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ABSTRACT In recent years, deep learning-based crack detection techniques have been widely used in
ground crack detection, urban street crack detection, ordinary wall crack detection, and road tunnel crack
detection. However, due to the scarcity of data, crack detection in railway tunnels is temporarily rare, and at
the same time, some existing railway tunnels of relatively old age have extremely limited lighting conditions,
which are subject to the dark conditions in railway tunnels, as well as the structural surface noise and
crack-like interferences that can cause great challenges to the identification of cracks in railway tunnels.
Based on this, this paper collects images inside real-world railway tunnels, produces a dataset, and proposes
a novel and effective hybrid neural network tunnel crack disease recognition iFormer Unet model, which is
based on the iFormer block module that can extract high-frequency features and low-frequency features at
the same time, and constructs a U-shape network consisting of an encoder, a Bottleneck, a decoder, and a
jump connection U-shaped network composed of encoder, Bottleneck, decoder and jump connection. The
results of 10-fold cross-validation in the experiments show that the proposed method has a relatively low
misdetection rate of about 7.56%, with about 30.31M Params and 34.84G FLOPs. iFormer Unet model has
the lowest misdetection rate compared to the Swin Unet and Unet models, which are 5.28% and 8.58% lower,
respectively, when tested on six image categories. 5.28% and 8.58% respectively. The proposed iFormer Unet
algorithm realises the automatic identification of cracks in railway tunnels under harsh environments, which
provides a certain reference and basis for the maintenance of railway tunnels.

INDEX TERMS Harsh environment, railway tunnel, hybrid neural networks, high-frequency characteristics,
low-frequency characteristics, crack identification.

I. INTRODUCTION
When modern road transportation falls short of meeting
transportation needs, railway transportation becomes partic-
ularly important. However, when constructing long-distance
railway lines in natural and man-made terrain, it is often
necessary to build railway tunnels in areas such as mountains
and hills. The construction of a large number of railway tun-
nels improves transportation conditions, but it also inevitably
leads to a significant increase in the amount of tunnel con-
struction and maintenance work. As railway tunnels are used
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year after year, cracks, deformations, and other ailments are
prone to occur, which pose a great threat to traffic safety.
It is particularly important to carry out ailment detection for
newly built and existing tunnels to ensure the safe operation
of tunnels.

Cracking is one of the major defects in railway tunnels.
Traditional methods for crack detection in railway tunnels
relymainly on the visual inspection ofmaintenance personnel
or simple devices, which are based on personal experience
and subjective judgment. However, these methods lack both
reliability and efficiency, failing to meet the demands for safe
operation and development of railway tunnels. As a result, the
development of automated crack detection using intelligent
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systems has become an evolving technological direction in
this field. Currently, many scholars have proposed some
detection methods for crack lesions for different application
scenarios.In terms of target detection, Zhou et al. [1] proposed
a data augmentation-based deep learning detection method
for YOLOv4 cracks, which firstly enriches the dataset by
enabling automatic generation of crack images through data
augmentation methods, and secondly selects YOLOv4 as the
basic model for training, and introduces a pruning algorithm
to reduce the size of the model so as to efficiently perform
crack detection.Liu et al. [2] also used an image enhance-
ment algorithm to increase the crack image data, and then
achieved the detection of road tunnel cracks through a transfer
learningmethod.Zhou et al. [3] propose an improvedYOLOX
algorithm with an improved backbone network, an increased
attention module, and also a replacement of a more suitable
loss function for tunnel crack detection.

In the area of image segmentation, Kang and Cha [4]
proposed a new deep encoder and decoder based network
to detect pixel level cracks in complex scenes by improv-
ing/enhancing the dataset and performance. Ali and Cha.
[5]GAN was used to generate synthetic image data in order
to multiply the dataset and to segment the internal damage
of concrete components at pixel level using active thermog-
raphy, but this method cannot be used when the concrete is
wet or other disturbing factors.Choi and Cha [6] proposed
an original convolutional neural network, the model con-
sists of standard convolution, densely connected separable
convolutional modules, a modified spatial pyramid module,
and a decoder module, and verified to have a good perfor-
mance in recognising cracks in urban streets by collecting the
produced dataset.Protopapadakis et al. [7] proposed a crack
detection mechanism for concrete tunnel surfaces that utilises
deep convolutional neural networks and domain-specific
heuristic post-processing techniques for data processing and
was validated at the Egnatia motorway tunnel in Metsovo,
Greece.Makantasis et al. [8] proposed a deep learning based
approach for the detection of concrete defects in tunnels using
a convolutional neural network to hierarchically construct
high-level features from low-level features for describing the
defects, as well as a multilayer perceptron to perform the
detection task. Shuangxi et al. [9] proposed a deep learning
target detection framework combining texture features and
concrete crack data by merging texture features and pre-
processed concrete data to increase the number of feature
channels.Zhou et al. [10]Based on a deep learning approach,
proposed a crack detection network consisting of a hybrid
attention module based on effective embedded channel and
positional information, as well as an integrated RFE and a
multiscale feature fusion module for the detection of cracks
on the surface of tunnel linings.

Some scholars have integrated intelligent algorithms into
robotic platforms, Liao et al. [11] proposed a new fast
tunnel crack detection device, which consists of a novel
mobile imaging module and an automatic crack detection

module. The imaging module consists of a high-resolution
charge-coupled device (CCD) camera array, a mobile laser
scanner and an illumination array. The core of the crack
detection module utilises a novel lightweight convolutional
neural network for tunnel crack detection. In-Ho et al. [12]
acquired bridge images from an unmanned aerial vehicle
(UAV) equipped with a high-performance vision sensor and
trained and recognised bridge cracks based on a convolutional
neural network.Protopapadakis et al. [13] proposed aworking
prototype for visual inspection of tunnels. Firstly, it was
crack detection by deep learning method. Then, a detailed
3D model of the cracked area was created using photogram-
metry. Finally, laser profiling of tunnels close to a narrow
region of detected cracks was performed and validated on
the Egnatia motorway and on underground infrastructure in
London.Loupos et al. [14] proposed a robotic platform that
automates tunnel inspection. This robotic platform consists of
a crane arm, a high-precision robotic arm, a computer vision
system, a 3D laser scanner and ultrasonic sensors, and utilises
a multidisciplinary and multimodal approach to automate the
inspection of transport tunnels and analyse potential defects.
However, the robotic platform is installed and deployed on
a 5 tonne crane vehicle and the cost of tunnel inspection is
significantly higher.

Some other authors have also applied deep learning meth-
ods to other areas of disease detection.Katsamenis et al. [15]
used the unet method to identify rust lesions on metallic
structures.Lewis et al. [16] proposed a dual codec network
for segmentation of colorectal polyp lesions.Wang et al.
[17] proposed a two-stage approach using edge detection
and convolutional neural networks for crack identification
on railway sleepers.Yang and Mei [18] proposed a deep
transfer learning method for crack identification on moun-
tain slopes to guard against geological hazards such as
landslides.

The application of crack detection by the above scholars
can be mainly divided into ground crack detection, city street
crack detection, ordinary wall crack detection, road tunnel
crack detection and other aspects. Ground cracks, city street
cracks, ordinary wall cracks of these three types of data
lighting conditions are better, cracks and non-crack texture
and other characteristics are obvious, easy to detect.Road
tunnels are generally fitted with lighting equipment due to
the high number of vehicles travelling through the tunnel,
so the lighting conditions for data image acquisition in road
tunnels are also relatively good.The data used in this study
are railway tunnel image data, and some of the existing
railway tunnels of relatively old age have extremely limited
lighting conditions, and the tunnels are generally only fitted
with emergency lights that cannot support the lighting of the
railway tunnels. Therefore, the essential difference between
this study and the above scholars is that the dark conditions
inside railway tunnels, as well as structural surface noise and
crack-like interferences can pose a significant challenge to
the identification of cracks in railway tunnels.

VOLUME 11, 2023 123269



R. Bai et al.: Research on Crack Disease Identification Based on Visible Spectrum

Our contribution can be summarised as follows:
1. Due to the current lack of readily available railway

tunnel crack datasets, as well as the fact that many scholars’
crack datasets are augmented by image synthesis techniques
such as GAN, which do not accurately reflect the real-world
data situation, for this reason, a visible-spectrum image
acquisition device for railway tunnels was designed to collect
images of real-world tunnels inside the Taoping Tunnel of the
Houyue Line of the Zhengzhou Railway Bureau, China, and
produce a dataset which of harsh lighting conditions, and in
addition to crack damage, the tunnel walls are accompanied
by structural surface noise such as concave holes, wall bulges,
shadows, and seepage flow marks. The focus of this research
is to process the acquired images to identify cracks in railway
tunnels.

2. After analysing the divided six tunnel crack images,
a novel and effective hybrid neural network tunnel crack
disease recognition iFormer Unet model is proposed, which
is based on the iFormer block module that can extract both
high-frequency features and low-frequency features, and con-
structs a U-shape network consisting of Encoder, Bottleneck,
Decoder, and Jump Connection, in which The main structure
of the iFormer block module consists of a hybrid module with
parallel maximum pooling, parallel deep convolution, and
parallel self-attention mechanism. The experimental results
show that the model can effectively identify the railway tun-
nel crack disease.

3. Through the verification of the experiment, this study
can provide certain reference for the scientific maintenance
of railway tunnels.

II. MATERIALS AND METHOD
A. DATA COLLECTION AND CLASSIFICATION OF RAILWAY
TUNNEL CRACKS
The experimental data were collected from Taoping Tunnel
on the Houyue line of Zhengzhou Railway in China, at a
tunnel depth of approximately 1km. Data was collected using
a railway tunnel visible spectral image acquisition device
equipped with 8 sets of industrial high-definition CCD line
array cameras (each camera has a resolution of 4096 pixels
x 1 pixel), with shooting angles ranging from −45◦ to 225◦.
The railway tunnel visible spectral image acquisition device
is shown in Figure 1.

Railway tunnels are one-dimensional arch structures in
low-light environments. The surface of the lining has a special
curvature and is accompanied by complex and interfering
backgrounds and obstacles such as wall joints, cables, cav-
ities, and protrusions formed under pressure, which affect
the recognition of crack images. Based on these interfering
factors and complex and adverse backgrounds, crack images
in railway tunnels are classified into six categories as shown
in Table 1. Category 1 crack images contain only cavities;
Category 2 crack images have both joint gaps and cavities;
Category 3 crack images contain shadows and cavities; Cate-
gory 4 crack images contain joint gaps, cavities, and shadows;

Category 5 crack images have wall protrusions, cavities, and
shadows; and category 6 crack images contain water seepage
marks, shadows, and cavities.

B. TUNNEL IMAGE CHARACTERISTICS IN COMPLEX AND
HARSH ENVIRONMENTS
Determining the crack area in complex and harsh environ-
ments is critical for identifying crack diseases in tunnels.
Figure 2 shows the grayscale value curve of low-frequency
features in the tunnel crack images of six categories,
which simultaneously include crack and interference section
images. Among them, I-I represents the section that contains
both cracks and interference, A-A area represents the crack
area at the section, B-B area represents the concave area
at the section, C-C area represents the splicing area at the
section, D-D area represents the area where shadow and
concavity coexist at the section, E-E area represents the wall
protrusion area at the section, and F-F area represents the
water seepage area at the section. From the grayscale value
curves of the six categories’ low-frequency features, it can
be observed that both the crack area and the interference area
have valleys in the curve, and the lowest peak of the grayscale
value is also similar. These similar low-frequency features
pose a challenge to crack identification based on semantic
segmentation.

FIGURE 1. Visible spectrum image acquisition device for railway tunnels.

C. MODEL CONSTRUCTION FOR TUNNEL CRACK
DISEASE IDENTIFICATION
1) U-NET
U-net [19] is a type of deep convolutional neural network
primarily used for medical image segmentation. The network
is characterized by a U-shaped architecture consisting of two
main parts: an encoder and a decoder. The encoder, made up
of convolutions and pooling, is used to extract local features
from the image while decreasing resolution. On the other
hand, the decoder utilizes upsampling and skip connections to
combine extracted features with the corresponding pixel fea-
tures in the original image. This process gradually generates
high-resolution segmentation results from low-resolution fea-
tures while utilizing more contextual information, improving
the accuracy and robustness of the segmentation. U-net has
thus become a classic algorithm in the field of medical image
segmentation.
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TABLE 1. Classification of tunnel crack image.

2) INCEPTION TRANSFORMER
The Inception Transformer [20] model is a combination of
Transformers [21] and Inception structures [22]. First, the
input is transformed like Inception, then it is fed into the
transformer encoder for processing. This combination allows
the model to better handle multi-scale image information
while simultaneously building the ability to construct remote
dependency relationships in parallel.

3) IFORMER UNET
Inspired by literatures [19] and [20], an iFormer Unet model
is proposed as shown in Figure 3. The iFormer Unet con-
sists of Encoder, Bottleneck, Decoder, and skip connections,
with iFormer blocks as their basic unit. The workflow of
the iFormer Unet model is as follows: (1) Firstly, in the
encoder, the tunnel crack disease image is segmented into
non-overlapping 4 × 4 small blocks through the Patch Par-
tition layer, converting the minimum unit pixel of the image
into a small block. If the input is a three-channel image, the
feature dimension becomes 4 × 4 × 3 = 48 dimensions.
Then, the 48 dimensions are mapped to any dimension C
through the Linear Embedding layer. Next, the representation
learning and down-sampling and dimension increasing of
features are accomplished respectively by 3 sets of iFormer
Block and Patch Merging. The Patch Merging layer will
increase the dimension to twice the previous layer while

down-sampling the feature. (2) In the bottleneck part, the
features and dimensions of the encoder are transitioned to
the decoder. (3) In the decoder part, corresponding to the
encoder, three sets of iFormer Blocks and Patch Expanding
layers are used to perform feature upsampling and down-
sampling. At the same time, the three sets of different scale
features in the encoder are fused with the corresponding three
sets of upsampling features in the decoder through the Skip
Connection layer. Similar to the Patch Expanding layer in step
(2), when upsampling the features, the dimension will also
be reduced to half of the previous layer. (4) The last layer
of Patch Expanding performs a 4x upsampling to restore the
output to the same resolution as the input. Then, the output
goes through a Linear Projection layer to achieve output
pixel-level segmentation prediction

The detailed structure of the iFormer Block in the iFormer
Unet network is shown in Figure 4(a). The most important
unit in the iFormer Block is the Inception Mixer module,
which is composed of high-frequency and low-frequency
mixing modules, as shown in Figure 4(b). The Inception
Mixer first divides the input feature map along the chan-
nel direction and then inputs the divided feature maps into
the high-frequency and low-frequency feature extraction
units, respectively. The high-frequency feature extraction unit
consists of a Max Pooling layer and parallel depthwise con-
volutional layers (DWConv), while the low-frequency feature
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FIGURE 2. Gray value maps of different types of images and corresponding I-I sections.

extraction unit is implemented by self-attention.If the feature
map of the Inception Mixer input is set to X ∈ RN×C ,
The feature map will be split in the direction of the channel
dimension into Xhigh ∈ RN×Chigh and Xlow ∈ RN×Clow , where
Chigh + Clow = C , Feature maps Xhigh and Xlow will be fed
into the high frequency feature extraction unit and the low
frequency feature extraction unit respectively.

a: HIGH-FREQUENCY FEATURE EXTRACTION UNIT
In the high-frequency feature extraction unit, the feature map
Xhigh will be continued to be split into Xhigh1 ∈ RN×Chigh1

and Xhigh2 ∈ RN×Chigh2 along the channel dimension direc-
tion, where Xhigh1 will be fed into a structure consisting of
MaxPool with linearised Linear and Xhigh2 will be fed into a
structure consisting of linearised Linear and depth convolu-
tion DWConv, calculated as shown in equations (1) and (2)
respectively.

Yhigh1 = FC(MaxPool(Xhigh1)) (1)

Yhigh2 = DWConv(FC(Xhigh2)) (2)

where Yhigh1 and Yhigh2 are high-frequency features output by
the high-frequency feature extraction unit and FC () denotes

the fully connected function that completes the linearisation
operation.

b: LOW-FREQUENCY FEATURE EXTRACTION U
The low-frequency feature extraction unit consists of Ave-
Pool, Multihead Self-Attention (MSA) and Upsample, which
can be represented by Equation (3).

Ylow = Upsample(MSA(AvePool(Xlow))) (3)

where Ylow is the low-frequency feature output from the
low-frequency feature extraction unit. The calculation pro-
cess of the multi-headed self-attentive MSA is shown in
equation (4) equation (5) equation (6).

MultiHead(Q,K ,V ) = Concat(head1, · · · , headh)W o (4)

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (5)

Attention(Q,K ,V ) = soft max(
QKT
√
dk

)V (6)

where Q,K are the Query and Key matrices of dimension dk
and V is the Value matrix of dimension dv. head is the head
of self-attention, h is the number of heads of multi-headed
self-attention, W o is the weight matrix when multi-headed
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FIGURE 3. iFormer Unet network structure.

FIGURE 4. iFormer Block structure.

self-attention is spliced, WQ
i ,WK

i ,WV
i are the weight matri-

ces of Query, Key, Value of the i-th self-attention head, and
Concat( ) is the splicing function.

Therefore, the final output of the Inception Mixer high
and low frequency mixing module shown in Figure 4(b) is
Yc = Concat(Yhigh1,Yhigh2,Ylow), where Yc is the high and
low frequency mixing characteristics of the Inception Mixer
output.

Then, the calculation process of the iFormer Block shown
in Figure 4(a) can be represented by equation (7) equation (8).

Y = X + InceptionMixer(LN (X )) (7)

H = Y + FFN (LN (Y )) (8)

where X is the input features, LN( ) denotes the normalisa-
tion function, Y is the output transition features, FFN is the
feed-forward neural network and H denotes the final output
features.

III. EXPERIMENTAL RESULTS
An NVIDIA GTX1060 graphics card with 6GB of memory
was used to train the tunnel crack disease recognition model,
based on Windows 10-64 bit operating system, Python 3.6 as
the training environment, and Pytorch version 1.10.0 deep
learning framework. The dataset is the data collected in Taop-
ing Tunnel of Houyue Line of Zhengzhou Railway Bureau,
China, with an image size of 224 pixels × 224 pixels, and
a total of 10,000 pieces of valid data containing cracks and
diseases. The model is trained and tested using a 10-fold
cross-validation method, in which the dataset is divided into
10 copies, 9 of which are used for training and the remaining
1 is used for validation in turn, and the corresponding misdi-
agnosis rate is obtained in each experiment.

A. TRAINING PARAMETER SETTINGS
The experiments were conducted to compare the training
of this paper’s methods iFormer Unet, Swin Unet [23] and
Unet model respectively, the training parameters were set
as shown in the table below, a gradient stochastic gradient
descent optimiser was used with an initial learning rate of
0.01, and after 1/3 and 2/3 of the total number of iterations
were reached, the learning rate was adjusted to 0.001 and
0.0001 respectively, the weights were decayed to 1 × 10−4,
Batch size was set to 8 and iteration Epochs were 300.

TABLE 2. Training parameter settings.

B. COMPARATIVE ANALYSIS OF FAULT DETECTION RATES
OF CRACKING DISEASES
Crack disease identification is a single target image segmen-
tation task, and using the disease error detection rate as an
evaluation criterion is a better test of the model’s ability
to identify crack disease. The disease misdetection rate is
calculated as shown below:

Pi =
Ni

Ntotal
× 100% (9)

where Pi is the disease misdetection rate of algorithm model
i, i is the three cases of method iFormer Unet, Swin Unet,
and Unet respectively in this paper, Ni is the number of pixels
error detectionby algorithm model i, and Ntotal is the total
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TABLE 3. Comparison of params and FLOPs.

FIGURE 5. 10-fold cross-validation.

number of image pixels.The input images in this paper are
all 224 pixels by 224 pixels, so Ntotal = 50176 pixels.

C. 10-FOLD CROSS-VALIDATION EXPERIMENTS
In order to avoid training overfitting, the experiments were
carried out 10-fold cross-validation experiments on this
paper’s method iFormer Unet, Swin Unet and Unet model,
and the experimental results are shown in Figure 5, from the
experimental results, it can be seen that this paper’s method
has the lowest misdetection rate, which is at the bottom of the
folding diagram of Swin Unet and Unet algorithms, and at
the same time, it is illustrated by the 10-fold cross-validation
experiments that The method of this paper has good robust-
ness. Table 3 shows the quantitative comparison between
the different methods. Floating point operations (FLOPs)
and network parameters (Params) are used to compare the
computational cost of the network. In the comparison of the
results, this paper’s method has the least Params, which is
about 30.31M, while FLOPs are slightly higher than Swin
unet and much lower than the Unet algorithm model.The
main reason why the FLOPs of this paper’s method are higher
than the Swin unet algorithm is that the attention mechanism
used in this paper’s method is theMSA, whereas the attention
mechanism used in Swin unet is theW-MSA (WindowMulti-
head Self-Attention), and the FLOPs of W-MSA itself are
lower than those of MSA, from this point of view, this is
also a place that needs to be improved in the future work of
this paper. In conclusion, the algorithmic model in this paper
performs better in terms of Params and FLOPs.

D. IDENTIFICATION OF THE SIX CATEGORIES OF CRACKS
The number of pixels error detection and the error detec-
tion rate of the three crack disease recognition algorithms
for the six categories of cracks are shown in Table 4 and

FIGURE 6. Comparison of error detection rates of different recognition
algorithms.

the corresponding bar charts are shown in Figure 6. The
experimental results show that for the six categories of crack
disease images in a harsh environment tunnel, the iFormer
Unet algorithm proposed in this paper has the lowest error
detection rate, followed by the Swin Unet algorithm which
performs better and the Unet algorithm which has the highest
error detection rate.

The iFormer Unet algorithm proposed in this paper is
a hybrid network consisting of low-frequency and high-
frequency feature extraction modules that can automatically
learn the high and low frequency features of crack lesions.
The Swin Unet algorithm is only capable of low frequency
feature extraction and is susceptible to interference from low
frequency feature grey scale values such as cavities, wall pro-
trusions, shadows, water seepage marks, etc. that are similar
to cracks, but Swin Unet has the ability to capture features
over long distances due to the presence of a self-attentive
mechanism, and can perform better in the identification of
crack lesions in harsh tunnel environments. unet algorithm
mainly consists of convolutional neural network, and the con-
volutional neural network has the ability to generalise local
features, also due to this ability, it is highly susceptible to the
similarity of local features such as cavities, wall protrusions,
shadows, water seepage marks and other local features with
cracks in a harsh tunnel environment, resulting in the highest
final error detection rate.

Figure 7 shows the loss plots of the three different algo-
rithms during the training phase. It can be seen that the
algorithm proposed in this paper, iFormer Unet, also con-
verges the fastest during training, has the lowest loss and
performs the best.

E. HEAT MAP ANALYSIS OF DIFFERENT ALGORITHMS
In order to better validate and understand the algorithm
model proposed in this paper, the Grad-CAM [24] tech-
nique was introduced to the last layer of output of iFormer
Unet, Swin Unet and Unet networks to generate heat maps
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TABLE 4. Error detection rate results of different crack disease identification algorithms.

TABLE 5. Error detection rate results of different hybrid network structures for crack disease identification.

FIGURE 7. Loss diagrams for training stages of different algorithms.

for six representative categories of fracture disease samples,
as shown in Figure 9. In the original figure, the area outlined
by the red line indicates the fracture disease. In the heat map
of the three algorithms, the darker the red colour indicates that
the algorithm model is more interested in this area, followed
by the yellow colour, and the darker the blue colour indicates

FIGURE 8. Application site.

that the algorithm model is less interested in this area. From
Figure 8, it can be seen that the algorithm proposed in this
paper, which can focus well on the feature areas of crack
lesions, can identify crack lesions more accurately, while the
Swin Unet and Unet algorithms, when focusing on crack
lesion features, are also disturbed by cavities, wall protru-
sions, shadows and seepage flow marks, and focus on these
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FIGURE 9. Thermal diagram for identifying six kinds of crack diseases under different algorithms.

disturbed areas, which are incorrectly identified as crack
areas. Taking category V as an example, due to the high
frequency and low frequency feature extraction capability of
the algorithm in this paper, it is able to avoid the influence
of tunnel wall protrusions, shadows, etc. in terms of features

such as greyscale values and textures very well; Swin Unet,
due to its low frequency feature extraction capability only,
identifies the edges formed by tunnel wall protrusions as
crack regions; Unet, due to its ability to generalise local
features, identifies the crack regions with similar the cavities,
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TABLE 6. Segmentation performance of different methods on the
COVID-QU-Ex dataset.

shadows, and edges formed by projections on the tunnel wall,
which have similar features such as greyscale, are incorrectly
generalised as crack features.

It can be seen that the iFormer Unet algorithm model
proposed in this paper is effective in identifying crack disease
in harsh tunnel environments.

F. ABLATION EXPERIMENT
In order to verify the effectiveness of the hybrid network
Inception Mixer module structure of the iFormer block in the
model, three sets of control experiments were set up, namely,
a hybrid network structure with only the self-attentive mecha-
nism ‘‘Attention’’, a mix of the self-attentive mechanism and
maximum pooling ‘‘Attention+MaxPool’’, and a mix of the
attention mechanism, maximum pooling and deep convolu-
tion ‘‘Attention+MaxPool+DwConv’’. ‘‘The training setup
and data for the three sets of experiments and the test data
were the same as those of the TRAINING PARAMETER
SETTINGS. The training settings and data for the three sets
of experiments as well as the test data are the same as in
the TRAINING PARAMETER SETTINGS section, and the
results are shown in Table 5.
From the results of the ablation experiments obtained in

Table 5, it can be seen that when the Inception Mixer module
consists of a mixture of self-attentive mechanisms, maximum
pooling and deep convolutional structures, theminimum error
detection rate for crack recognition can be obtained, which is
the best performance among the three sets of control experi-
ments, indicating that this hybrid network structure approach
is effective.

G. OTHER EXPERIMENTS
To further validate the robustness of the proposed model,
we selected other types of public dataset COVID-QU-Ex
dataset [25] for our experiments. COVID-QU-Ex dataset
is a dataset compiled by the researchers at Qatar Univer-
sity, which has a total of 33920 chest X-ray images, and
we used the COVID-19 Infection Segmentation Data sub-
dataset (1456 Normal and 1457 Non-COVID-19 CXRs with
corresponding lung mask, plus 2913 COVID-19 CXRs with
corresponding lung mask) for validation The data set consists
of 3728 training images, 932 validation images, and 1166 test
images.

To evaluate the metrics we use Precision, Recall, F1-score,
which are associated with three values, i.e. true-positive (TP),
false-positive (FP), and false-negative (FN). These metrics
are calculated as follows.

Pr ecision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

F1 = 2 ×
Recall × Pr ecision
Pr ecision+ Recall

(12)

The experimental results are shown in Table 6, on the
public dataset COVID-QU-Ex dataset, this paper’s method
performs the best in Precison, Recall, and F1-score com-
pared to Unet and Swin unet methods, which shows
that this paper’s method also performs well on new
datasets, and also shows that this paper’s method has good
robustness.

IV. CONCLUSION
Due to the extremely limited lighting conditions in some
existing railway tunnels of relatively old age, the dark con-
ditions inside the railway tunnels, as well as the structural
surface noise and crack-like interfering objects can pose a
great challenge to the identification of railway tunnel cracks.
At the same time, due to the current lack of readily available
railway tunnel crack datasets, as well as the fact that many
scholars’ crack datasets are datasets augmented by image
synthesis techniques such as GAN, they cannot accurately
reflect the real-world data situation. To address this problem,
we collected images inside real-world railway tunnels, pro-
duced a dataset, and proposed a novel and effective hybrid
neural network tunnel crack disease recognition iFormerUnet
model, which is based on the iFormer block module that can
extract high-frequency features and low-frequency features at
the same time, and constructed a U-shape network consisting
of encoder, Bottleneck, decoder and jumping Connections
consisting of a U-shaped network. The results of 10-fold
cross-validation in the experiment show that the method pro-
posed in this paper has a relatively low misdetection rate of
about 7.56%, with about 30.31M params and 34.84G FLOPs,
as shown in Figure 8. The method proposed in this paper
has been experimented in Taoping Tunnel of Houyue Line
of Zhengzhou Railway Bureau of China, and it can provide
a certain reference for the scientific maintenance of railway
tunnels.

There is still room for improvement of the algorithm in
this paper, because of the limitation of resources and time,
this paper only uses the collected dataset as the data source
for this experiment, and in the subsequent research, it will be
compared with more excellent algorithmic models, and some
public datasets will be used to enhance the generalisation
ability of the algorithmic models and obtain more accurate
and effective models
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