
Received 15 September 2023, accepted 26 October 2023, date of publication 2 November 2023, date of current version 8 November
2023.

Digital Object Identifier 10.1109/ACCESS.2023.3329732

An Extended Survey Concerning the Significance
of Artificial Intelligence and Machine Learning
Techniques for Bug Triage and Management
RAZVAN BOCU 1,2, ALEXANDRA BAICOIANU 1,2, AND ARPAD KERESTELY 2
1Department of Mathematics and Computer Science, Transilvania University of Braşov, 500091 Braşov, Romania
2Department of Research and Technology, Siemens Industry Software, 500227 Braşov, Romania

Corresponding author: Razvan Bocu (razvan.bocu@unitbv.ro)

ABSTRACT Bug reports are generated in large numbers during the software development processes in the
software industry. The manual processing of these issues is usually time consuming and prone to errors,
consequently delaying the entire software development process. Thus, a properly designed bug triage and
management process implies that essential operations, such as duplicate detection, bug assignments to proper
developers, and determination of the importance level, are sustained by efficient algorithmic models and
implementation approaches. Designing and implementing a proper bug triage and management process
becomes an essential scientific research topic, as it may significantly optimize the software development
and business process in the information technology industry. Consequently, this paper thoroughly surveys the
most significant related scientific contributions analytically and constructively, distinguishing it from similar
survey papers. The paper proposes optimal algorithmic and software solutions for particular real-world
use cases that are analyzed. It concludes by presenting the most important open research questions and
challenges. Additionally, the paper provides a valuable scientific literature survey for any researcher or
practitioner in software bug triage and management systems based on artificial intelligence and machine
learning techniques.

INDEX TERMS Bug report, bug prioritization, bug assignment, bug triaging, classification, machine
learning.

I. INTRODUCTION
Large software development projects rely on bug triaging as
an important part of software testing. Thus, it supports the
software bug management processes, while allowing relevant
decisions, which are related to the software bug fixing, to be
made. Relevant tasks are represented by properly assigning
bugs to adequate developers, prioritizing bugs, and detecting
duplicate bugs. Nevertheless, manual bug triaging appears as
an essentially time consuming and tedious task, considering
that a significant part of software development requires a lot
of time and other types of resources. Considering old statistics
from August 2009, the Mozilla bug database contained over
500,000 bug reports, and the Eclipse bug database had over
250,000 bug reports. The average number of bug reports
created daily amounts to 170 for the Mozilla database and

The associate editor coordinating the review of this manuscript and

approving it for publication was Xinyu Du .

120 for the Eclipse database between January and July
2009. The dynamics of software systems development have
constantly increased during the past fifteen years. Therefore,
the problem that is approached in this paper becomes
increasingly more relevant.

The process of bug triage involves that a triager makes
a decision regarding the bugs entered in the respective
bugs repository through an analysis, which involves two
variants. Thus, the repository-oriented decisions involve that
the reported bug does not represent a duplicate, the person
that triages checks it for validity, which means that the bug is
assessed whether it is genuine. This mediates the removal of
bug reports that do not require a resolution. The remaining
bug reports are investigated to support the development-
oriented decisions, which involve that the triager assesses
the severity and priority levels of the bugs. These levels are
modified if inappropriate values are observed, so sufficient
resources are allocated to resolve critical bugs. Consequently,

123924

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6577-1904
https://orcid.org/0000-0002-1264-3404
https://orcid.org/0000-0002-8918-2888
https://orcid.org/0000-0002-5954-1675


R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

the person that addresses the manual bug triaging process
writes down the required remarks for the bug and assigns
this bug report to the suitable developer. Therefore, the
need to design and implement an efficient bug triaging and
management system becomes clear.

In this context, the task of bugs classification, which
implies the determination of priorities, appears as a very
important effort package relative to very large software devel-
opment projects, and also open source projects, considering
that the efficiency of the development process is usually
quantitatively assessed considering the number of open
bug reports, and the average resolution time. The manual
determination of bug priorities also introduces inherent
human errors to the process, which essentially depends
on the bug triager’s subjective perspective and experience.
Consequently, a significant number of bug reports may have
been assigned incorrect priority levels while other bug reports
remain unaddressed. The implied economic and operational
consequences are easily discernible. Therefore, an automatic
bug triaging and management strategy, which uses a certain
automated approach, is required. Thus, the related scientific
literature includes various machine learning approaches, such
as Decision Tree (DT), Support vector machine (SVM)
classification algorithms, Naive Bayes (NB) classifiers,
Information Retrieval (IR), and Random Forest (RF) models.
This paper concentrates on a logically structured survey,
which aims to analyze and suggest the optimal bug triaging
and management approaches. The scientific objectives of this
research are the following.

• To survey the existing literature to determine shortcom-
ings and propose optimal solutions.

• Identification of the most relevant studies in bug
classification.

• Prioritizing studies relevant to bug sorting according to
various criteria: citations, scientific relevance, objectives
achieved, reproducibility of experiments, genericity of
solutions, etc.

• Classification by various criteria of frameworks dedi-
cated to the open problem.

• To determine the relevant scientific research trends.
• To identify the relevant research problems.
• To define the scientific relevance of the corresponding
content of research.

• To propose the conceptual and practical relevance of
automatic bug triaging in the management processes.

The rest of the paper is structured according to the follow-
ing sections. The next section presents the structured research
methodology, which has been considered. Following, the
most relevant artificial intelligence models are described
and analyzed. Moreover, the relevant performance evaluation
methods and related metrics are surveyed and assessed.
Furthermore, the most relevant scientific challenges and
open research questions are discussed. Consequently, the
essential research questions, which determined this extended
survey process, are analyzed, and the degree of this paper’s

TABLE 1. Reference scientific literature databases and academic search
engines.

accomplishment is objectively assessed. The last section
concludes the paper.

II. RESEARCH METHODOLOGY
The survey methodology relates to a systematic review (SR)
approach, which is determined by the methodology that is
referred to as ‘‘Preferred Reporting Items for Systematic
Reviews andMeta-Analysis’’ (PRISMA) [1]. More precisely,
the scientific methodology is based on the following phases:
specification of research questions, identification and survey
of proper papers, and specification of the relevant inclusion
and exclusion criteria.

A. RESEARCH QUESTIONS
The literature review relates to the following research
questions.

• What is the related significant literature, which
approaches conceptual problems, and reports adequate
solutions?

• What are the relevant scientific research trends?
• What are the determined research questions and short-
comings?

• What is the reviewed research scope’s conceptual,
scientific, and real-world importance?

• What are the principal algorithmic and machine learning
models that specify and implement automatic bug
triaging and management approaches?

The following subsection describes the logical structure of
the proper research process.

B. RESEARCH PROCESS
The reference sources that were considered in order to collect
the proper scientific literature are described in Table 1.
Here, DL means Digital Library, and SE means Search
Engine.

The next subsection presents the exclusion and inclusion
criteria, which have been used to filter the scientific
contributions objectively.

VOLUME 11, 2023 123925



R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

TABLE 2. Inclusion criteria.

TABLE 3. Exclusion criteria.

C. EXCLUSION AND INCLUSION CRITERIA
The appropriateness of the surveyed papers, and, conse-
quently, the scientific adequacy of this review paper, are also
determined by certain inclusion criteria (IC), and exclusion
criteria (EC). More precisely, contributions that do not meet
the specified EC are disregarded. The IC-related filtering
model relates to a logical process based on the following
steps.

• Step 1. Abstract-related filtering: irrelevant articles are
disregarded considering the information acquired from
the abstract, and also based on the keywords. More
precisely, articles that fulfill at least 50% of the relevance
threshold are considered.

• Step 2. Full text-related filtering: articles that concern
only a small part of the scientific scope, as specified by
the abstract and the keywords, are disregarded.

• Step 3. Quality analysis-related filtering: the rest of the
papers were additionally filtered considering that at least
one of the following conditions are unmet:
<The paper describes a functional solution concerning
the automatic bug triaging and management models.>
AND <The article fully presents the implemented
technical solution.> AND <The article surveys related
relevant contributions.>AND<The article presents and
assesses the outcomes of the experimental process.>

Furthermore, the inclusion criteria are presented in table 2.
Moreover, the exclusion criteria are described in table 3.
The following sections extensively review the large

number of articles, which were selected considering the
principles of this scientific survey methodology.

III. ARTIFICIAL INTELLIGENCE MODELS FOR BUGS
TRIAGING
The relevant scientific literature presents various approaches
concerning software bug triaging (SBT). Thus, SBT models
are grouped into six fundamental categories relative to

the considered AI technologies. The six technological
approaches relate to machine learning (ML), information
retrieval (IR), social network analysis (SNA), recommender
systems (RS), mathematical modeling and optimization
(MMO), and deep learning (DL). The features of these
approaches are described in Table 4. This section surveys
the most relevant scientific contributions identified in each
category.

A. BUG TRIAGING MODELS BASED ON MACHINE
LEARNING
Machine Learning (ML) models represent the natural
solution to implement an automatic software bug triaging
(SBT) system. Proper machine learning-based models [2],
[3] are frequently used in this respect (Softmax classi-
fier, Support Vector Machine, Multinomial Naive Bayes,
K-Nearest Neighbors, J48, Random Forests, Artificial Neural
Networks), along with clustering [4] and association rule
mining [5]. SBT is regarded as a multiclass, single-label
classification problem [6], which considers the software
developer as a class. Thus, it is immediately discernible
that the proper classification techniques are frequently used
relative to machine learning-based bug triaging techniques.
The performance metrics, such as accuracy, precision, recall,
and F1-measure, are used in order to assess the described
approaches, typically on the top 5 or 10 best outcomes.
Thus, the accuracy gets as high as 40% - 50%. It is
relevant to note that a comparative review concerning
a handful of machine learning models for software bug
triaging is presented in article [7], and is also conducted
by Goyal and Sardana [8]. While other techniques like
information retrieval can beat plain ML-based SBTs, they
are relatively simple to model, and there are proper libraries,
which implement efficient Application Programming Inter-
face (API) support. Nevertheless, the enhancement of the
computational performance [9] represents a goal that con-
tinues to motivate scientific research efforts to enhance the
existing approaches [10], and consequently assess modern
approaches, which are based on artificial intelligence models.
The surveyed experimental analysis contributions suggest
that plain machine learning-based approaches under-perform
deep learning-based models, but they are comparable with
information retrieval-based models.

B. BUG TRIAGING MODELS BASED ON INFORMATION
RETRIEVAL
The general algorithmic process of software bug triaging
may also be perceived as a problem of information retrieval
(IR), which presumes that the relevant data determines that
a developer is fetched from the set of software developers
relative to the newly created bug reports. Thus, IR-related
models, such as LSA (Latent Semantic Analysis), and
LSI (Latent Semantic Indexing) [11], [12], are also used
together with other relevant models. The accuracy scores
generated using IR-related SBT models range from 63.2%

123926 VOLUME 11, 2023



R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

TABLE 4. Features of various bug triaging techniques.

to 96%. Moreover, a recall value of 95% is reported by
the work described in article [13]. Additionally, TF-IDF
(Term Frequency-Inverse Document Frequency) represents
the most usual algorithmic model relative to IR-related
models for software bug triaging. Several articles describe
relevant changes to TF-IDF-related solutions related to the
scientific efforts presented in [14] and [15]. These resources
consider bug location information, termweighting in TF-IDF,
and time metadata concerning the TF-IDF presentation.
Additionally, software bug triaging uses both text mining,
which is presented in articles [16], [17], [18], [19], and also
text similarity models, which are described in articles [20],
[20], [21], [22], [23], [24], [25]. The topic is also approached
in other related studies.

Moreover, large software repositories determine an inter-
esting scope of scientific research, which is interestingly
approached in [26]. Also, the concept of topic modeling
is approached in several articles, such as [12], [27], [28],
[29], and [30], with a clear emphasis on software bug
triaging. Moreover, Latent Dirichlet Allocation (LDA) deter-
mines an important probability-related algorithmic approach,
which is described in paper [31]. Other similar approaches
consider this algorithmic model for automatic software
bug triaging, presented in [32] and [33]. Certain papers
regard specialized variants concerning topic modeling in
connection to automatic software bug triaging. Thus, the
multi-feature topic model (MTM) is proposed in article [34].
At the same time, the Entropy Optimized Latent Dirichlet
Allocation is described in article [35], along with the
Multiple LDA concept proposed in paper [29]. Notably, the
maximum generated accuracy through the utilization of topic
modeling-based bugs triaging approaches is 98.31%, which
is suggested by the work presented in article [36].

The extensive scientific literature that was surveyed
suggests that, in a similar fashion to machine learning-
based models, information retrieval-based models provide
acceptable application programming interface (API) features.
Furthermore, the implied algorithmic models are easy to
model and implement in a suitable programming language.
Despite the obvious conceptual and practical advantages, the
relevant approaches related to information retrieval and topic
modeling present computational performance issues in cer-
tain real-world scenarios, and they may also have difficulties
generating proper terms relative to the topics produced by
the respective topic modeling approaches. Thus, the topics
that are produced by related topic modeling approaches may

provide a certain degree of randomness, which may impact
the overall data analysis process, as it is suggested by the
work that is reported in article [37]. Nevertheless, it is relevant
to state that the surveyed scientific literature suggests that
the main problem, which should be addressed, is represented
by the insufficient level of computational performance that
manifests in certain real-world scenarios that are described
in article [32]. This may affect the real-time processing of
relevant software bug data.

There is a clear similarity between ML-related and
IR-related automatic bug triage and management techniques.
The fundamental difference is determined by the fact that
IR-related approaches essentially relate to the textual data
that are stored by the software bug repositories. Similarly to
ML-related approaches, algorithmic and software model-
ing is also relatively easy with IR-related models, which
require the least computational and data storage resources
to implement automatic software bug triaging systems.
The surveyed literature also suggests that these IR-related
approaches benefit from consistent support relative to all
modern programming languages and application program-
ming interfaces. Some drawbacks, such as computational
scalability and real-time software bug triaging, are shared
between IR-related and ML-related approaches.

C. BUG TRIAGING MODELS BASED ON SOCIAL NETWORK
ANALYSIS
Relative to software bug triaging, social networks designate
the developers’ network, which is used by the enrolled
software developers in order to sustain the implied software
systems development processes. The activity of bug resolu-
tion implies the existence of particular skills. Nevertheless,
developers use third-party or external support sources, such
as StackOverflow, or GitHub, which may provide useful
technical information. The extraction of useful information
from several sources in order to enhance the resolution of
software bugs is referred to as Crowdsourcing. Thus, this idea
is explored in certain papers, such as [38], [39], and [40].

The relevant technical information, as it is fetched from
several repositories, may be integrated together with the
identifying data of the software bug repository, which may
help identify the software developers with expert skills.
This approach is generally designated as cross-repository
analysis and is approached in an interesting manner in arti-
cle [41]. The synergistic combination of crowdsourcing and
social networks-related analysis models creates a functional
advantage regarding determining the relationship between
developers and their technical skills. This generally supports
an enhanced bug assignment process to the proper developers,
which may support the implied automatic bug management
systems. The surveyed scientific literature suggests that
this type of approach determines a problematic aggregation
and integration of the acquired and existing data, which is
particularly derived from the consideration of multiple data
sources. The implied problem is studied and reported in

VOLUME 11, 2023 123927



R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

articles [38], [39], and [40], which also analyze the generated
and existing relationship graphs. Furthermore, the surveyed
literature suggests that automatic software bug triage and
management approaches, which are based on software
network analysis, are relatively difficult to design due to the
implied processing of the graph data structures that model
the developer-bug relationships. Consequently, the implied
data processing routines require more computational time
and resources. Nevertheless, the surveyed contributions claim
that this is compensated by the overall enhancement of the
bug assignment or reassignment, while further algorithmic
and implementational improvements are likely to assure the
required computational scalability.

D. BUG TRIAGING MODELS BASED ON RECOMMENDER
SYSTEMS
Recommender systems represent a fundamental concept in
the scope of machine learning scientific research. Thus,
the contributions that are described in articles [23], [43],
[44], and [45] suggest that proper developers may be
efficiently recommended and assigned to the newly created
bug reports. The consideration of recommender systems
(RS) mediates the creation of a list of software developers,
and a list of the most suitable k developers is generated,
according to their assessed technical skills. Thus, certain
historical contributions are reported in articles [46], [47],
and [48]. The approach that is described in article [48]
involves that a ranking of the software developers is created
considering using the mechanism of developer prioritization.
It is interesting to note that certain performance metrics are
described in the surveyed literature. Thus, in article [48],
the authors propose Accuracy@K (Acc@K), Precision@K
(P@K), and Recall@K (R@K). Here, K designates the
most suitable K software developers relative to the list,
which was created using the implied recommender system.
There is a majority of the articles that were surveyed,
which consider the Eclipse and Mozilla Firefox bug
trackers, and Recall@10 is obtained at a level of up
to 90%.

Including an RS-related algorithmic module mediates the
generation of a list of ranked developers, which are sent over
to the automatic bug triaging and management components.
Consequently, the system generates a higher-quality software
developer suggestion, who is available and adequate to fix
the respective bugs. Nevertheless, it is important to note that
there are certain conceptual and practical problems, which are
reported in the surveyed literature. Thus, the issue of cold
start is analyzed in article [49], while the performance and
data sparsity are approached in paper [50]. Thus, the issue
of cold start and data sparsity are determined by insufficient
data relative to a certain data item or category, which
provokes an overall degradation of the recommender system’s
computational performance. More precisely, an RS-related
bug triaging system may not properly identify the software
developer, if sufficient data are not available regarding the
potentially suitable developers.

E. BUG TRIAGING MODELS BASED ON MATHEMATICAL
MODELING AND OPTIMIZATION
Several mathematical models are relevant for general bug
triaging and management processes. Thus, fuzzy sets are
assessed and experimentally analyzed in articles [51], [52],
[53], [54], and [55]. Moreover, the Knapsack programming
was analyzed in paper [55], in connection to bug triaging.
Additionally, a bug triaging process, which is based on
genetic algorithms models, is proposed in article [56]. It is
relevant to mention the probabilistic optimization models that
are based on the behaviour of ants, which are approached
in paper [57]. Most surveyed contributions pertain to the
Eclipse bug tracker, and the implemented models generate
a maximum accuracy of 86%. In this case, the researcher
focuses on the development of the mathematical models, and
also on the specification of the objective functions, which are
used to process the bug reports data.

As an example, relative to the fuzzy modeling-related
techniques, a fuzzy model of software bugs is necessary,
along with the membership functions that are specified
between software bug terms and respective developers
for bug triaging purposes. Considering the optimization
models for software bug triaging, the relevant optimization
constraints are specified relative to the number of bugs
that are resolved by a certain developer during a given
period of time. This is particularly important, as time is an
important parameter, especially relative to high priority and
security bugs. Consequently, the specified and implemented
mathematical model mediates the selection of the proper
developer to resolve the processed bug reports.

The software bug triage techniques (SBT), which are
based on the optimization concept, imply the adequate
mathematical modeling of the SBT problems relative to the
terms of the implied optimization model. As an example,
an SBT software system that is based on the mechanism
of Ant Colony Optimization (ACO) [58], presumes that the
bug tossing graphs are generated using the historical bug
resolution data. Furthermore, the ants are allowed to circulate
through these tossing graphs, with the goal to detect the
optimumpaths, which determine the suggested developers for
the resolution of the reported bugs. Additionally, an ACO-
related model is based on certain calibration parameters,
such as the number of ants, the number of iterations, the
configuration of the developer’s network, and the intensity of
the ants’ pheromone. Several knapsack optimization-related
SBT techniques [59], involve that the bug fixing and
developer metadata are transformed into the respective
knapsacks. The capacity of knapsacks is determined by the
time limit, which is allocated for the resolution of the software
bugs. Thus, the items and knapsacks determine the number of
bugs and developers, respectively.

Genetic algorithms-related optimization techniques [60]
for software bug triaging imply that fitness functions are
specified relative to the list of words that label and describe
bugs. The calculation of similarity scores is performed for
clustered centers, and the fitness functions pertain to the

123928 VOLUME 11, 2023



R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

developers’ data. The maximum value of the similarity
suggests a higher-grade membership in the cluster of devel-
opers, which resolve the provided software bugs. Moreover,
greedy search-related optimization models [61] for software
bug triaging are based on the creation of a search space
by considering the data of particular developers, which
are available for a specific timeframe in order to resolve
the existing bugs. Moreover, concerning the bugs triaging
process, the distance functions are utilized to compute the
distance to all the available developers, and consequently
assign the open bugs to the developers that are featured by
the shortest distance.

The surveyed articles suggest that the mathematical-based
models mediate efficiently identifying the necessary con-
straints. The computational performance of bug triaging
represents the main issues of these techniques, and the rel-
evant problematic is approached in the articles [41], [62], and
[63]. The efficient real-time behaviour of the implemented
models may be affected by particular situations, such as the
removal of the developer from the respective project, or the
possibility for the developer to leave the company.

The fuzzy logic-related bug triaging models imply that
membership functions are specified to represent relationships
between the newly reported software bugs, and the proper
software developers. The relevant problematic is approached
in articles [60], [61], and [63]. The creation of new software
bugs implies that the similarity between the terms of newly
reported bugs relative to the existing bug terms is computed.
Following, fuzzy logic allows for the membership values
to be computed in connection to the newly created bugs,
to assign the proper developers. Thus, a greater value of
the membership indicates a higher possibility of properly
resolving the bugs. It is relevant to note that several
recent studies, such as [60], [62], and [63], propose fuzzy
logic models relative to multi-criteria decision-making and
analysis. The surveyed contributions suggest that these are
used in the realm of efficient software bug triaging systems.

The main advantage of fuzzy logic models is the implied
simplicity, and also the reasonable amount of computation
resources that are required [63]. Considering a varied set
of skilled software developers, the consideration of fuzzy
membership mediates the efficient selection of the optimal
developer. The disadvantage of SBT approaches that are
based on fuzzy logic models is represented by the relatively
difficult development of the most relevant and logical
membership function. Moreover, the extensive scientific
survey that was conducted suggests that only a few relevant
fuzzy logic-related models are reported. Consequently, the
degree of scientific generality is reduced, in this case, and
the possibility of considering this type of mathematical and
algorithmic model in all real-world use cases is problematic.

F. BUG TRIAGING MODELS BASED ON DEEP LEARNING
Deep Learning represents a machine learning technique,
which considers the natural ‘‘learn by example’’ strategy.
Therefore, its algorithmic and computational apparatus may

also be applied to software bug triaging (SBT). Thus,
deep learning techniques, which are based on Convolutional
Neural Networks (CNN) are described in articles [2], [64],
and [65]. Moreover, models that are based on Recurrent
Neural Networks (RNN) are discussed in articles [2] and [5].
These papers report contributions that are consistently used
relative to software bug triaging. It is relevant to note
that Convolutional Neural Networks and Recurrent Neural
Networks represent popular approaches relative to deep
learning models, which are considered to implement software
bug triaging systems. The essential difference between
CNN and RNN is determined by the densely connected
feed-forward network, which determines CNN, while RNN
considers a feed-backward network, which processes the data
from the previous iteration in order to improve the weights.
Thus, bug summary and description represent significant
attributes, which are usually processed in general bug triaging
processes. These are text-based attributes. Consequently,
word embedding models, such as Word2Vec and Glove,
are frequently used to implement software bug triagers.
The surveyed articles report experiments that are conducted
on various datasets, and the obtained accuracy values
belong to the range 57% to 87% relative to the assessed
DL-related models. The Word2Vec approach [66] is a
word embedding technique that is frequently considered in
the related scientific literature, as compared to the Glove
model [67].

The considered CNN models are based on convolutional
layers and pooling layers. The rationale behind these layers is
represented by feature extraction. Classification is conducted
during the last stage. Thus, relative to SBT, each software
developer determines a category. Generally, DL-related mod-
els offer consistent computational performance, scalability,
and learning rates, which is the time required for the model’s
training, relative to other AI-related models. Nevertheless,
computational time and the mandatory features of the
computing infrastructure represent key challenges. Thus,
DL-related models require greater training time relative to
traditional machine learning or information retrieval-related
approaches [68]. This computational behaviour is determined
by the multiple data processing layers, which have to be
visited [69]. Therefore, organizations that cannot afford the
more expensive computational infrastructures, may be forced
to consider alternative solutions.

Regular multilayered CNN architectures, such as the one
that is presented in article [64], consider DL-related software
architectures for SBT, which are structured according to word
vector representation layers, convolutional layer, pooling
layer, and activation functions, which are necessary in order
to aggregate the generated output values. The convolution
layer conducts the training of the data samples, and also the
training of the input data samples. The functional relevance of
the pooling layer is to determine and extract the data samples
from the feature space, which are relevant to the processed
task. Moreover, it is relevant to note that Max pooling tech-
niques, which are sample-based discretization processes, are

VOLUME 11, 2023 123929



R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

considered and proposed in the surveyed studies, considering
that they provide consistent computational performance.

The surveyed papers also describe personalized deep
learning models, such as graph recurrent convolutional
neural networks (GRCNN) models [68], and reinforcement
deep learning (RDL) models [69]. The graph recurrent
convolutional neural network (GRCNN) model generates F1
scores of 86.74%, and 75.64% relative to the Eclipse and
Mozilla projects bug trackers. Furthermore, the surveyed
deep reinforcement learning approaches generate 52%, 54%,
68%, and 78% top-5 accuracy values considering the
OpenOffice, NetBeans, Mozilla, and Eclipse bug trackers.

IV. PERFORMANCE EVALUATIONS
Performance determines a significant problematic for the
assessment of any bug triaging approach, which was nat-
urally approached by this extended study. Consequently,
the relevant performance metrics suggest the real-world
appropriateness of the proposed algorithmic approaches.
As an example, relative to a classification-related bug
management and triaging model, accuracy (ACC), precision
(P), recall (R), and F-measure (F1) are defined through a
confusion matrix [70].

The number of correct predictions divided by the total
number of predictions makes up the classification accuracy
measure, which is possibly the most straightforward to use
and implement. The formula for the accuracy is presented in
equation (1), where TP, TN , FP, and FN represent the true
positives, true negatives, false positives, and false negatives,
respectively.

ACC =
TP+ TN

TP+ TN + FP+ FN
(1)

A multitude of studies consider this metric to validate
the model [31], [94], [95], [96], [97], [98]. However,
some of the mentioned studies also use other metrics for
parallel comparisons, and/or validations, precisely because
the accuracy itself presents some downfalls. Sometimes,
it may be preferable to choose a model with lower accuracy,
if it has a stronger ability to anticipate the outcome of the
situation. For instance, if the real-world use case presents a
significant class imbalance, a model can predict the value of
the majority class for all predictions, and obtain a high level
of classification accuracy. Nevertheless, the model may not
be applicable to the problem at hand.

Therefore, the next time a classification problem is
presented, one should be careful not to merely choose
accuracy as a metric, and start creating the model straight
away. Naturally, experimenting with the model is enticing,
but it’s necessary to take some time to understand the types
of issues that should be solved, and the most suitable metrics.
After clearing that up, one may be confident that the model
that is created will be appropriate for the task at hand. This
paradox is known as the Accuracy Paradox, and for such
issues, extra measurements are needed to evaluate a classifier.

Further on, precision represents the ratio of relevant
software developers relative to all the developers determined
by the respective machine learning algorithm. Continued, the
recall represents the ratio of relevant software developers
relative to all the relevant software developers determined
by the machine learning algorithm. The formulas for these
metrics are presented in equation (2).

P =
TP

TP+ FP
,R =

TP
TP+ FN

(2)

Both of these values should ideally be as high as they can
be. That might not be possible, though. Precision will fall off
when recall rises, and vice versa. Therefore, one must choose
which indicators are particularly relevant while training the
machine learning model. One crucial and time-consuming
aspect of software maintenance is bug triaging. The model
may be required not to provide a false result if it was used
for an organization that wanted to determine whether the
programmer is a good fit or not for an urgent bug. As a result,
one would rather label suitable programmers as inappropriate
programmers (false negative) than suitable programmers as
inappropriate (false positive). In other words, a false negative
is preferable to a false positive (recall).

Additionally, F1-measure (3) is a metric that combines
precision and recall. The F1 measure is the best option if it
is required to choose a model based on a balance between
precision and recall.

F1 =
2 × P× R
P+ R

(3)

It is interesting to note that these metrics may be
computed directly, or they can be computed using a confusion
matrix [99].

In addition, other metrics have proved valuable for
measuring the quality of results, metrics that are perhaps
less well-known but of certain interest. For example, the
authors of article [71] conduct a relatively consistent analysis
of existing bug triaging techniques. Thus, the article surveys
74 studies, which are related to software bug triaging, and it
includes a presentation of the metrics that were used in order
to evaluate the analyzed software bug triaging models. Thus,
the article emphasizes the metrics, which are considered in
order to rank the available software developers. Thesemetrics
are top-K accuracy, Precision@K (P@K), Recall@K (R@K),
mean reciprocal rank (MRR), and mean average precision
(mAP). Here, K designates the number of recommended or
available software developers. The top-K accuracy relates
to the number of effective developers that have been tasked
with the resolution of existing bugs, out of the K developers
that are recommended. This is computed as the ratio of
recommended developers divided by the total number of
developers. Although there are numerous studies that use this
metric, such as [101] and [102], the article [100] presents
an experimental analysis concerning the trade-offs in top-
k classification accuracies, and the losses related to the
problematic of deep learning.

123930 VOLUME 11, 2023



R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

Furthermore, P@K is calculated as the ratio between
the relevant (effective) recommended developers and the
total number of recommended developers. Moreover, R@K
is calculated as the ratio between the relevant (effective)
recommended developers and the total number of relevant
developers. Thus, P@K and R@K are computed according to
the formulae described in equation (4), F1@K is represented
in equation (5), and the average precision (AP) is described
in equation (6).

P@K =
TP@K

TP@K + FP@K
,

R@K =
TP@K

TP@K + FN@K
(4)

F1@K = 2 ×
P@K × R@K
P@K + R@K

(5)

AP = 6(Recall@K − Recall@(K − 1))

× Precision@K (6)

Furthermore, DCG@K and NDCG@K represent two
additional metrics, which are considered in order to evaluate
recommender systems. DCG is an acronym for Discounted
Cumulative Gain, and NDCG is the acronym for Normalized
Discounted Cumulative Gain. These metrics are considered
in order to assess the quality of the developers ranking
during the software bug triaging process. The calculation of
DCG@K and NDCG@K is conducted using the formulae
described in equation (7). Here, reli represents the relevance
of the ith developer recommendation, while the IDCG deter-
mines the Discounted Cumulative Gain in ideal conditions.

DCG@K =

K∑
i=1

2reli − 1
log2(i+ 1)

,

NDCG@K =
DCG@K
IDCG@K

(7)

The surveyed articles suggest that, although contributions
like [71] imply that mean average precision mAP represents
the optimal quantitative assessment metric related to software
bug triaging, the quantitative and qualitative analysis is
also determined by the type of AI-related model, which is
selected for the bug management and triaging process. Thus,
if the algorithmic model is based on recommender system
techniques, then DCG@K and NDCG@K are the optimal
metrics to conduct the performance evaluation [48].

Furthermore, relative to machine learning and information
retrieval-oriented models, accuracy, precision, recall, and
F-measure are the recommended performance evaluation
metrics [70].

V. SCIENTIFIC CHALLENGES AND OPEN RESEARCH
QUESTIONS
The types of metrics, algorithmic and numerical approaches,
which were surveyed in the previous sections, suggest that
although numerous techniques exist for the design and
implementation of automatic bug triaging and management

techniques, there are also conceptual and practical chal-
lenges, which are discussed in this section, along with the
proper suggested solutions. This section considers several
categories of conceptual and real-world problems, which
are relevant for future research efforts. Additionally, the
extensive surveyed literature determines significant open
research questions, which are discussed.

A. GENERATION OF DEVELOPERS VOCABULARY
The generation of a precise software developers’ vocabulary
represents a fundamental activity relative to the software
bug triaging process. Thus, the design and development of
software bug triaging techniques imply that the defining
bug data and technical abilities of the software developers
are taken into account during the automatic bug assignment
process. Nevertheless, apart from the technical abilities of
the involved software developers, recent articles, such as [72]
and [73], consider other relevant aspects. Thus, there are
certain software engineers or developers that can be classified
as ‘‘experts’’, and may be consequently considered during the
optimization of the developer vocabulary generation process,
which relates to upcoming software bug triaging techniques.

B. DATA REDUCTION MODELS
The contribution that is described in article [74] reports
an approach for filtering and eliminating invalid bugs from
the processed bug trackers. This optimizes the amount
of bug triaging data, and consequently ameliorates the
necessary time and energy, which are necessary for the
proper management and effective bug triaging processes.
Moreover, the paper defines four feature groups, which are
the experience of the bug reporter, the related collaboration
network, the degree of technical completeness, and the
defining bug text. Consequently, a Random Forest classifier
was designed to assign the invalid bug to the proper category.
Additionally, the paper has themerit to conduct a rather useful
overview on interesting approaches for software bug triaging.
It is also relevant to mention the contribution reported in
paper [75], which aims to detect and properly manage the
non-reproducible bugs, in which identification and handling
of respective bugs are conducted relative to the processed bug
tracker. This may sensibly reduce the processing time of non-
reproducible bugs, which are generally difficult to manage in
an adequate manner.

C. MODELS REGARDING BUG PRIORITIZATION
The contribution that is described in article [40] concerns
the prioritization of security bugs, which is regarded as
an essential process in the scope of software development.
Thus, the implementation of security patches determines a
mandatory effort in the process of software development, as it
implements the required security mechanisms. The reported
work is based on reducing the size of the training data, which
is logically enriched and further improved with a transfer
learning model. The article demonstrates that this type of

VOLUME 11, 2023 123931



R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

approach may be considered relative to the relevant software
bug triaging processes.

D. MODELS RELATED TO FEATURES SELECTION AND
AGGREGATION
Feature selection, aggregation, and ranking [76] determines
a task that is usually performed during the preprocessing
phase of the software bug triaging process. Thus, article [77]
describes an ontology for an efficient location-based knowl-
edge extraction relative to the implementation phase of
software development. The relevant ontology may be con-
sidered for bug triaging during the subsequent phases of the
software bug triaging process. Furthermore, the generation
of user summaries, which are useful to recommend similar
projects during the software development is proposed in
article [27], which can be aggregated and used together
with other algorithmic model to implement the software
bug triaging process. Additionally, another contribution was
reported in article [78], which described an approach for
the generation of a text summary. This is used to assess the
opportunity to escalate a ticket, to automatically generate
the title and content of the ticket, and also to assign the
ticket to a properly available developer. This approach brings
obvious advantages to the bug triaging process. Furthermore,
aside from the classical feature selection models, feature
enhancement is also conducted relative to software bug
triaging in article [38], which also presents further useful
features and metrics relative to the software bug triaging
process.

E. RELEVANT METRICS
The comprehensive contributions that are reported in arti-
cles [51], [79], and [80] discuss four quality metrics,
which influence the quality and computational efficiency of
bug triaging processes. Thus, the relevant quality metrics
are complexity, cohesion, inheritance, and coupling, which
were analytically assessed in the mentioned articles. The
conceptual and real-world analysis that determines this
scientific survey implies that future research efforts should
concentrate on other software quality features, such as
maintainability, reusability, and refactoring.

F. ANALYSIS OF LARGE BUG DATASETS
The majority of surveyed papers [77] consider public
bug trackers, such as Mozilla, Apache, Google, and Git,
in order to assess the validity and computational efficiency
of the proposed software bug triaging models. Consequently,
we suggest that the reference performance assessment
datasets should be diversified, while the automatic software
bug triaging models should be algorithmically enriched with
up-to-date techniques, such as big data analytics.

G. MODELS RELATED TO THE STUDY OF NETWORKED
AND GRAPH STRUCTURES
The authors of article [38] suggest the consideration of
semantic, multiplex, and multimode networks, which are

useful to model the relationships between the components of
bug items components. This supports the design and develop-
ment of future enhanced software bug triaging models. More-
over, paper [81] describes the creation of a visual analysis
tool that is related to a Directed Acyclic Graph (DAG), which
may be considered to model the logical relationship between
the involved developers. Article [82] reports a model that is
called iTriage, which creates a sequential model that supports
the processing of textual features, and also the relevant bugs
tossing sequences. The relevant conceptual and practical
suggestions should be considered for the creation of future
enhanced software bug triaging systems, which properly
implement the bug assignment and management routines.
It is relevant to note that article [41] proposes a logically
related approach that considers the GitHub bugs tracking
repository, which presumes that semantically related issues
are properly recorded in the analyzed GitHub bugs dataset.
The reported scientific developments may be considered to
efficiently identify similar bugs, and consequently determine
relevant information for the resolution of critical and high-
priority bugs. Furthermore, the logical mechanism of bug
dependency, and also dependency graphs may also be
considered for the enhancement of software bug triaging
routines, as it is demonstrated in article [83].

H. MODELS THAT CONSIDER CROSS REPOSITORY
ANALYSES
Several papers consider the experimental and performance
analysis mechanism of cross-repository analysis. Thus,
paper [84] proposes an automatic commitmessage generation
model, which pertains to version control systems. Thus, the
text of the commit message was automatically generated
considering previous software commit data, which was
stored in a comprehensive repository. Moreover, a further
relevant model is described in article [85], which proposed
a customized recommender system that is related to the pro-
cessing of open-source repositories. Additionally, an interest
measurement mechanism, which is based on the processing
of GitHub data, is specified relative to the developers that
work on a project that is linked, considering the common
technical abilities of relevant software developers. These and
similar existing contributions propose conceptually relevant
algorithmic models, which should be considered in order to
design future software bug triaging models.

I. MODELS THAT CONSIDER DEEP LEARNING
TECHNIQUES
Deep Learning (DL) models are created and reported by
several contributions that pertain to software bug triaging.
Thus, the Deep Learning-related Convolutional Neural
Networks (CNN) model is utilized, together with the
Word2vec word embedding model, in order to implement
the bug triaging processes [64]. Apart from the described
algorithmic model, DL determines a consistent algorithmic
and functional apparatus, which can be used in future

123932 VOLUME 11, 2023



R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

software bug triaging approaches. Variants of CNN, such
as bio-inspired spiking CNN (SCNN), seem to provide
superior computational performance than classical CNN
networks. Consequently, SCNN networks can be considered
in order to implement relevant computational routines for
software bug triaging [46]. Moreover, article [44] analyzes
the technological profile recommendations relative to various
document embedding models, while paper [86] addresses
the problematic of the software developers’ skills prediction
considering a multi-label classification of available resumes
data, which is based on the usage of CNN networks with
model predictions.

J. CONTEMPORARY MACHINE LEARNING AND BIG DATA
APPROACHES
Contemporary machine learning models like ensemble learn-
ing and transfer learning are usually coupled with big data
analyticsmethods, which can be considered in order to further
improve the software bug triaging approaches. Thus, the
model of label prediction in bug repositories is studied in [17],
while the automatic identification of technically skilled
software engineers are discussed, designed, and implemented
in paper [73]. Moreover, various software fault prediction
models are explored in article [87], while an automated issue
assignment model is proposed by the contribution reported in
paper [88]. Furthermore, it is interesting to note that relevant
blockchain-related models are also analyzed and described
in article [62], with a clear emphasis on the software bug
triaging processes.

K. EFFICIENT MANAGEMENT OF IMBALANCED DATASETS
The subject of imbalanced classes represents a theoretical and
practical problem in the general field of artificial intelligence.
Relative to software bug triaging, class imbalancing mani-
fests when the bug items are not assigned to the developers
in a balanced manner. More precisely, the abnormal situation
occurs when a few software engineers fix a majority of
the reported bugs. This situation may determine a class
imbalancing in the training dataset, which is considered
relative to the bug triaging process. Thus, several papers
explore the relevant problematic from several perspectives,
including the defect prediction algorithmic models [89],
[90], [91], [92]. The surveyed papers also approach the
topics of bug fixability prediction [93], and also the general
problem of bugs classification [23], [24]. Nevertheless, there
are only a few systematic studies concerning the relevant
research aspects and open questions in the scope of automatic
bug triaging and management. Consequently, this survey
contributes to filling a gap, as it systematically approaches
the essential aspects and existing contributions, which are
related to software bug triaging and management. The issue
of imbalanced datasets may be further approached using
deep learning and soft computing techniques, which combine
artificial intelligence models, and also natural selection
approaches.

VI. RESEARCH QUESTIONS AND DEGREE OF
ACCOMPLISHMENT
Artificial intelligence is perceived and practically demon-
strated as a novel approach to the problematic of design
and implementation of precise and automated software
bug triaging systems. The vast array of analyzed scientific
contributions suggests that artificial intelligence and machine
learning can be considered effective tools in order to
design and implement accurate and computationally efficient
automated software bug triaging systems. Nevertheless, the
continuous technological developments, and also certain
conceptual and practical issues, which were addressed in
the previous sections, suggest that there is still enough
room for further optimizations and functional extensions.
Consequently, the following paragraphs discuss the three
fundamental research questions, which guided this scientific
survey effort and also analyze the degree of scientific
achievement of this paper.

A. RQ1: IS AI CAPABLE TO EFFECTIVELY ENHANCE AND
AUTOMATE SOFTWARE BUG TRIAGING?
Regarding the thorough scientific review that was conducted,
several pertinent remarks can be made concerning the
consideration of AI-related models to design and implement
software bug triaging approaches. Thus, the discussion
considers three perspectives relative to software bug triaging
systems, which this section considers. The first perspective
pertains to AI-related models for bug triaging. The identi-
fied scientific contributions suggest that machine learning
models have been a popular choice during the past ten
years for software bug triaging. Following, as this paper
already demonstrated, information retrieval-related models
were considered, chronologically followed by approaches
that are based on recommender systems. Furthermore,
contemporary studies have started to consistently rely on
deep learning-related solutions. The significant changes
regarding the conceptual and practical paradigms are easily
discernible considering the scientific literature, which this
article surveys. Thus, deep learning-related approaches
have been demonstrated to enhance related software bug
triaging routines, both considering the accuracy, as it is
measured by various metrics and also the computational
efficiency. Nevertheless, future developments are expected
to address the remaining issues, which are also connected
to the accuracy and computational efficiency of relevant bug
triaging processes. These currently hamper the consideration
of some deep learning-related approaches in the context of
certain large or structurally complex real-world software bug
triaging use cases.

It is immediate to observe that automated software
bug triaging will minimize the time that is necessary for
software development processes, and concomitantly, the
software development costs will be reduced. Consequently,
the economical viability of the software development projects
and companies will be strengthened. This assertion is com-
prehensively approached and demonstrated in the surveyed

VOLUME 11, 2023 123933



R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

literature. Therefore, it can be inferred that AI-related models
are not only relevant, but essential for the implementation of
automated software bug triaging systems.

B. RQ2: IDENTIFICATION OF SIGNIFICANT
PERFORMANCE PARAMETERS AND METRICS
CONSIDERED BY EXISTING CONTRIBUTIONS
The second perspective relates to the comprehensive anal-
ysis of performance evaluation techniques, parameters, and
metrics, which are considered for AI-related software bug
triaging models. The relevance of the second analysis
perspective is determined by the fact that the selection
of performance parameters should be carefully conducted,
in accordance with the technological model, which is
used to design and implement the relevant software bug
triaging techniques. More precisely, relative to a bug triaging
technique that is based on classification algorithms, accuracy,
precision, recall, and F-measure are specified through the
consideration of a confusion matrix. Furthermore, developer
ranking algorithms consider performance metrics like top-
K accuracy, Precision@K, Recall@K, mean reciprocal rank,
and mean average precision, which is fully covered in this
paper. Here, K designates the number of recommended
software developers. Additionally, Discounted Cumulative
Gain, and Normalized Discounted Cumulative Gain, which
have already been covered, represent significant performance
metrics, which are used in order to evaluate software
bug triaging approaches, which are based on recommender
systems.

Although certain contributions, such as the one that is
reported in article [71], suggest that the mean average
precision may be the optimal performance evaluation metric
relative to the relevant software bug triaging processes, the
assessment should consider the specific AI model that is
used to implement the bug triaging process. As an example,
in the case of bug triagers that are based on recommender
systems, then Discounted Cumulative Gain, and Normalized
Discounted Cumulative Gain was reported to be the proper
performance evaluation metrics. Furthermore, in the case
of bug triagers that are based on machine learning and
information retrieval models, accuracy, precision, recall,
and F-measure were reported to be the suitable metrics,
both considering their validity for the intended type of
measurement and their computational efficiency. It can
be asserted that this scientific survey reached the goal
to determine and comparatively analyze the most suitable
performance parameters and metrics, in the context of
software bug triaging.

C. RQ3: OPEN SCIENTIFIC PROBLEMS AND POSSIBLE
FUTURE DEVELOPMENTS TO ENHANCE SOFTWARE BUG
TRIAGING PROCESSES
The third perspective is defined by the open scientific
research problems, which could define possible future
research pathways in the scope of software bug triaging.
The open research problems are presented in the previous

section, along with clear indications regarding the possible
future research pathways. Thus, eleven categories concerning
the future possible research subjects are defined. These
categories pertain to data reduction techniques, developers’
vocabulary generation, feature selection and aggregation,
bug prioritization, performance parameters and metrics,
exploration of large bug data sets (repositories), networks
and graph-related models, advanced deep learning-related
models, cross repository analysis, contemporary machine
learning and big data-related approaches, and the proper
management of imbalanced datasets. The comprehensive
scientific literature that was surveyed suggests that, in spite
of the existing functional approaches that were proposed
for automatic software bug triaging, there are numerous
conceptual and practical aspects that need to be further
addressed. Considering the semantics and perspectives that
are determined by the comprehensive literature that was
surveyed, it is possible to objectively assert that the most
relevant open scientific problems, research gaps, and future
research pathways were properly identified and discussed in
this paper.

VII. CONCLUSION
Software bug triaging determines a significant research
scope, considering its conceptual and real-world implica-
tions. Consequently, the relevant scientific literature encom-
passes various contributions, which have been thoroughly
surveyed and presented. Thus, AI-related models are gen-
erally considered in order to implement automatic software
bug triaging and management systems. The present article
describes an extended survey, which systematically analyzes
the most relevant contributions that are related to software
bug triaging. The scientific survey is structured according
to a systematic approach, which selects the relevant existing
articles based on the principles of the PRISMA scientific
review system. Consequently, this paper comprehensively
surveys, classifies, and analyzes relevant software bug
triaging and management approaches, which are reported
in the existing literature. The identified papers are analyt-
ically and comparatively evaluated, and three fundamental
research questions are defined and discussed. Consequently,
a three-dimensional evaluation and comparative analysis are
conducted relative to the identified software bug triaging
contributions, which consider the defined research questions.
Consequently, an evaluation of the identified performance
parameters and metrics is conducted and included, as a
separate section, in this paper.

Furthermore, relevant research questions, which are
currently unsatisfactorily approached, are presented and
analyzed, and possible future research and practical trends
related to software bug triaging are discussed. Consider-
ing each surveyed bug triaging approach, the identified
advantages and problems are discussed and evaluated, both
considering their conceptual relevance and their importance
for real-world software development processes. The rele-
vance of the problematic approached in this survey paper is

123934 VOLUME 11, 2023



R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

further justified by the economic implications of the implied
bug triaging and management processes relative to the
overall software development efforts. Thus, the consideration
of algorithmic models that relate to artificial intelligence
and machine learning has essentially changed the paradigm
of software bug triaging and management. The surveyed
approaches significantly enhance the relevant software
bug triaging and management processes, and the software
development times and costs are consistently reduced.
Nevertheless, several conceptual and practical issues remain,
which are thoroughly presented. Therefore, future research
efforts should carefully approach the remaining problems,
in order to fully establish the automatic software bug triaging
andmanagement as an accurate and computationally efficient
practical solution.

REFERENCES
[1] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, ‘‘Preferred

reporting items for systematic reviews and meta-analyses: The PRISMA
statement,’’ Ann. Internal Med., vol. 151, no. 4, pp. 264–269, 2009.

[2] S. Mani, A. Sankaran, and R. Aralikatte, ‘‘DeepTriage: Exploring the
effectiveness of deep learning for bug triaging,’’ in Proc. ACM India Joint
Int. Conf. Data Sci. Manage. Data, Jan. 2019, pp. 171–179.

[3] H. Mohsin and C. Shi, ‘‘SPBC: A self-paced learning model for bug
classification from historical repositories of open-source software,’’
Expert Syst. Appl., vol. 167, Apr. 2021, Art. no. 113808.

[4] J. A. Nasir, O. S. Khan, and I. Varlamis, ‘‘Fake news detection: A hybrid
CNN-RNN based deep learning approach,’’ Int. J. Inf. Manage. Data
Insights, vol. 1, no. 1, Apr. 2021, Art. no. 100007.

[5] U. Koc, S. Wei, J. S. Foster, M. Carpuat, and A. A. Porter, ‘‘An empirical
assessment of machine learning approaches for triaging reports of a Java
static analysis tool,’’ in Proc. 12th IEEE Conf. Softw. Test., Validation
Verification (ICST), Apr. 2019, pp. 288–299.

[6] M. Sharma, A. Tandon, M. Kumari, and V. B. Singh, ‘‘Reduction of
redundant rules in association rule mining-based bug assignment,’’ Int.
J. Rel., Qual. Saf. Eng., vol. 24, no. 6, Dec. 2017, Art. no. 1740005.

[7] G. Murphy and D. Cubranic, ‘‘Automatic bug triage using text
categorization,’’ in Proc. 16th Int. Conf. Softw. Eng. Knowl. Eng., 2004,
pp. 1–6.

[8] A. Goyal and N. Sardana, ‘‘Machine learning or information retrieval
techniques for bug triaging: Which is better?’’ E-Informatica Softw. Eng.
J., vol. 11, no. 1, pp. 117–141, 2017.

[9] S. N. Ahsan, J. Ferzund, and F. Wotawa, ‘‘Automatic software bug
triage system (BTS) based on latent semantic indexing and support
vector machine,’’ in Proc. 4th Int. Conf. Softw. Eng. Adv., Sep. 2009,
pp. 216–221.

[10] W. Wu, W. Zhang, Y. Yang, and Q. Wang, ‘‘DREX: Developer
recommendation with K-nearest-neighbor search and expertise ranking,’’
in Proc. 18th Asia–Pacific Softw. Eng. Conf., Dec. 2011, pp. 389–396.

[11] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, ‘‘Assigning
change requests to software developers,’’ J. Softw., Evol. Process, vol. 24,
no. 1, pp. 3–33, Jan. 2012.

[12] S. Banerjee, Z. Syed, J. Helmick, M. Culp, K. Ryan, and B. Cukic,
‘‘Automated triaging of very large bug repositories,’’ Inf. Softw. Technol.,
vol. 89, pp. 1–13, Sep. 2017.

[13] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, ‘‘Why so
complicated? Simple term filtering and weighting for location-based bug
report assignment recommendation,’’ in Proc. 10th Work. Conf. Mining
Softw. Repositories (MSR), May 2013, pp. 2–11.

[14] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, ‘‘Improving
automatic bug assignment using time-metadata in term-weighting,’’ IET
Softw., vol. 8, no. 6, pp. 269–278, Dec. 2014.

[15] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, ‘‘A time-based
approach to automatic bug report assignment,’’ J. Syst. Softw., vol. 102,
pp. 109–122, Apr. 2015.

[16] M. Alenezi, K. Magel, and S. Banitaan, ‘‘Efficient bug triaging using text
mining,’’ J. Softw., vol. 8, no. 9, pp. 2185–2190, Sep. 2013.

[17] J. M. Alonso-Abad, C. López-Nozal, J. M. Maudes-Raedo, and
R. Marticorena-Sánchez, ‘‘Label prediction on issue tracking systems
using text mining,’’ Prog. Artif. Intell., vol. 8, no. 3, pp. 325–342,
Sep. 2019.

[18] P. Ardimento, N. Boffoli, and C. Mele, ‘‘A text-based regression
approach to predict bug-fix time,’’ in Complex Pattern Mining. 2020, doi:
10.1007/978-3-030-36617-9_5.

[19] A. Hindle, A. Alipour, and E. Stroulia, ‘‘A contextual approach towards
more accurate duplicate bug report detection and ranking,’’ Empirical
Softw. Eng., vol. 21, no. 2, pp. 368–410, Apr. 2016.

[20] A. Kaur and S. G. Jindal, ‘‘Text analytics based severity prediction of
software bugs for apache projects,’’ Int. J. Syst. Assurance Eng. Manage.,
vol. 10, no. 4, pp. 765–782, Aug. 2019.

[21] L. Chen, X. Wang, and C. Liu, ‘‘Improving bug assignment with bug
tossing graphs and bug similarities,’’ in Proc. Int. Conf. Biomed. Eng.
Comput. Sci., 2011, pp. 421–427, doi: 10.1109/ICBECS.2010.5462287.

[22] L. Chen, X. Wang, and C. Liu, ‘‘An approach to improving bug
assignment with bug tossing graphs and bug similarities,’’ J. Softw., vol. 6,
no. 3, pp. 421–427, Mar. 2011.

[23] M. Chen, D. Hu, T. Wang, J. Long, G. Yin, Y. Yu, and Y. Zhang, ‘‘Using
document embedding techniques for similar bug reports recommenda-
tion,’’ in Proc. IEEE 9th Int. Conf. Softw. Eng. Service Sci. (ICSESS),
Nov. 2018, pp. 811–814, doi: 10.1109/ICSESS.2018.8663849.

[24] R. Chen, S.-K. Guo, X.-Z. Wang, and T.-L. Zhang, ‘‘Fusion of multi-
RSMOTE with fuzzy integral to classify bug reports with an imbalanced
distribution,’’ IEEE Trans. Fuzzy Syst., vol. 27, no. 12, pp. 2406–2420,
Dec. 2019.

[25] D. Hu, M. Chen, T. Wang, J. Chang, G. Yin, Y. Yu, and Y. Zhang,
‘‘Recommending similar bug reports: A novel approach using document
embedding model,’’ in Proc. 25th Asia–Pacific Softw. Eng. Conf.
(APSEC), Dec. 2018, pp. 725–726.

[26] J. Jiang, D. Lo, J. Zheng, X. Xia, Y. Yang, and L. Zhang, ‘‘Who
should make decision on this pull request? Analyzing time-decaying
relationships and file similarities for integrator prediction,’’ J. Syst. Softw.,
vol. 154, pp. 196–210, Aug. 2019.

[27] M. R. Resketi, H. Motameni, H. Nematzadeh, and E. Akbari, ‘‘Automatic
summarising of user stories in order to be reused in future similar
projects,’’ IET Softw., vol. 14, no. 6, pp. 711–723, Dec. 2020.

[28] J.-W. Park, M.-W. Lee, J. Kim, S.-W. Hwang, and S. Kim, ‘‘CosTriage:
A cost-aware triage algorithm for bug reporting systems,’’ in Proc. Nat.
Conf. Artif. Intell., 2011, p. 139.

[29] D.-G. Lee and Y.-S. Seo, ‘‘Improving bug report triage performance using
artificial intelligence based document generation model,’’ Hum.-Centric
Comput. Inf. Sci., vol. 10, no. 1, Dec. 2020, Art. no. 26.

[30] T. S. Roopa, Y. Purna, and C. Krish, ‘‘A novel approach for bug triaging
with specialized topic model,’’ Int. J. Innov. Technol. Exploring Eng.,
vol. 8, no. 7, pp. 1032–1038, 2019.

[31] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
‘‘Improving automated bug triaging with specialized topic model,’’
IEEE Trans. Softw. Eng., vol. 43, no. 3, pp. 272–297, Mar. 2017, doi:
10.1109/TSE.2016.2576454.

[32] X. Xie, W. Zhang, Y. Yang, and Q. Wang, ‘‘DRETOM: Developer
recommendation based on topic models for bug resolution,’’ in Proc. 8th
Int. Conf. Predictive Models Softw. Eng., Sep. 2012, pp. 19–28.

[33] W. Zhang, S. Wang, and Q. Wang, ‘‘BAHA: A novel approach to
automatic bug report assignment with topic modeling and heterogeneous
network analysis,’’ Chin. J. Electron., vol. 25, no. 6, pp. 1011–1018,
Nov. 2016.

[34] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Jan. 2003.

[35] W. Zhang, Y. Cui, and T. Yoshida, ‘‘En-LDA: An novel approach to
automatic bug report assignment with entropy optimized latent Dirichlet
allocation,’’ Entropy, vol. 19, no. 5, p. 173, Apr. 2017.

[36] G. Brookes and T. McEnery, ‘‘The utility of topic modelling for discourse
studies: A critical evaluation,’’ Discourse Stud., vol. 21, no. 1, pp. 3–21,
Feb. 2019.

[37] D. Matter, A. Kuhn, and O. Nierstrasz, ‘‘Assigning bug reports using a
vocabulary-based expertise model of developers,’’ in Proc. 6th IEEE Int.
Work. Conf. Mining Softw. Repositories, May 2009, pp. 131–140.

[38] I. Alazzam, A. Aleroud, Z. Al Latifah, and G. Karabatis, ‘‘Automatic
bug triage in software systems using graph neighborhood relations for
feature augmentation,’’ IEEE Trans. Computat. Social Syst., vol. 7, no. 5,
pp. 1288–1303, Oct. 2020.

VOLUME 11, 2023 123935

http://dx.doi.org/10.1007/978-3-030-36617-9_5
http://dx.doi.org/10.1109/ICBECS.2010.5462287
http://dx.doi.org/10.1109/ICSESS.2018.8663849
http://dx.doi.org/10.1109/TSE.2016.2576454


R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

[39] J. Xuan, H. Jiang, H. Zhang, and Z. Ren, ‘‘Developer recommendation
on bug commenting: A ranking approach for the developer crowd,’’ Sci.
China Inf. Sci., vol. 60, no. 7, Jul. 2017, Art. no. 072105.

[40] S. Mostafa, B. Findley, N. Meng, and X. Wang, ‘‘Sais: Self-adaptive
identification of security bug reports,’’ IEEE Trans. Depend. Sec.
Comput., vol. 18, no. 4, pp. 1779–1792, Jul. 2021.

[41] W. Zhang, S. Wang, and Q. Wang, ‘‘KSAP: An approach to bug report
assignment using KNN search and heterogeneous proximity,’’ Inf. Softw.
Technol., vol. 70, pp. 68–84, Feb. 2016.

[42] Y. Zhang, Y. Wu, T. Wang, and H. Wang, ‘‘A novel approach for
recommending semantically linkable issues in GitHub projects,’’ Sci.
China Inf. Sci., vol. 62, no. 9, pp. 1–3, Sep. 2019.

[43] J. Anvik and G. C. Murphy, ‘‘Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,’’ ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, pp. 1–35, Aug. 2011.

[44] P. Chamoso, G. Hernández, A. González-Briones, and
F. J. García-Peñalvo, ‘‘Recommendation of technological profiles
to collaborate in software projects using document embeddings,’’ Neural
Comput. Appl., vol. 34, no. 11, pp. 8423–8430, Jun. 2022.

[45] A. Ray, M. H. Kolekar, R. Balasubramanian, and A. Hafiane, ‘‘Transfer
learning enhanced vision-based human activity recognition: A decade-
long analysis,’’ Int. J. Inf. Manage. Data Insights, vol. 3, no. 1, Apr. 2023,
Art. no. 100142.

[46] S. F. A. Zaidi, F. M. Awan, M. Lee, H. Woo, and C.-G. Lee,
‘‘Applying convolutional neural networks with different word repre-
sentation techniques to recommend bug fixers,’’ IEEE Access, vol. 8,
pp. 213729–213747, 2020.

[47] J. Xuan, H. Jiang, Z. Ren, and W. Zou, ‘‘Developer prioritization in bug
repositories,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012,
pp. 25–35.

[48] G. Shani and A. Gunawardana, ‘‘Evaluating recommendation systems,’’
in Recommender Systems Handbook. Springer, 2011, pp. 257–297, doi:
10.1007/978-0-387-85820-3_8.

[49] N. Mishra, S. Chaturvedi, A. Vij, and S. Tripathi, ‘‘Research problems in
recommender systems,’’ J. Phys., Conf. Ser., vol. 1717, no. 1, Jan. 2021,
Art. no. 012002.

[50] M. K. Najafabadi, A. H. Mohamed, and M. N. Mahrin, ‘‘A survey on
data mining techniques in recommender systems,’’ Soft Comput., vol. 23,
no. 2, pp. 627–654, Jan. 2019.

[51] R. Kumar, A. I. Khan, Y. B. Abushark, M. M. Alam, A. Agrawal, and
R. A. Khan, ‘‘A knowledge-based integrated system of hesitant fuzzy set,
AHP and TOPSIS for evaluating security-durability of web applications,’’
IEEE Access, vol. 8, pp. 48870–48885, 2020.

[52] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, ‘‘Fuzzy set-
based automatic bug triaging (NIER track),’’ inProc. 19th ACMSIGSOFT
Symp., 13th Eur. Conf. Found. Softw. Eng., 2021, pp. 884–887.

[53] A. Goyal and N. Sardana, ‘‘Empirical analysis of ensemble machine
learning techniques for bug triaging,’’ in Proc. 12th Int. Conf. Contemp.
Comput. (IC3), Aug. 2019, pp. 1–6.

[54] M. Wei, S. Guo, R. Chen, and J. Gao, ‘‘Enhancing bug report assignment
with an optimized reduction of training set,’’ in Proc. Int. Conf. Knowl.
Sci., Eng. Manag., in Lecture Notes in Artificial Intelligence, vol. 11062,
2018, pp. 36–47.

[55] Y. Kashiwa and M. Ohira, ‘‘A release-aware bug triaging method
considering developers’ bug-fixing loads,’’ IEICE Trans. Inf. Syst.,
vol. E103.D, no. 2, pp. 348–362, 2020.

[56] J. Lee, D. Kim, and W. Jung, ‘‘Cost-aware clustering of bug reports by
using a genetic algorithm,’’ J. Inf. Sci. Eng., vol. 35, no. 1, pp. 175–200,
2019.

[57] V. Akila, V. Govindasamy, and S. Sharmila, ‘‘Bug Triage based on ant
system with evaporation factor tuning,’’ Int. J. Control Theory Appl.,
vol. 9, no. 2, pp. 859–863, 2016.

[58] Md. M. Rahman, G. Ruhe, and T. Zimmermann, ‘‘Optimized assignment
of developers for fixing bugs an initial evaluation for eclipse projects,’’
in Proc. 3rd Int. Symp. Empirical Softw. Eng. Meas., Oct. 2009,
pp. 439–442.

[59] S. G. Jindal and A. Kaur, ‘‘Automatic keyword and sentence-based
text summarization for software bug reports,’’ IEEE Access, vol. 8,
pp. 65352–65370, 2020.

[60] R. R. Panda and N. K. Nagwani, ‘‘Classification and intuitionistic fuzzy
set based software bug triaging techniques,’’ J. King Saud Univ., Comput.
Inf. Sci., vol. 34, no. 8, pp. 6303–6323, Sep. 2022.

[61] P. M. Vu, T. T. Nguyen, and T. T. Nguyen, ‘‘Fuzzy multi-intent classifier
for user generated software documents,’’ in Proc. ACM Southeast Conf.,
Apr. 2020, pp. 292–295.

[62] C. Gupta and M. M. Freire, ‘‘A decentralized blockchain oriented
framework for automated bug assignment,’’ Inf. Softw. Technol., vol. 134,
Jun. 2021, Art. no. 106540.

[63] R. R. Panda and N. K. Nagwani, ‘‘Multi-label software bug categorisation
based on fuzzy similarity,’’ Int. J. Comput. Sci. Eng., vol. 24, no. 3,
pp. 244–258, 2021.

[64] S. Guo, X. Zhang, X. Yang, R. Chen, C. Guo, H. Li, and T. Li,
‘‘Developer activity motivated bug triaging: Via convolutional neu-
ral network,’’ Neural Process. Lett., vol. 51, no. 3, pp. 2589–2606,
Jun. 2020.

[65] Y. Liu, J. X. Huang, and Y. T. Ma, ‘‘An automatic method using hybrid
neural networks and attention mechanism for software bug triaging,’’
J. Comput. Res. Develop., vol. 57, no. 3, p. 461, 2020.

[66] C. A. Choquette-Choo, D. Sheldon, J. Proppe, J. Alphonso-Gibbs, and
H. Gupta, ‘‘A multi-label, dual-output deep neural network for automated
bug triaging,’’ inProc. 18th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA),
Dec. 2019, pp. 937–944.

[67] M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in Deep
Learning. Springer, 2020.

[68] H. Wu, Y. Ma, Z. Xiang, C. Yang, and K. He, ‘‘A spatial–temporal graph
neural network framework for automated software bug triaging,’’Knowl.-
Based Syst., vol. 241, Apr. 2022, Art. no. 108308.

[69] Y. Liu, X. Qi, J. Zhang, H. Li, X. Ge, and J. Ai, ‘‘Automatic bug triaging
via deep reinforcement learning,’’ Appl. Sci., vol. 12, no. 7, p. 3565,
Mar. 2022.

[70] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques
(The Morgan Kaufmann Series in Data Management Systems), vol. 5,
no. 4, 3rd ed. 2011, pp. 83–124.

[71] A. Sajedi-Badashian and E. Stroulia, ‘‘Guidelines for evaluating bug-
assignment research,’’ J. Softw., Evol. Process, vol. 32, no. 9, Sep. 2020,
Art. no. e2250.

[72] E. Kalliamvakou, C. Bird, T. Zimmermann, A. Begel, R. DeLine, and
D. M. German, ‘‘What makes a great manager of software engineers?’’
IEEE Trans. Softw. Eng., vol. 45, no. 1, pp. 87–106, Jan. 2019.

[73] P. L. Li, A. J. Ko, and A. Begel, ‘‘What distinguishes great software
engineers?’’Empirical Softw. Eng., vol. 25, no. 1, pp. 322–352, Jan. 2020.

[74] Y. Fan, X. Xia, D. Lo, and A. E. Hassan, ‘‘Chaff from the wheat:
Characterizing and determining valid bug reports,’’ IEEE Trans. Softw.
Eng., vol. 46, no. 5, pp. 495–525, May 2020.

[75] A. Goyal and N. Sardana, ‘‘An empirical study of non-reproducible
bugs,’’ Int. J. Syst. Assurance Eng. Manage., vol. 10, no. 5,
pp. 1186–1220, Oct. 2019.

[76] B. Alkhazi, A. DiStasi, W. Aljedaani, H. Alrubaye, X. Ye, and
M. W. Mkaouer, ‘‘Learning to rank developers for bug report assign-
ment,’’ Appl. Soft Comput., vol. 95, Oct. 2020, Art. no. 106667.

[77] J. R. Martínez-García, F.-E. Castillo-Barrera, R. R. Palacio, G. Borrego,
and J. C. Cuevas-Tello, ‘‘Ontology for knowledge condensation to
support expertise location in the code phase during software development
process,’’ IET Softw., vol. 14, no. 3, pp. 234–241, Jun. 2020.

[78] M. Nayebi, L. Dicke, R. Ittyipe, C. Carlson, and G. Ruhe, ‘‘ESSMArT
way to manage customer requests,’’ Empirical Softw. Eng., vol. 24, no. 6,
pp. 3755–3789, Dec. 2019.

[79] L. Kumar, S. Tummalapalli, and L. B. Murthy, ‘‘An empirical framework
to investigate the impact of bug fixing on internal quality attributes,’’
Arabian J. Sci. Eng., vol. 46, no. 4, pp. 3189–3211, Apr. 2021, doi:
10.1007/S13369-020-05095-0.

[80] S. Kumar, A. K. Kar, and P. V. Ilavarasan, ‘‘Applications of text mining in
servicesmanagement: A systematic literature review,’’ Int. J. Inf. Manage.
Data Insights, vol. 1, no. 1, Apr. 2021, Art. no. 100008.

[81] Y. Kim, J. Kim, H. Jeon, Y.-H. Kim, H. Song, B. Kim, and J. Seo,
‘‘Githru: Visual analytics for understanding software development history
through git metadata analysis,’’ IEEE Trans. Vis. Comput. Graphics,
vol. 27, no. 2, pp. 656–666, Feb. 2021, doi: 10.1109/TVCG.2020.
3030414.

[82] S.-Q. Xi, Y. Yao, X.-S. Xiao, F. Xu, and J. Lv, ‘‘Bug triaging based on
tossing sequence modeling,’’ J. Comput. Sci. Technol., vol. 34, no. 5,
pp. 942–956, Sep. 2019.

[83] R. Almhana and M. Kessentini, ‘‘Considering dependencies between bug
reports to improve bugs triage,’’ Automated Softw. Eng., vol. 28, no. 1,
pp. 1–26, May 2021.

123936 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-0-387-85820-3_8
http://dx.doi.org/10.1007/S13369-020-05095-0
http://dx.doi.org/10.1109/TVCG.2020.3030414
http://dx.doi.org/10.1109/TVCG.2020.3030414


R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

[84] Y. Huang, N. Jia, H.-J. Zhou, X.-P. Chen, Z.-B. Zheng, and M.-D. Tang,
‘‘Learning human-written commit messages to document code changes,’’
J. Comput. Sci. Technol., vol. 35, no. 6, pp. 1258–1277, Nov. 2020.

[85] C. Yang, Q. Fan, T. Wang, G. Yin, X.-H. Zhang, Y. Yu, and
H.-M. Wang, ‘‘RepoLike: Amulti-feature-based personalized recommen-
dation approach for open-source repositories,’’ Frontiers Inf. Technol.
Electron. Eng., vol. 20, no. 2, pp. 222–237, Feb. 2019.

[86] K. F. F. Jiechieu and N. Tsopze, ‘‘Skills prediction based on
multi-label resume classification using CNN with model predictions
explanation,’’ Neural Comput. Appl., vol. 33, no. 10, pp. 5069–5087,
May 2021.

[87] S. S. Rathore and S. Kumar, ‘‘A study on software fault prediction
techniques,’’ Artif. Intell. Rev., vol. 51, no. 2, pp. 255–327, Feb. 2019.

[88] E. U. Aktas and C. Yilmaz, ‘‘Automated issue assignment: Results and
insights from an industrial case,’’ Empirical Softw. Eng., vol. 25, no. 5,
pp. 3544–3589, Sep. 2020.

[89] K. K. Bejjanki, J. Gyani, and N. Gugulothu, ‘‘Class imbalance reduction
(CIR): A novel approach to software defect prediction in the presence of
class imbalance,’’ Symmetry, vol. 12, no. 3, p. 407, Mar. 2020.

[90] L. Gong, S. Jiang, and L. Jiang, ‘‘Tackling class imbalance problem
in software defect prediction through cluster-based over-sampling with
filtering,’’ IEEE Access, vol. 7, pp. 145725–145737, 2019.

[91] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, ‘‘The impact
of class rebalancing techniques on the performance and interpretation
of defect prediction models,’’ IEEE Trans. Softw. Eng., vol. 46, no. 11,
pp. 1200–1219, Nov. 2020.

[92] Z. Yuan, X. Chen, Z. Cui, and Y. Mu, ‘‘ALTRA: Cross-project software
defect prediction via active learning and TrAdaBoost,’’ IEEE Access,
vol. 8, pp. 30037–30049, 2020.

[93] A. Goyal and N. Sardana, ‘‘NRFixer: Sentiment based model for
predicting the fixability of non-reproducible bugs,’’ E-Informatica Softw.
Eng. J., vol. 11, no. 1, pp. 109–122, 2017.

[94] H. A. Ahmed, N. Z. Bawany, and J. A. Shamsi, ‘‘CaPBug—A framework
for automatic bug categorization and prioritization using NLP and
machine learning algorithms,’’ IEEE Access, vol. 9, pp. 50496–50512,
2021, doi: 10.1109/ACCESS.2021.3069248.

[95] P. Oliveira, R. M. C. Andrade, I. Barreto, T. P. Nogueira, and
L. M. Bueno, ‘‘Issue auto-assignment in software projects with machine
learning techniques,’’ in Proc. IEEE/ACM 8th Int. Workshop Softw. Eng.
Res. Ind. Pract. (SER IP), Madrid, Spain, Jun. 2021, pp. 65–72, doi:
10.1109/SER-IP52554.2021.00018.

[96] M. Panda and A. T. Azar, ‘‘Hybrid multi-objective Grey Wolf search
optimizer and machine learning approach for software bug prediction,’’
inHandbook of Research on Modeling, Analysis, and Control of Complex
Systems. 2020, doi: 10.4018/978-1-7998-5788-4.

[97] Y. Shi, Y. Mao, T. Barnes, M. Chi, and T. W. Price, ‘‘More with less:
Exploring how to use deep learning effectively through semi-supervised
learning for automatic bug detection in student code,’’ Int. Educ. Data
Mining Soc. [Online]. Available: https://par.nsf.gov/biblio/10340894

[98] A. Yadav, ‘‘Bug assignment-utilization of metadata features along with
feature selection and classifiers,’’ in Applications of Artificial Intelligence
and Machine Learning. 2021, doi: 10.1007/978-981-16-3067-5_7.

[99] Z. J. Szamosvölgyi, E. T. Váradi, Z. Tóth, J. Jász, and R. Ferenc, ‘‘Assess-
ing ensemble learning techniques in bug prediction,’’ in Computational
Science and Its Applications—ICCSA 2021 (Lecture Notes in Computer
Science), vol. 12955. Springer, 2021, doi: 10.1007/978-3-030-87007-
2_26.

[100] A. Sawada, E. Kaneko, and K. Sagi, ‘‘Trade-offs in top-k classification
accuracies on losses for deep learning,’’ 2020, arXiv:2007.15359.

[101] V. Nath, D. Sheldon, and J. Alphonso-Gibbs, ‘‘Principal component anal-
ysis and entropy-based selection for the improvement of bug triage,’’ in
Proc. 20th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Pasadena, CA,
USA, Dec. 2021, pp. 541–546, doi: 10.1109/ICMLA52953.2021.00090.

[102] S. F. A. Zaidi, H. Woo, and C.-G. Lee, ‘‘A graph convolution network-
based bug triage system to learn heterogeneous graph representation
of bug reports,’’ IEEE Access, vol. 10, pp. 20677–20689, 2022, doi:
10.1109/ACCESS.2022.3153075.

RAZVAN BOCU received the B.S. degree in
computer science, the B.S. degree in sociology,
and the M.S. degree in computer science from
the Transilvania University of Brasov, Brasov,
Romania, in 2005, 2006, and 2007, respectively,
and the Ph.D. degree from the National University
of Ireland, Cork, in 2010.

He is currently with the Department of Mathe-
matics and Computer Science, Transilvania Uni-
versity of Brasov, where he is also a Research and

Teaching Staff Member. He is with Siemens Industry Software, Romania.
He is the author or coauthor of more than 60 technical articles, together
with six books and book chapters. In this capacity, he supervises research
projects with strategic business value. He is an editorial reviewing board
member of 28 technical journals in the field of information technology
and biotechnology, which includes prestigious journals, such as Journal of
Network and Computer Applications, IEEE TRANSACTIONSONDEPENDABLEAND

SECURE COMPUTING, International Journal of Computers Communications
and Control.

ALEXANDRA BAICOIANU received the Ph.D.
degree from Babeş-Bolyai University, Cluj-
Napoca, in 2016.

She has been a Lecturer with the Transilvania
University of Braşov, Braşov, Romania, since
2017, teaching various courses and seminars,
where she is currently with the Department
of Mathematics and Computer Science. She is
also with Siemens Industry Software, Romania.
She is a Research Engineer of informatics. She

supervised tens of graduation and dissertations thesis, programming training
courses, programming summer schools, and code/tech camps, some of them
in collaboration with IT companies. She is a member of the Department’s
Machine Learning and Quantum Computing Research Group, founded
in 2018. She has published more than 30 scientific articles and is the
coauthor of six books. She was a part of various scientific projects, among
them it is important to mention Advanced Technologies for Intelligent
Urban Electric Vehicles, Powerful Advanced N-level Digital Architecture
(PANDA), Intelligent Motion Control under Industry4.E (IMOCO4E),
Artificial Intelligence and Earth Observation for Romania’s agriculture
(AI4AGRI), Digital Technologies and Artificial Intelligence (AI) Solutions
projects (DiTArtIS), and New Modular Electrical Architecture and Digital
platforM to Optimize Large Battery Systems on SHIPs (NEMOSHIP). Her
research interests and expertise are in the field of machine learning, formal
languages and compilers, algorithms, remote sensing and Earth observation
data, autonomous driving, and electric and hybrid vehicles.

ARPAD KERESTELY is currently with Siemens
Industry Software, Romania. He is also a Research
and Development Engineer. He was a part of vari-
ous scientific projects, among them it is important
to mention Advanced Technologies for Intelli-
gent Urban Electric Vehicles, Powerful Advanced
N-level Digital Architecture (PANDA), Intelligent
Motion Control under Industry4.E (IMOCO4E),
Artificial Intelligence and Earth Observation for
Romania’s Agriculture (AI4AGRI), Digital Tech-

nologies and Artificial Intelligence (AI) Solutions projects (DiTArtIS), and
New Modular Electrical Architecture and Digital platforM to Optimize
Large Battery Systems on SHIPs (NEMOSHIP). His research interests
and expertise are in the field of machine learning, formal languages and
compilers, and algorithms.

VOLUME 11, 2023 123937

http://dx.doi.org/10.1109/ACCESS.2021.3069248
http://dx.doi.org/10.1109/SER-IP52554.2021.00018
http://dx.doi.org/10.4018/978-1-7998-5788-4
http://dx.doi.org/10.1007/978-981-16-3067-5_7
http://dx.doi.org/10.1007/978-3-030-87007-2_26
http://dx.doi.org/10.1007/978-3-030-87007-2_26
http://dx.doi.org/10.1109/ICMLA52953.2021.00090
http://dx.doi.org/10.1109/ACCESS.2022.3153075

