed to capture dependencies at
different time scales. This hierarchical structure allows the
output of one layer to serve as the input for the next layer,
facilitating the model’s ability to process and learn from the
intricate relationships found in mmWave 5G environments.
The HDRNN can be represented as follows

h(1)t = GRU (1)(xt , h
(1)
t−1) (18)

h(l)t = GRU (l)(h(l−1)t , h(l)t−1), ; ; ; l = 2, . . . ,L (19)

where h(l)t is the hidden state at time step t in layer l, and L is
the number of layers in the HDRNN.
Considering the hierarchical structure of the HDRNN,

a multi-scale attention mechanism is introduced to enhance
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themodel’s ability to selectively focus on different parts of the
input sequence at various time scales. This addition is crucial
because the mmWave 5G channel characteristics exhibit
dependencies across multiple time scales, and capturing these
diverse relationships effectively is essential for accurate path
loss optimization. By implementing a separate attention layer
for each time scale, the model can better adapt to the inherent
complexities and variations in the mmWave 5G systems:

Attention(l)(Q,K ,V ) = Softmax(
QKT
√
dk

)V (20)

MultiHead (l)(Q,K ,V ) = Concat(head1, . . . , headh)WO

(21)

where Q(l), K (l), and V (l) are the query, key, and value
matrices at layer l, and the other variables are defined as
before.

The output of the HDRNN is then combined with the
outputs of the attention layers to produce the final prediction:

yt =
L∑
l=1

α(l)MultiHead (l)(h(l)t , h
(l)
≤t , h

(l)
≤t ) (22)

where α(l) are learnable weights that control the contribution
of each attention layer to the final prediction.

To improve the robustness of the model and prevent
overfitting, we will employ dropout regularization between
the GRU layers and after the multi-scale attention layers:

h(l)t = Dropout(p)(GRU (l)(h(l−1)t , h(l)t−1)) (23)

yt = Dropout(p)(
L∑
l=1

α(l)MultiHead (l)(h(l)t , h
(l)
≤t , h

(l)
≤t ))

(24)

where p is the dropout probability.
Incorporating additional layers in the HDRNN and

implementing normalization techniques, such as layer nor-
malization, within the architecture serves a crucial purpose
despite the model’s existing complexity. The need for extra
layers arises from the presence of intricate dependencies and
relationships in mmWave 5G systems that are not captured
effectively. These additional layers enable the model to learn
more abstract and high-level representations, enhancing its
capacity to handle complex scenarios. Layer normalization,
on the other hand, helps maintain a stable learning process by
normalizing the activations across different layers, ensuring
consistent and efficient training.

Initially, the incorporation of layer normalization within
the HDRNN shall be executed, as follows:

LN (x) = γ
x − µx
σx

+ β (25)

where x is the input to the layer normalization, γ and β are
learnable scaling and shifting parameters, and µx and σx are
the mean and standard deviation of the input x, respectively.

Subsequently, the HDRNN shall be augmented by intro-
ducing an additional hidden layer and integrating layer

normalization. The resultant output of the enhanced HDRNN
can be articulated as:

B̂ = α3(LN (α2(LN (α1(A) ·W1 + B1)) ·W2 + B2)) ·W3 + B3
(26)

where αi represents the activation function for the i-th layer,
and Wi and Bi are the weights and biases for the i-th layer,
respectively.

The regularized loss function with the extended HDRNN
model is:

Lossreg(ϵ) = Loss(ϵ)+
λ

2

L∑
l=1

nl∑
i=1

nl−1∑
j=1

(W 2
l,ij)

+
λLN

2

L∑
l=1

nl∑
i=1

(γ 2
l,i) (27)

where λLN is the regularization parameter for the layer
normalization scaling parameters γl,i.
In conclusion, the update equations for the Adam optimizer

persist unchanged, albeit with the gradient computed for
the expanded HDRNN and the modified regularized loss
function:

mt = β1mt−1 + (1− β1)∇ϵLossreg(ϵ) (28)

vt = β2vt−1 + (1− β2)(∇ϵLossreg(ϵ))2 (29)

ϵ ← ϵ −
η

√
vt + ϵ

mt (30)

Expanding the HDRNN and incorporating layer normal-
ization allows the model to capture higher-order interactions
and dependencies within the data more effectively. Addition-
ally, the regularization term in the loss function now considers
both the weights and layer normalization scaling parameters,
further enhancing generalization.

To establish a seamless integration among the CtCNET-
HDRNN, adaptive learning rate, and regularization, the
overall training process and update equations for the model
parameters are outlined below.

The complete loss function is defined, taking into account
the regularization term:

The complete loss function is defined, taking into account
the regularization term:

Lossreg(ϵ) = Loss(ϵ)+
λ

2

L∑
l=1

nl∑
i=1

nl−1∑
j=1

(W 2
l,ij) (31)

where Lossreg(ϵ) is the regularized loss function, λ is the
regularization parameter, L is the number of layers, nl is
the number of neurons in layer l, and Wl,ij is the weight
connecting neuron i in layer l to neuron j in layer l − 1.

The Adam optimizer, featuring an adaptive learning rate,
is employed to update the proposed CtCNET-HDRNN
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parameters:

mt = β1mt−1 + (1− β1)∇ϵLossreg(ϵ) (32)

vt = β2vt−1 + (1− β2)(∇ϵLossreg(ϵ))2 (33)

ϵ ← ϵ −
η

√
vt + ϵ

mt (34)

where mt and vt are the first and second moment estimates,
β1 and β2 are exponential decay rates, η is the learning rate,
and ϵ is a small constant to prevent division by zero.
The proposed approach incorporates the HDRNN archi-

tecture, utilizes an adaptive learning rate from the Adam
optimizer, and includes a regularization term in the loss
function. By doing so, the model parameters are updated in
a balanced manner that ensures a good fit to the training
data while promoting a simpler representation. This approach
enhances the generalization capability of the model and
facilitates efficient convergence during training as depicted
in Algorithm 2.

To address the computational complexity challenge on
edge devices, we introduce a Sparse Deep Recurrent Neural
Network (SDRNN). This technique leverages the inherent
sparsity within the network’s structure by selectively pruning
less significant connections. By removing these connections,
the model becomes more compact and efficient, making
it well-suited for resource-constrained edge devices. The
utilization of SDRNN enables us to achieve a balance
between model size and computational efficiency, facilitating
effective deployment on edge devices.

Let’s define the proposed SDRNN model mathematically:
Consider a CtCNET Deep Recurrent Network with

parameters 2 = W1, b1,W2, b2, . . . ,WL , bL , where Wl and
bl represent the weight matrix and bias vector for layer l,
respectively, and L is the total number of layers.
To introduce sparsity, we define a corresponding sparsity

maskMl for each layer l. The mask has the same dimensions
as the weight matrix Wl and consists of binary values.
Specifically,Ml,ij = 1 indicates an active connection between
nodes i and j in layers l − 1 and l, while Ml,ij = 0 indicates
an inactive (pruned) connection.

To incorporate the sparsity mask Ml into the forward
propagation equation, we modify it as follows:

zl = fl(Wl ⊙Ml) · al−1 + bl (35)

In the modified forward propagation equation, the
element-wise product ⊙ is used. Here, al−1 represents
the activation vector of the previous layer, zl represents
the pre-activation vector of layer l, and fl represents the
activation function for layer l.
To train the SDRNN model with the sparsity masks Ml ,

we minimize the following loss function:

LossSDRNN (2,M ) = Loss(2)+ β
L∑
l=1

∥Ml∥0 (36)

where Loss(2) is the original loss function of the
CtCNET-HDRNN Deep Recurrent Network, ∥Ml∥0 is the

zero-norm of the sparsity mask Ml (counting the number
of non-zero elements), and β is a regularization parameter
that controls the trade-off between the model’s performance
and sparsity. After training the SDRNN model, deploy the
sparse model on edge devices, which will require fewer
computations due to the pruned connections, resulting in a
more efficient network.

This computational model allows for reduced complexity
while maintaining adequate performance on edge devices,
providing a practical solution for real-world applications.

Algorithm 3 Integration of Computational Model With
Proposed CtCNET-HDRNN-SDRNN
Require: Initialize network parameters 2, learning rates η,

sparsity masksM , computational model, regularization
parameter β

1: Preprocess input data (vehicle positions, velocities, etc.)
to form data set D

2: Estimate initial channel state using the modified
CtCNET with HDRNN and SDRNN

3: While not converged do
4: Update learning rates using adaptive learning
5: for each layer l in the network do
6: Apply sparsity maskMl to the network parameters

for layer l
7: Train the modified CtCNET with HDRNN-SDRNN

on the input data for layer l
8: Perform forward propagation: zl = fl(Wl ⊙Ml)

·al−1 + bl
9: Compute the partial loss function:

LossSDRNNl (2l,Ml) = Loss(2l)+ β∥Ml∥0
10: Compute gradients: gl

= ∇2l ,MlLossSDRNNl (2l,Ml)
11: Update network parameters for layer l using

gradients, learning rates: 2l ← 2l − ηgl
12: end for
13: Update total loss function: LossSDRNN (2,M )
=

∑
l LossSDRNNl (2l,Ml)

14: Update sparsity masks:M ← update(M , g) where
update is defined asMl[i, j]← 0 if |Wl[i, j]| < τ ;
else Ml[i, j]← 1 for a threshold τ

15: Perform forward propagation in the computational
model

16: Calculate computational model outputs and apply to
network

17: Update network weights and sparsity masks based on
computational model outputs

18: Estimate channel state and update the input data
19: end while=0

Algorithm 3 and Figure 6 demonstrates how to use
the computational model in conjunction with the proposed
CtCNET-HDRNN. The computational model will be incor-
porated into the training process by applying its outputs to
update the network weights, effectively reducing complexity
and making the network more suitable for edge devices.
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FIGURE 6. Flowchart of integration of computational model with
proposed CtCNET-HDRNN-SDRNN.

In the context of dense vehicular networks, where
vehicles require real-time communication and decision-
making, traditional cloud-based computing solutions may
introduce undesirable delays due to data transmission to
remote servers and back. Edge computing offers a promising
alternative by bringing computation closer to the network
edge, reducing communication latency and enabling faster
response times. However, the computational complexity of
advanced communication models and algorithms can strain
the limited resources of edge devices, hindering their ability
to handle real-time data processing efficiently.

Our research directly tackles this critical issue by propos-
ing an innovative integration of the Car-to-Car Network-
Hierarchical deep neural network (CtCNet-HDRNN) model
with 5G and Dedicated Short-Range Communications
(DSRC) systems. By incorporating a Sparse Deep Recurrent
Neural Network (SDRNN) and Gated Recurrent Unit (GRU)-
based Recurrent Neural Network (RNN) within the CtCNet-
HDRNN, we aim to significantly reduce computational
complexity and improve speed stability in V2V communica-
tion. This approach not only enhances system performance
but also ensures reliable and low-latency communication in
highly dense vehicular environments.

If the computational efficiency issue in edge computing
remains unaddressed, it could lead to several potential impli-
cations. First and foremost, communication delays could
jeopardize the effectiveness of safety-critical applications,
such as collision avoidance systems, posing risks to drivers
and pedestrians. Moreover, unreliable communication in
V2V networks may hinder the widespread adoption of con-
nected vehicle technologies, limiting the potential benefits
of enhanced traffic management, reduced congestion, and
improved road safety. In the context of emerging smart
transportation systems, the efficient exchange of real-time
data is paramount, and unresolved computational challenges
could hinder the realization of their full potential. Therefore,

our research has significant implications in advancing edge
computing solutions for vehicular networks, promoting safer
and more efficient transportation, and unlocking the transfor-
mative capabilities of connected vehicle technologies.

D. INTEGRATION MODEL
The integrated model seamlessly fuses CtCNET-HDRNN,
mmWave of 5G, and Monte Carlo for DSRC. The inherent
complexity of combining these technologies necessitates a
robust model that encapsulates all relevant operations, includ-
ing encoding, error-checking, and decoding procedures.

First, the CtCNET-HDRNN model, denoted as 8, pro-
cesses input data X to generate output Y . To prepare Y for
transmission over the 5G mmWave, an encoding operation is
applied:

EY = Encode(Y ) (37)

Then, the mmWave of 5G model, denoted as ψ , operates
on the encoded data EY to produce transmitted data T :

T = ψ(EY ) (38)

Simultaneously, the DSRC system utilizes theMonte Carlo
method, denoted as θ . It processes a different set of input data
Z , which is also encoded:

EZ = Encode(Z ) (39)

The Monte Carlo model for DSRC processes EZ to yield
transmitted data R:

R = θ(EZ ) (40)

After transmission, the transmitted data are subject to
error-checking and decoding operations to recover the
original messages:

DT = Decode(ErrorCheck(T )) (41)

DR = Decode(ErrorCheck(R)) (42)

Thus, the integrated model, denoted as 0, is expressed as:

(T ,R,DT ,DR) = 0(X ,Z )

=
(
ψ(Encode(8(X ))), θ(Encode(Z )),

Decode(ErrorCheck(ψ(Encode(8(X ))))),

Decode(ErrorCheck(θ(Encode(Z ))))
)
(43)

The integrated function 0 encapsulates the entire sequence
of operations, from initial data processing to final decoding
after transmission, within a single, cohesive model.

This Algorithm 4 and Figure 7 covers all necessary
stages in the communication process: initial data processing
by models 8 and θ , encoding, transmission over respec-
tive communication systems, error-checking, decoding, and
feedback-driven adjustment of models. The iterative nature of
the algorithm facilitates dynamic and efficient optimization
of the integrated system.
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Algorithm 4 Integration of Proposed, mmWave of 5G, and
Proposed DSRC
Require: Input data X , Z
Ensure: Transmitted data T , R and Decoded data DT , DR
1: Initialize 8 (CtCNET-HDRNN model)
2: Initialize ψ (mmWave of 5G model)
3: Initialize θ (Monte Carlo for DSRC)
4: Train the models 8, ψ , and θ with available data
5: For each data sample in X and Z do
6: Read input data Xi, Zi
7: Calculate Yi = 8(Xi)
8: Encode Yi to obtain EYi
9: Transmit EYi via the 5G mmWave communication

system, obtaining Ti = ψ(EYi )
10: Perform error-checking on Ti to get T ′i and decode to

get DTi
11: Update 8 and ψ based on the feedback from the

decoding process
12: Repeat a similar process for Zi through the DSRC

system, yielding Ri and DRi
13: Transmit Ti and Ri to the respective communication

systems
14: end for
15:While system is running do
16: Monitor for feedback and adjust 8, ψ , and θ

accordingly in real-time
17: end while=0

FIGURE 7. Flowchart of integration of proposed, mmWave of 5G, and
proposed DSRC.

V. RESULTS & DISCUSSION
This section meticulously unpacks the results of an extensive
experimental analysis, neatly categorized into four distinct
parts. The initial segment discusses the outcomes of the

deployed 5G mm-Wave model, specifically tailored for
vehicular design, with a primary emphasis on antenna gain
prediction in high-speed environments. Subsequently, the
findings from the newly proposed DSRC system are exam-
ined, showcasing its remarkable efficiency and reliability in
vehicular communication scenarios. The discourse then navi-
gates to the path loss optimization, a noteworthy achievement
facilitated by the implementation of the CtCNET-HDRNN
model. Finally, the integrated model undergoes a rigorous
computational analysis, with its performance scrutinized and
its potential to fortify vehicular communication systems eval-
uated. This comprehensive review of each distinct element
and the collective model bestows invaluable insights into
their capabilities, while highlighting strengths, addressing
limitations, and identifying potential enhancements within
the ambit of vehicular communication systems.

A. RESULTS OF THE PROPOSED 5G MM-WAVE MODEL
FOR VEHICULAR DESIGN WITH ANTENNA GAIN
PREDICTION
This section delineates the results arising from the proposed
5G mm-Wave model for vehicular design, notably focusing
on antenna gain prediction.

Simulation experiments within the V2V framework lever-
age five unique frequency bands: 5GHz, 30GHz, 45GHz,
50GHz, and 60GHz. Each band accompanies diverse antenna
strength and bandwidth configurations. For peak perfor-
mance, the spacing between antennas is customized to
correspond with the specific wavelength of each frequency,
as detailed in Table 4.

In the visual representation of Figure 8, the effects of
cooperative and non-cooperative perception on data rates
across varying velocities are evident. The x-axis showcases
velocities ranging from 0 to 180 km/h, while the y-axis
depicts the corresponding data rates in Gbps.

Two distinct plots emerge. Both start from a baseline
of 0 Gbps. However, as the velocity nears 40 km/h, there’s
a pronounced increment in the data rate for both schemes.
The data rate for the cooperative scheme peaks at 12 Gbps.
This pronounced rise can be attributed to the cooperative
perception mechanism, where vehicles are not just passive
entities but active communicators. They detect objects and
share this information with neighboring vehicles in real-time.
This mutual exchange and collaboration bolster perception
accuracy, enhance road safety, and thus contribute to the
higher data rates observed.

Conversely, the non-cooperative scheme, where vehicles
operate in isolation, relying solely on their individual sensors
and processing capabilities, manifests a steeper rise in the
data rate. From 40 km/h to 140 km/h, the non-cooperative
scheme consistently outperforms its cooperative counterpart
by an additional 2 Gbps. This discrepancy might be due to the
reduced overhead and latency associated with real-time inter-
vehicle communications. Nonetheless, beyond 140 km/h, the
cooperative scheme gains momentum, registering an increase
of 1 Gbps.
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FIGURE 8. Correlation of required data rates and velocity with distinct
mm-Wave frequency bands, integrating cooperative perception in
overtaking scenarios.

In essence, while the cooperative perception, underpinned
by active data sharing among vehicles, enhances road safety
and perception accuracy, it may introduce overheads that
affect optimal data rates at certain velocities. On the other
hand, non-cooperative perception, rooted in autonomous
functioning, might offer higher data rates at specific velocity
ranges due to its streamlined operation but lacks the enriched
data environment of its cooperative counterpart.

The system model under investigation demonstrates exem-
plary performance in cooperative perception scenarios by
value of 1Gbps as compared to without cooperative per-
ception, effectively utilizing shared information to enhance
safety and perception accuracy. This efficiency surpasses
even non-cooperative perception with higher data rates. The
model, by capitalizing on cooperation and collaborative data
exchange, ensures reliable and accurate V2V communication.

The selection diversity of antennas proves crucial in this
study. Figure 9 reveals that employing various antennas
across different frequency bands counteracts performance
degradation induced by deep fading and varying vehicle
positions, thereby assuring robust communication in dynamic
V2V scenarios.

In the Figure 10 delineating the V2V connection outage
analysis focusing on the implications of antenna selection
diversity, we observe intriguing trends in data rates with
varying V2V distances, underpinned by different frequency
bands.

Spanning a V2V distance from 0 to 100 meters on the
x-axis, the figure reveals a hierarchy in the data rates
(on the y-axis) contingent on frequency. The 5kHz band
offers the most modest data rates, consistently hovering
below 2 Gbps across the entire distance spectrum. This is not
surprising given that lower frequencies, like 5kHz, inherently
possess longer wavelengths, which, while offering superior
penetration abilities, especially in cluttered environments,
often have constraints in terms of data transmission rates.

As we ascend the frequency scale, there’s a marked
enhancement in data rates. The 30kHz band fluctuates
between 6 and 8 Gbps, while the 45kHz band situates itself

FIGURE 9. V2V connection outage analysis: The impact of antenna
selection diversity.

slightly higher, with values spanning from 9 to 10 Gbps.
The 50kHz and 60kHz bands, being the highest frequen-
cies depicted, record data rates between 10-11 Gbps and
11-12 Gbps, respectively. Higher frequencies, equipped with
shorter wavelengths, are traditionally understood to provide
greater bandwidths and consequently higher data rates, which
the graph’s patterns corroborate. However, these bands,
especially the likes of 60kHz, aremore susceptible to physical
obstacles and atmospheric conditions, which might cause the
occasional dip or instability in data rates, even at shorter V2V
distances.

The study accentuates the paramount importance of
antenna selection diversity for combatting signal degradation
and facilitating seamless V2V communication. It also under-
scores the need for sophisticated techniques to surmount
challenges presented by fluctuating propagation conditions
and dynamic vehicle scenarios, thereby fostering robust and
efficient V2V systems.

Further, mmWave 5G technology exhibits tremendous
potential for Vehicle-to-Everything (V2X) communication,
providing high-speed capabilities and reliable connectivity.
This technology emerges as a versatile tool, enhancing
various aspects of V2X communication.

To sum up, our study highlights the compelling reasons
to embrace mmWave 5G as a cutting-edge solution for
facilitating secure and seamless communication in connected
vehicles. The outstanding performance, reliability, and vast
potential for V2X applications make mmWave 5G tech-
nology a game-changer in driving the evolution of V2V
communication and propelling us towards an exciting era of
interconnected and safer mobility.

While the structure of the Bayesian neural network exceeds
the scope of this study, it is utilized for predicting antenna
gain. The focus lies on dataset distribution and accurate
gain prediction with reduced computational complexity. The
dataset amasses antenna gain data from advanced 5G anten-
nas in sub-urban and highway environments, considering the
range limitations of mmWave 5G. Table 5 provides detailed
information on parameters of the dataset. The study collates
and processes data samples, integrates them with IEEE data
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TABLE 4. Simulation parameters Governing 5G mm-Wave in V2V communication scenarios.

FIGURE 10. V2V connection outage analysis: Excluding the impact of
antenna selection diversity.

TABLE 5. Constituent variables of the analyzed dataset.

port datasets, and filters them according to the requirements
of the neural network. Training occurs with a learning rate
of 0.001 and an epoch size of 15,000, employing the Adam
optimizer for a comprehensive analysis. To enhance the
accuracy of gain selection, a generative layer is introduced
to simulate antenna gains for similar environments, thereby
bolstering the predictive capabilities of the Bayesian model.
The dataset parameters pertain specifically to V2V links, and
the analysis shows an incremental range as gain increases,
underscoring the effectiveness of robust predictive analysis.

Figure 11 depict observations revealing that the prediction
of antenna gain correlates directly with range optimiza-
tion. Figure 12 shows efficiency of Bayesian Network,
the epoch size is distinctly represented on the x-axis,
ranging from 0 to 50, while the y-axis portrays a dual
metric of accuracy and loss, expressed as a percentage
from 0 to 100%. Over the epoch spectrum, two salient
trajectories emerge. The accuracy curve exhibits a consistent
ascent, culminating around 90% by the 50th epoch. This
suggests that as the Bayesian network undergoes more
training iterations, it becomes increasingly proficient at
making accurate predictions, a behavior typical of well-
configured networks. Concurrently, the loss curve depicts a

FIGURE 11. Evaluation of predictive reach.

FIGURE 12. Efficiency assessment of Bayesian networks at early epoch
stages.

mirrored trajectory, commencing around 80% and tapering
off near 0% by the 50th epoch. This declining loss implies
an effective optimization of the network’s parameters,
leading to diminished discrepancies between the predicted
and actual outputs as training progresses. The synchronous
escalation in accuracy and diminution in loss underscores the
model’s robust learning capability. Such synchronous trends,
especially in the early epochs, validate the model’s adeptness
in promptly converging towards optimal solutions, making
it highly efficient in scenarios where rapid model training
is paramount. Further, integrating deep learning algorithms
with V2V links facilitates the accurate prediction of appro-
priate antenna gain, considering environmental constraints
and range possibilities. Though machine learning algorithms
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FIGURE 13. Comparative throughput analysis: Monte Carlo Method vs.
IEEE 802.11p and Q-Learning approaches.

were employed in previous experimentation’s, deep learning
algorithms provide greater promise and convergence.

B. PROPOSED DSRC RESULTS
The simulation evaluations of the proposed Monte Carlo
method-based self-learning collision avoidance system are
focused on a V2V communication scenario, aiming to
minimize the expected collision instances while ensuring low
latency and high data rates.

The comparative analysis, placing the proposed Monte
Carlo method for channel access control against the IEEE
802.11p protocol and Q-Learning techniques, displays the
superior performance of the proposed approach with respect
to throughput. This method outpaces other techniques,
delivering higher data speeds and consistent packet delivery,
as shown in Figure 13.

In the illustrative representation shown in Figure 13, the
y-axis quantifies throughput in Gbps, spanning a range
from 0 to 55, while the x-axis captures the increasing
vehicular nodes, ranging from 0 to 120. Three distinct
throughput trajectories are observed corresponding to IEEE
802.11p, Q-Learning, and the proposedMonte Carlo method.

Commencing at the apex, the Monte Carlo approach
demonstrates a prominent starting throughput of 50 Gbps
with 0 vehicular nodes, which gradually attenuates to 38Gbps
as the nodes intensify to 120. This decline might be
attributed to the increased network congestion and potential
interference, which typically accompanies a denser vehicular
node distribution. However, even with this decrease, the
Monte Carlo approach outperforms the other methods across
the entire node spectrum.

Following this, the Q-learning method exhibits a through-
put inception at 40 Gbps, gradually diminishing to 34 Gbps
at the 120-node mark. The more pronounced attenuation,
compared to Monte Carlo, might be due to Q-learning’s
inherent reactive approach which, while effective, may not
preemptively manage dense vehicular networks as efficiently.

Finally, the IEEE 802.11p showcases the most mod-
est throughput, commencing at 32 Gbps and culminating

FIGURE 14. Evaluating latency in varied network densities: A study of the
Monte Carlo approach.

at 27 Gbps for 120 nodes. Given its traditional design, this
protocol may not be as adept at leveraging the dynamic
attributes of vehicular networks, leading to more pronounced
throughput reductions as node density increases.

In essence, as the vehicular node density rises, the
throughput inevitably faces constraints due to factors like
interference, channel contention, and network management
complexities. However, the proposed Monte Carlo method,
with its stochastic exploration, maintains a superior through-
put profile, making it a promising contender for dense
vehicular network scenarios.

Maintaining low latency is a critical aspect of V2V
communication, especially for safety-oriented messages. The
latency performance of the proposed method is evaluated in
varying network densities. The latency analysis results are
demonstrated in Figure 14 and performs better than other
techniques.

In Figure 14, latency, quantified in milliseconds, spans
the x-axis from 25 to 65 ms, while the y-axis delin-
eates the increasing vehicular nodes from 0 to 120. The
graphical insights draw a comparative landscape between
IEEE 802.11p, Q-learning, and the proposed method, each
showcasing distinct latency characteristics as vehicular nodes
amplify.

Starting with IEEE 802.11p, its latency demonstrates a
considerable increase from an initial 50 ms with no nodes,
swelling to 62 ms as the network saturates with 120 nodes.
This elevation can be attributed to the traditional nature
of IEEE 802.11p which, while being established, might
grapple with latency escalations as node density mounts
due to increased packet collisions and the consequential
retransmissions.

In juxtaposition, the Q-learning approach displays a
notable improvement, initiating at 40 ms and surging only
to 47 ms across the node continuum. The relatively limited
latency rise is a testament to Q-learning’s adaptability. As a
reinforcement learning algorithm, Q-learning dynamically
tweaks its strategies in the face of growing vehicular nodes,
thereby partially mitigating the potential latency escalations.
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The modest increase suggests that the proposed method is
inherently structured to efficiently manage network conges-
tion, possibly employing proactive mechanisms to alleviate
the challenges associated with an escalating node count.

The proposed self-learning collision avoidance system
demonstrates superior outcomes in aspects such as channel
access control, latency, and adaptive contention window
management. This system, which harnesses the Monte Carlo
method and reinforcement learning techniques, optimizes
data transmission, hence guaranteeing reliable communica-
tion within V2V networks.

An adaptive adjustment of the contention window (CW)
is made possible by the proposed Monte Carlo method,
contingent on network interactions. The dynamic updating
of CW values for each vehicle effectively alleviates collision
instances, thereby enhancing overall network performance.
An increase in the mean CWvalue correlates with the number
of vehicles, boosting the exchange of safety messages and
reducing contention.

The system’s self-learning capabilities empower vehicles
to adapt to fluctuating channel conditions and to minimize
expected collisions. This adaptability consequently bolsters
the reliability and efficiency of V2V communication, par-
ticularly for safety-critical applications. The observations
confirm the proposed approach’s effectiveness in tackling the
challenges of channel access control in highly dense vehicular
networks.

These findings underscore the potential of the proposed
Monte Carlo method-based self-learning collision avoidance
system in V2V communication. This approach stands out as
a prospective solution for enhancing the efficiency and relia-
bility of wireless networking within vehicular environments.

C. OPTIMIZING PATH LOSS THROUGH THE PROPOSED
CTCNET-HDRNN
This section elucidates the data collection procedure for the
proposed deep learning model within the context of the
mmWave system for 5G. The collection process ensures
no interruption of the normal functioning of the mmWave
system, with a primary focus on highways and suburban
regions.

The dataset is characterized by the following parameters:

• Carrier Frequency = 28GHz
• Bandwidth = 100GHz
• Active BS = 5
• Active Users = 500-700
• Antenna Spacing = 0.3

Using traditional deep learning beam training techniques,
the mmWave channel undergoes an estimation and determi-
nation process. This process involves the utilization of Omni-
received signals. Following this, the dataset experiences an
update that collects crucial data points and builds the model.
During this procedure, the base station (BS) supervises the
mmWave channel of the 5G system with Omni-received
signals while the user transmits an uplink pilot at a specific

TABLE 6. Defining variables: Insights into the parameters for the
proposed model.

phase. The deep neural network (DNN) processes this
channel, reducing the training time via compressed sensing.

For simulation purposes, the publicly available generic
DeepMIMO dataset with the specified parameters is
employed. The configuration of these parameters involves
Wireless Insite, a 3D ray tracing program, capturing the
frequency dependency of the channel. Parameters such as
Angle of Arrival (AoA), Angle of Departure (AoD), and
path loss contribute to forming the channel vector. The
frequency of the mmWave is set at 28 GHz, with the four
BSs positioned atop a 50-meter-high structure. Each BS is
equipped with an antenna array geometry configured with
M = 4, while the user receives a single antenna. To predict
the channel vector of mobile vehicle users, multiple random
routes with movement rates ranging from 20 m/s to 40 m/s
are devised. The DNN architecture in the deep learning
simulation comprises layers with neuron counts of L= 5, 4, 9,
and nl = 2024 per layer. The parameters of the RNN-GRU
module are presented in Table 6.

In a bid to augment minor underlying accuracies and
capture swift, small changes, the GRU’s learning rate is
set to 0.0001 (as opposed to 0.005 mentioned in related
works). This lower learning rate allows for a larger epoch size,
providing a detailed understanding of the model’s accuracies
with fewer false values. As per established practices, data is
split into 70% for training the neural network and 30% for
testing.

An optimizer modifies neural network properties, such as
weights and learning rates, to reduce overall loss and enhance
precision. In this case, Stochastic Gradient Descent (SGD)
is chosen as the optimizer. Despite its noisier convergence
path in comparison to the original gradient descent, SGD
exhibits faster convergence. The cost fluctuation arises from
approximating the gradient at each step. However, SGD
remains the preferred choice for vehicle communication
as it considerably lowers the computational complexity of
individual epochs, thereby improving the overall efficiency
of the model.

The proposed GRU and LSTMmodels are compared based
on the testing parameter of Normalized Mean Square Error
(NMSE) [45]. Additionally, both models’ computational
complexity is analyzed to evaluate their performance. NMSE
is a statistical measure that accounts for the uncertainty of
measurement results, typically used in proficiency testing to
evaluate conformity.

Normalized error aids in the identification of outliers in
proficiency test scores. To mitigate the influence of large
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FIGURE 15. Insightful comparison of NMSE convergence metrics.

FIGURE 16. Comparative evaluation of computational complexity
between LSTM and the proposed RNN-GRU.

deviations, these outliers are occasionally excluded from
adjustedmean calculations. The NMSE formula is as follows:

NMSE = 1− |x − y|2 / |x − x̄| (44)

where;

x̄ = 1/N
∑

ixi (45)

In this formula, the approximation of x is represented by y.
A comparison between the LSTM model and the GRU

model based on NMSE within vehicular environments is
performed. It is observed that GRU converges quicker than
LSTM as the number of epochs increase. This observation
emphasizes the potential of RNN-GRU as a valuable tool for
complex V2V environments, as depicted in Figure 15.

In the sensitive environment of a V2V network, compu-
tational complexity plays a critical role in ensuring rapid
decision changes and safety message exchanges.The compu-
tational analysis is depicted in Figure 16. It is crucial to strike
a balance between computational power and performance.
Figure 17 displays the observed GPU resource utilization
factor, revealing that the proposed CtCNET-HDRNN with
the proposed GRU shows significantly lower complexity than
LSTM as the epoch size increases.

FIGURE 17. Comparative assessment of computational complexity: LSTM
versus proposed GRU.

FIGURE 18. Overfitting analysis in channel prediction: A comparative
study between LSTM and proposed GRU.

Moreover, the practical accuracies of the proposed RNN-
GRU, apart from considering computational complexities,
are evaluated to determine its effectiveness. Channel predic-
tion is analyzed through fitting analysis, and Figure 18 shows
that CtCNET-HDRNN with the proposed GRU produces
results comparable to and reasonable when matched with
LSTM.

The rate performance of various data samples in the
mmWave vehicular network is also examined. While LSTM
outperforms RNN-GRU, the results obtained from RNN
remain competitive, as shown in Figure 19.
Table 7 summarizes the overall performance of LSTM

and the proposed CtCNET-HDRNN(GRU). The precision of
LSTM is reported as 0.9499, while the proposed framework
achieves an precision of 0.9456. Despite the proposed
framework lagging slightly behind LSTM in precision
analysis, the disparity is negligible..

During the training phase, the innovative approach out-
performs LSTM by approximately 4 hours, underscoring
the computational simplicity of the new method designed
specifically for dense vehicular networks.

The main objective of this innovative approach is
to decrease computational power requirements across all
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FIGURE 19. Comparative analysis of achievable rate performance in
dense mmWave vehicular networks: LSTM versus proposed GRU.

TABLE 7. Comprehensive performance evaluation of 5G mmWave for
dense V2V environments.

aspects. Previous research has primarily relied on LSTM,
which uses a feedback loop to enhance results but at the cost
of increased resource consumption. However, in vehicular
scenarios, a feedback loop is unnecessary because there’s no
need to modify previous information, such as vehicle speed
or safety messages. Lightweight deployments are crucial
in vehicular networks to prevent hardware overheating and
potential equipment malfunctions. The current algorithm
replaces LSTM with the proposed GRU model, marking a
significant breakthrough.

The impact of Gaussian noise on LSTM and the proposed
GRUmodel’s performance is investigated, yielding intriguing
observations. The impact of Gaussian noise is quantitatively
measured by altering the standard deviation of the noise
distribution and subsequently computing and analyzing both
models’ accuracy.

Generally, as expected, an increase in noise results in
a decrease in accuracy for both LSTM and GRU models.
The added complexity that noise introduces causes this
decrease, which hampers the model’s ability to accurately
learn the underlying patterns in the data. Moreover, this
degradation process is time-dependent, as seen from the
three-dimensional surface plots.

However, the proposed GRU model performs better
than the LSTM model in the presence of Gaussian noise.
Specifically, the GRU model experiences a slower rate of
accuracy decrease as the noise standard deviation increases.
This suggests that the GRUmodel is more robust to noise and
can maintain high performance under noisy conditions.

Several factors contribute to this robustness. One of them
is the GRU model’s gate-based architecture, which controls
the information flow more effectively than the LSTM. This

FIGURE 20. Evaluating temporal accuracy and noise resilience in LSTM
and proposed GRU models.

allows the GRU to mitigate the detrimental effects of noise
by dynamically adjusting its internal state. Additionally, the
GRU model incorporates various improvements over the
standard GRU, which further enhance its noise resilience.

The analysis of the results implies that the GRU model’s
performance is not only comparable to the LSTM in
a noise-free environment but it also surpasses it under
more realistic, noisy conditions, as shown in Figure 20.
Therefore, the proposed GRU model promises better results
and reliability for real-world applications where noise is often
unavoidable.

These findings lay a strong foundation for further research
into the robustness of deep learning models against noise,
particularly focusing on GRU and similar architectures.
Additionally, this analysis suggests potential improvements
to GRU models to make them even more resilient to noise,
promising exciting possibilities for future work.

D. COMPUTATIONAL ANALYSIS OF INTEGRATED MODEL
In this section, we engage in a comprehensive discussion
contrasting the computational complexity of our system
model and deployed algorithms against contemporary stud-
ies, as documented in [46]. The performance dimensions
under scrutiny in our analysis include computation time and
GPU utilization

1) RESOURCE CAPACITY
This study rigorously evaluates a novel approach to Vehicle-
to-Vehicle (V2V) communication scenarios, focusing par-
ticularly on the task success rate under various resource
capacities namely low, medium, and high. A comparative
analysis is presented in Figure 21, where the proposed
GRU-based algorithm is contrasted with three established
techniques: LC, GT-hybrid, and DQN-hybrid. Notably, our
model demonstrates superior performance across all resource
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FIGURE 21. Insightful exploration of resource utilization.

capacities. For instance, in a low-resource environment,
the successful task ratio of our model was 75%, signifi-
cantly surpassing LC at 38% and marginally outperforming
GT-hybrid and DQN-hybrid at 68% and 70%, respectively.
Similar trends are observed in medium and high resource
capacity scenarios, where our model attains success rates
of 90% and 98%, outshining LC, GT-hybrid, and DQN-
hybrid. The exemplary performance of our proposed model
can be attributed to the enhanced learning dynamics offered
by the GRU, its computational efficiency, and robustness
to Gaussian noise, which are all vital attributes for V2V
communication scenarios characterized by continuous data
exchange and resource constraints. In conclusion, the pro-
posed GRU model presents a promising solution for V2V
communications, outperforming existing techniques across
various resource capacities. Future research could build on
this work, exploring further enhancements or applying it
to other vehicular communication paradigms for increased
robustness and efficiency.

2) GPU UTILIZATION ANALYSIS
In addition to the task success rate, the efficient use of
computational resources is another vital aspect to consider
in real-world V2V communication scenarios. Particularly,
GPU utilization is a critical factor, especially given the
parallel computation capabilities of modern GPUs which
enable faster training and inference for deep learning
models.

Figure 22 demonstrates the GPU utilization factor in terms
of the epoch size for the LC, GT-hybrid, DQN-hybrid, and
our proposed GRU-based model. It is evident that all models
follow a sigmoid-like curve, indicating an increase in GPU
utilization over epochs until reaching a saturation point. This
behavior aligns with the expected learning process, where the
model initially harnesses more GPU resources for learning,
and later, as it reaches convergence, the demand for GPU
resources plateaus.

Interestingly, our proposed model shows a notably lower
saturation point of 70%, contrasting with LC (90%),
GT-hybrid (80%), and DQN-hybrid (75%). This implies that

FIGURE 22. GPU utilization analysis.

our model is capable of achieving comparable, or even better,
task success rates while requiring less GPU resources. It is a
crucial advantage, considering that V2V environments may
be resource-constrained.

These findings further consolidate the efficacy of our
proposed GRU-based model. While delivering high task
success rates across various resource capacities, it ensures
efficient GPU utilization, making it an optimal solution
for V2V communication scenarios. Future work can delve
deeper into optimization strategies to further enhance the
performance and resource efficiency.

Our proposed model showcases significant computational
efficiency, making it highly suitable for resource-constrained
environments. The model leverages optimized learning tech-
niques and streamlined network architectures to minimize
computational requirements. This efficiency is reflected in
shorter computation times and lower GPU usage, which
translates into less energy consumption and heat generation.
As such, the model can be effectively deployed on devices
with limited processing power and memory, such as IoT
devices, edge servers, and older computational devices, with-
out compromising performance. Furthermore, the model’s
computational frugality also facilitates scalability, allowing
for larger networks to be trained and deployed efficiently.
Overall, our model presents an effective solution for main-
taining high performance in computational environments
where resources are at a premium.

While our research presents novel contributions to address
challenges in dense vehicular networks, it is essential to
acknowledge certain aspects. Firstly, the Bayesian Neural
Network (BNN) for antenna gain prediction, while offering
probabilistic modeling and uncertainty quantification, might
require a significant amount of training data to achieve
optimal performance. Data collection in dynamic vehicular
environments can be challenging, and the model’s predictive
capabilities may be impacted by limited or noisy data.
Future research could explore data augmentation techniques
or transfer learning to enhance the BNN’s performance with
smaller datasets while ensuring reliable communication even
under adverse conditions.
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FIGURE 23. Data rate of mobility model.

FIGURE 24. Mobility model at timestamp=9.

Additionally, our work focuses on addressing specific chal-
lenges in V2V communication, such as path loss optimization
and antenna gain prediction. However, a comprehensive
vehicular communication system involves multiple other
factors, including interference management, mobility man-
agement, and security. Future exploration could consider
the integration of these aspects and investigate the interplay
between different components to create a more holistic and
efficient vehicular communication ecosystem.

Moreover, while our proposed system shows promising
results in simulations and controlled environments, practical
deployment in real-world scenarios may pose unique chal-
lenges. Factors such as environmental variability, network
congestion, and diverse vehicle types and mobility patterns
may influence the system’s performance. Conducting exten-
sive field trials and real-world experiments would be crucial
to validate and fine-tune the proposed solutions for real-world
deployment.

E. V2V COMMUNICATION PERFORMANCE IN
HIGH-SPEED VEHICULAR ENVIRONMENTS
In the conducted V2V communication simulation within
a high-speed vehicular environment using DSRC and 5G

FIGURE 25. Mobility model at timestamp=4.

FIGURE 26. Network density.

mmWave technologies, certain discernible patterns were
observed. Vehicle 93 exhibited a dual-communication strat-
egy, connecting with Vehicle 16 at 10.00 Gbps using DSRC
and Vehicle 33 at 13.06 Gbps using mmWave. Significantly,
Vehicle 98 achieved the peak data rate in the study by
leveraging mmWave to communicate with Vehicle 73 at
29.26 Gbps. This denotes mmWave’s potential for high-data-
rate V2V exchanges. Despite the promise ofmmWave, DSRC
maintained consistent prevalence, as exemplified by Vehicle
95’s interactions with Vehicles 73 and 98, suggesting its
robustness in the simulated scenario. From a temporal per-
spective, timestep=4 registered the highest network density,
implying optimal conditions for V2V interactions. However,
by timestep=9, there was a marked reduction in the density,
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which could be indicative of either increased inter-vehicular
distances or challenges associated with sustaining high-speed
connections over elongated durations. Results can be depicted
in Figure 23, 24, 25, & 26.

The study underscores the potential of both DSRC and
mmWave technologies in enhancing V2V communication,
particularly in high-speed vehicular settings. The observed
patterns in network density across distinct timesteps can
guide the future design and operational strategies of V2V sys-
tems. A balanced and adaptive utilization of both DSRC and
mmWave might be essential to ensure consistent, high-speed
communication across varying vehicular environments.

VI. CONCLUSION
This study has presents the development of an innovative
hybrid vehicular network that utilizes the cutting-edge
millimeter wave (mmWave) technology of 5G to facilitate
high-speed lane change analyses. By implementing antenna
diversity across a range of frequencies – 5kHz, 30kHz,
45kHz, 50kHz, and 60kHz – we observed a significant
enhancement in data rates when compared to non-diversity
selection scenarios, particularly during lane changes at speeds
up to 188 km/h. Central to our approachwas the incorporation
of a Bayesian Neural Network to predict antenna gain
and optimize range across varied environments. This model
consistently provided robust and highly accurate predictions
in both suburban and highway contexts, even at a minimal
epoch rate. We utilized DSRC for exchanging safety and
emergency messages. An analytical comparison between the
Monte Carlo method and Q-Learning techniques revealed
that our system maintained superior stability, despite the
lower transmission latency associated with Q-Learning.

In addition to these advancements, we explored the use
of mmWave of 5G for channel tracking and estimation
within V2V environments. Our proposed model, a Recurrent
Neural Network (RNN) with light weight GRU, harnessed
the Angle of Arrival (AoA) and Angle of Departure (AoD)
data obtained through a 3D ray tracing program. Proposed
framework displayed faster convergence and superior compu-
tational optimization compared to Long Short-TermMemory
(LSTM) models, while maintaining competitive accuracy in
channel predictions throughout our over-fitting analysis.

More importantly, this paper delineated a groundbreaking
approach to vehicular networking, leveraging advanced 5G
technology, sophisticated predictive modeling, and opti-
mized machine learning techniques to enhance performance,
reliability, and safety within vehicular communication envi-
ronments. Our findings underscore the vast potential of
these technologies, paving the way for future research and
development in this rapidly evolving field.
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