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ABSTRACT Imbalanced datasets have a large negative impact on the classifiers, biasing the classification
results towards the majority class. Since imbalanced data distribution is an inevitable and significant
challenge in the real world, many variants of SMOTE have been proposed. However, current oversampling
methods still need improvement because they rely on hyperparameter optimization, overgeneralize due to
emphasizing specific synthetic regions, randomly synthesize samples or suffer from noise performance
degradation. To overcome the above problems, we propose an adaptive and robust method (OOSI) for
oriented oversampling with spatial information to deal with imbalanced noisy datasets. OOSI is a rare
adaptive and effective oversamplingmethod that can fill the gaps of existingmethods through dataset-specific
spatial partitioning and information quantization, three-stage noise suppression, and spatially-informed
generation path improvement. Firstly, a specific and adaptive clustering space is adaptively derived through
the data space division of the characteristics of datasets. Then, all minority clusters are assigned a reasonable
number of synthetic samples to simultaneously address intra- and inter-class imbalances by integrating
the cluster samples’ intra-cluster sparsity and the multi-class density information. After differentiating and
identifying the noise, oriented weights are assigned based on the multi-class information level to guide the
enhancement of the generation path of the synthetic samples and prevent the generation of extra noisy
and overlapping samples. Extensive experiments demonstrate that the proposed algorithm outperforms
11 prominent oversampling algorithms on 11 real-world datasets with varying noise levels.

INDEX TERMS Imbalanced learning, label noise, oriented oversampling.

I. INTRODUCTION19

Imbalanced noisy learning refers to the problem of training20

models on datasets that exhibit imbalanced class distributions21

and contain noisy or mislabeled samples [1]. In this case,22

there is a significant difference in the number of samples of23

different classes, which will cause the classifier to be biased24

towards the majority class in learning while ignoring the25

characteristics of the minority class, thereby impacting the26

classification performance [2]. Additionally, the presence of27

noisy or mislabeled samples further complicates the learning28

process as they introduce errors and mislead the model29
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during training. The objective of this paper is to propose 30

an adaptive and robust oversampling that adaptively divides 31

and quantizes spatial information to inhibit the intrusion of 32

noise and to guide reasonable sampling path improvement. 33

Data imbalance is common and inevitable in many real- 34

world applications, such as fraud identification [3], medical 35

diagnosis [4], sentiment analysis [5], anomaly detection [6], 36

and other fields. Among them, due to the characteristics 37

of the data itself, certain classes of samples are inevitably 38

challenging to obtain or cost highly. Meanwhile, the minority 39

samples involve important or sensitive information. For 40

example, in rare species recognition or cancer diagnosis, 41

the minority class has a low occurrence rate in real life, 42

but ignoring or misclassifying rare species and cancer will 43
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reduce the generalization ability and robustness of the model,44

resulting in severe practical consequences [7]. Therefore,45

how to effectively deal with data imbalance and improve the46

generalization ability of classifiers is a research topic with47

crucial theoretical significance and practical value inmachine48

learning.49

In-depth research on imbalanced learning has developed50

numerous algorithms, which can be broadly categorised51

as cost-sensitive approaches, algorithm-level approaches,52

and data-level approaches [8]. Cost-sensitive approaches53

assign higher misclassification costs to minority classes to54

emphasize the learning of minority classes [9]. Nevertheless,55

not only do the costs of misclassifying various classes56

depend on specific data, but it is also frequently difficult57

to measure precisely. Algorithm-level approaches improve58

learning in the minority class by enhancing or designing59

new algorithms to deal with imbalanced issues [10]. Data-60

level approaches directly manipulate datasets by resampling61

to equalise class number disparities [11]. As a result of their62

independence from particular scenarios and classifiers, data-63

level approaches have become the most prevalent strategies64

in imbalanced learning.65

Data-level approaches replicate or synthesise minority66

samples (i.e., oversampling), remove majority samples (i.e.,67

undersampling), or combine minority synthesis and majority68

removal (i.e., hybrid sampling) to balance the quantity of69

different classes [12]. Although eliminating samples might70

somewhat reduce the amount of data, undersampling can71

easily result in the loss of crucial information. Furthermore,72

by evaluating the area under the ROC curve (AUC),73

Batista et al. have further shown that undersampling typically74

performs worse than oversampling [13]. Currently, synthetic75

minority oversampling technology (SMOTE) is one of the76

most influential oversampling algorithms, which randomly77

synthesizes minority samples based on their k-nearest78

neighbors [14]. Due to its simplicity and efficiency, it has79

become the established sampling mechanism for subsequent80

oversampling algorithms.81

Meanwhile, some researches have demonstrated that data82

imbalance is not the only factor that hinders learning.83

Class overlap, small separation within classes, and label84

noise can exacerbate the complexity of imbalanced learning,85

resulting in suboptimal performance [15]. In particular, the86

unavoidable noise itself often has a substantial influence87

on the learning process [16]. During model training with88

label noise, models may learn incorrect or misleading89

patterns between features and labels, which can lead to90

decreased accuracy. Additionally, the model could over-adapt91

to the noise in the training data, failing to discern between92

true underlying patterns and noisy labels, as a result of93

which the model does not generalize well beyond the94

training set [17]. Label noise affects the decision boundary95

of the classifiers. Moreover, based on the current ran-96

dom sampling mechanism, it is simple to introduce extra97

noise and overlapping samples, further increasing learning98

difficulty [18]. In recent years, various sampling algorithms 99

have been proposed from different perspectives, such as 100

noise-filtering approaches, region-emphasizing approaches, 101

clustering-based approaches, etc [19]. Nevertheless, they still 102

have the following drawbacks: (1) Most methods easily intro- 103

duce extra hyperparameters. (2) Most methods are ineffective 104

at detecting suspect noise and prone to overgeneralization. 105

(3) Most of the current sampling algorithms are based on 106

the random linear sampling mechanism of SMOTE, which 107

is not only limited by its blindness, but also the noise will 108

exacerbates the performance degradation resulting from its 109

blindness. 110

Given that oversampling plays an important role in Mixup, 111

it improves the learning ability and robustness of traditional 112

models to minority classes. For the absence of minority 113

classes, oversampling compensates the traditional biased 114

models by synthesizing minority samples. Oversampling not 115

only enhances the diversity of the data, it mitigates the 116

bias of the model that tends to predict common classes and 117

avoids overfitting. Given the current challenges of learning 118

difficulty exacerbated by imbalance and label noise, as well 119

as the limitations of current sampling methods that require 120

additional hyperparameter optimization and fail to effectively 121

detect noise, resulting in performance degradation due to 122

blind random sampling. we are committed to exploring an 123

adaptive and robust oversampling method that guides sample 124

synthesis to alleviate blind random sampling and effectively 125

deal with imbalanced noisy learning. 126

To fill gaps, an adaptive and robust method (OOSI) for 127

oriented oversampling with spatial information is proposed 128

to deal with imbalanced noisy datasets. First, a dataset- 129

specific adaptive spatial partitioning strategy is proposed to 130

effectively fit the data distribution characteristics to obtain 131

a dataset-specific adaptive clustering space. Then, by inte- 132

grating the intra-cluster sparsity and multi-class density 133

information, the spatial distribution information is adequately 134

quantified and guides the reasonable sample generalization 135

of the cluster space to alleviate both intra- and inter-class 136

imbalance problems. Finally, to avoid noisy samples from 137

introducing additional and chaotic generalization, sample 138

synthesis paths are guided based on the level of multi-class 139

information among non-noisy seed samples, keeping new 140

samples away from chaotic regions. In conclusion, the 141

proposed OOSI approach is expected to deal with imbalanced 142

noisy datasets benefiting from oriented oversampling with 143

spatial information and the innovative three-stage noise 144

suppression strategy. Oriented oversampling with spatial 145

information guides the rational allocation of the number of 146

samples within the cluster and the improvement of the gen- 147

eration path of the synthesized samples to ensure the quality 148

of the synthesized samples. The innovative three-stage noise 149

suppression strategy consists of optimizing the clustering 150

space and avoiding the chaotic expansion of noisy samples 151

and guiding the improved synthesis. The main advantages 152

of OOSI compared to existing methods are that a) It is 153
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a rare adaptive and robust oversampling method; b) it154

can prevent noise hazards with the innovative three-stage155

noise suppression strategy rather than removing them; c) it156

can create safe synthetic minority samples with spatial157

information to avoid overgeneralization and blindness of158

SMOTE. The following are the main contributions of this159

paper:160

• A spatial partitioning strategy for dataset specificity is161

proposed to adaptivelymine dataset-specific distribution162

information.163

• The proposed OOSI is an adaptive and rare oversam-164

pling method. It not only guides reasonable sample165

generalization and sample synthesis path enhancement166

through spatial information, but also addresses the167

common and unavoidable imbalance and noise hazards168

at the same time.169

• Extensive comparative experiments with 11 mainstream170

sampling algorithms demonstrate the effectiveness and171

superiority of the proposed OOSI on 11 datasets and172

5 classifiers with varying noise levels.173

The rest of the paper is organized as follows: Section II174

briefly reviews relevant literature. Section III presents175

the details and rationale for the proposed oversampling176

method. Section IV reports empirical results of extensively177

contrasting. Section V summarizes our work.178

II. RELATED WORK179

The oversampling technique, the most widely used strategy180

in imbalanced learning, enhances the data class distri-181

bution by generating new minority samples. In addi-182

tion, the linear sampling mechanism built on SMOTE is183

currently the most effective resampling paradigm [20].184

Numerous SMOTE-based variations have been devel-185

oped due to the ubiquity and inevitability of imbalanced186

noisy applications. Representative approaches include noise-187

filtering approaches, region-emphasizing approaches, and188

clustering-based approaches [21].189

Filtering-based approaches rely on various noise-filtering190

strategies to clean data. Based on the invasion of hetero-191

geneous spaces by distinct classes, Batista et al. first pro-192

posed employing data-cleaning approaches for oversampling193

methods to generate balanced datasets with better-defined194

clusters [13]. The SMOTE-Tomek links and SMOTE-ENN195

delete samples of multiple categories based on the Tomek196

links and any sample misclassified by its three nearest197

neighbours, respectively. Moreover, Yang et al. rectified the198

sampling results of ant colony clustering by eliminating199

noisy and overlapping samples with Tomek links cleaning200

technology [22]. Ramentol et al. proposed SMOTE-RSB201

based on rough set theory and approximate editing under202

subsets, which iteratively filters noisy samples from original203

and synthetic data with similarity thresholds [23]. In addition,204

S’aez et al. and Ramentol et al. eliminate noisy samples205

iteratively by iterative partition filters [24] and distinct206

thresholding strategies based on instance selection in rough207

set theory [25], respectively. Proper data cleansing is feasible208

in the presence of noisy or improperly synthesised samples. 209

However, the strategy of iterating or optimizing the threshold 210

is vulnerable to high cost and hyperparameter optimization 211

and limited by practical scenario applications. 212

To maintain the security of fresh samples and prevent the 213

production of noisy samples, region-emphasizing approaches 214

typically synthesise samples in particular regions. By care- 215

fully calculating the ratio of minority samples in the nearest 216

neighbour, safe-level smote emphasises synthesising new 217

samples near bigger safe-level samples, that is, the minority 218

aggregation region [26]. The focus of MWMOTE is on 219

synthesising new samples from informative minority samples 220

near the decision boundary with assigned weights by their 221

majority class distance [27]. Additionally, random space 222

division sampling [28] and constrained oversampling [29] 223

concentrate sampling on the boundary region through the 224

random space division of the complete random forest and the 225

minority class boundary defined by ant colony optimization, 226

respectively. Nevertheless, region-emphasizing approaches 227

are susceptible to over-generalization and might ignore the 228

inherent characteristics of the data. In order to concentrate 229

more on difficult-to-learn samples, He et al. dynamically 230

modify the weights and distribute the number of new samples 231

generated from each minority sample based on the data 232

neighbourhood distribution [30]. Inspired by ADASYN, 233

numerous methods employ similar mechanisms to regulate 234

the number of new artificial instances associated with each 235

minority sample or subset of minority samples [31], [32]. 236

Pan et al. proposed an adaptive sampling method called 237

adaptiveSMOTE. It improves the SMOTE by adaptively 238

selecting the inner and danger areas from the minority 239

class, thereby compiling new minority samples from the 240

selected data, thus preventing the class boundary expansion 241

and enhance the distribution characteristics of the original 242

data [33]. Chen et al. proposed a robust method known 243

as RSMOTE. It identifies non-noisy samples based on 244

the locally salient characteristics of minority samples and 245

reweights the synthetic number of new samples based on their 246

degree of chaos [34]. 247

Clustering-based approaches divide sub-clusters to guar- 248

antee the quality of synthetic samples by following the 249

original distribution information. Bunkhumpornpat et al. 250

proposed a sampling algorithm based on a density clus- 251

tering strategy, DBSMOTE. It synthesizes new samples 252

along the shortest paths between the minority and the 253

pseudo-centroids of arbitrarily shaped clusters found by 254

DBSCAN [35]. Although DBSMOTE has a certain noise 255

resistance due to DBSCAN, dense synthetic samples near 256

the centroid are prone to overfitting. Moreover, Iman et al. 257

proposedA-SUWO, an adaptive semi-unsupervisedweighted 258

oversampling method. It clusters minority instances via 259

semi-unsupervised hierarchical clustering and oversamples, 260

considering the distance from the majority class to avoid 261

generating overlapping samples [36]. Douzas et al. combined 262

k-means clustering and SMOTE, namely kmeans-SMOTE. 263

It detects secure clusters with non-overlapping classes 264
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across the entire data space by a high proportion of265

minority samples to prevent noise generation [37]. As well,266

NI-MWMOTE not only utilizes aggregated hierarchical267

clustering to prevent ignoring small minority sub-clusters but268

also eliminates real noise through iteratively suspected noise269

probabilities and misclassification errors [38]. Nevertheless,270

DBSMOTE, A-SUWO, NI-MWMOTE, k-means SMOTE271

require 3, 4, 6 and 9 parameters, respectively. More-272

over, region-emphasizing approaches and clustering-based273

approaches cannot effectively detect and deal with suspicious274

noises.275

Several efforts focus on improving the current mainstream276

sampling mechanisms. Geometric SMOTE (G-SMOTE)277

synthesized new samples around geometric regions of the278

input space as an enhancement to the current data generation279

mechanism [39]. The SW framework performed weighted280

sampling by calculating the chaos of the sample space281

to handle imbalanced noisy datasets [40]. In conclusion,282

current sampling algorithms continue to have deficiencies283

when coping with imbalanced, noisy data sets. (1) Addi-284

tional hyperparameter optimisation restricts most methods.285

(2) Most methods fail to detect suspicious noise effectively286

and are prone to over-generalization. (3) Most of the current287

sampling algorithms are based on the random linear sampling288

mechanism of SMOTE, which is not only limited by its289

blindness, but also the noise will exacerbates the performance290

degradation resulting from its blindness. Therefore, this291

paper proposes an adaptive and robust method for oriented292

oversampling with spatial information to simultaneously293

address the aforementioned issues.294

III. PROPOSED METHOD295

A. MOTIVATION296

The oversampling algorithms that exist now are basically297

improvements on the SMOTE algorithm. These improve-298

ments overcome some of the shortcomings of the SMOTE299

algorithm though. There are still several drawbacks as300

follows. (1). inability to fit the distribution characteristics301

of the data set. (2). large fluctuations in the sampling302

results since the selection of hyperparameters in the sampling303

performance. (3). blindness of random linear oversampling304

lead. (4). SMOTE and most of its variants are often305

restricted to specific application scenarios or datasets, such306

as high-dimensional datasets, large datasets or datasets with307

a large number of noisy samples. Therefore, an adaptive308

and robust method for oriented oversampling with spatial309

information is proposed. The purpose is to initially fit the data310

distribution characteristics by adaptive spatial partitioning311

of dataset characteristics, and to quantify spatial informa-312

tion to guide reasonable neighborhood generalization and313

sample synthesis path enhancement. The uncontrollability314

associated with random linear interpolation is avoided. Few315

of the sampling algorithms that have been proposed give316

mathematical models. For the sake of algorithmic soundness,317

we give the mathematical model and mathematical proof of318

the algorithm.319

B. THE OOSI METHOD 320

An adaptive and robust method (OOSI) for oriented oversam- 321

pling with spatial information is proposed to fill those gaps. 322

As is depicted in Figure 1, the OOSI is divided into three 323

stages. 324

• Adaptive data space partitioning. 325

• Quantification of spatial information. 326

• Sampling with oriented information. 327

TABLE 1. Notaions and definitions.

1) ADAPTIVE DATA SPACE PARTITIONING 328

The data space is divided adaptively according to the own 329

characteristics of the dataset to fit the data space distribution 330

characteristics initially. The initial spatial partitioning can 331

be achieved by clustering, rather than simply dividing the 332

data space into majority and minority classes. Any clustering 333

method can be used for this step, e.g. k-means, dbscan, 334

spectral clustering. Different distance metrics can also be 335

chosen. Furthermore, the number of clusters of specificity 336

is determined by the own characteristics of the dataset. The 337

number of adaptive clusters k for dataset specificity is defined 338

as following. 339

k = log2

{
(|D−| + |D+|) ∗

D−

D+

}
(1) 340

Therefore, the larger the dataset and the more unevenly 341

distributed the data are, the more spatial partitioning is 342

required to capture more detailed spatial information of 343

the data. Taking kmeans and Euclidean distance as an 344

example,the distance between two samples is d(xi, xj). Then 345

define the sum of the distances between the sample and the 346

center of the cluster as the loss function. The loss function 347

W (C) is defined as following. 348

W (C) =

k∑
l=1

∑
Ci=l

||xi − x̄j||2 (2) 349

where x̄l = (x̄1l, x̄2l, · · · , x̄ml)T is the mean or center of the 350

i-th class, nl =
∑n

i=1 I (C(i) = l). I (C(i) = l) is an indicator 351
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FIGURE 1. Three stages of oriented oversampling with spatial information.

function. The value of I is 1 or 0. Kmeans is to solve the352

following optimization model.353

C∗
= argmin

C
W (C)354

= argmin
C

k∑
l=1

∑
C(i)=l

∥xi − x̄l∥2 (3)355

When similar samples are clustered into the same cluster,356

the loss function gets the optimal solution. This is a357

combinatorial optimization problem. n samples are clustered358

into k clusters, and there are S(n, k) clustering results.359

S(n, k) =
1
k!

k∑
l=1

(−1)k−l
(
k
l

)
kn (4)360

In imbalanced data sets, the optimization model for361

clustering has some additional constraints. There are no362

overlapping regions for each cluster. In order to reduce the363

interference of outlier samples to clustering, the number364

of samples in each cluster is bigger than k . The final365

mathematical model is shown in Eq. (5).366

min
C1,C2··· ,Ck

k∑
i=1

∑
x∈Ci

∥x − ci∥2 ,367

s.t. C1 ∪ C2 ∪ · · · ∪ Ck = {x1, x2, · · · , xn} ,368

Ci ∩ Cj = ∅, ∀i ̸= j,369

|C| > k. (5)370

2) QUANTIFICATION OF SPATIAL INFORMATION371

To better quantify spatial information, after obtaining an372

adaptive and dataset-specific clustering space, a simple and373

effective optimization of the clustering space is necessary.374

If the imbalanced distribution of clusters (IRC ) has been375

mitigated or the number of minority class samples within376

clusters (Dc−) is insufficient to synthesize new samples, 377

it will not be necessary or appropriate to synthesize new 378

samples within these clusters. Therefore, the clustering space 379

will be filtered to obtain seed clusters. 380

0 = {C|IRC > 0.5 ∗ IR and |Dc−| ≥ knn|} (6) 381

The seed clusters will serve as the optimized clustering 382

space and will synthesize new samples in the seed clusters. 383

Therefore, the filtering conditions for seed clusters are two 384

as follows. 385

Definition 1 (Condition P): The proportion of minority 386

samples in a cluster should be greater than half of the 387

imbalanced proportion(IR) of the original dataset. The 388

imbalance ratio of a cluster is denoted by IRC . 389

IRC > 0.5 ∗ IR (7) 390

Definition 2 (Condition Q): The number of minority 391

samples (Dc−) in a cluster must be bigger than the number of 392

k nearest neighbor(knn) samples. In the stage of synthesizing 393

samples, it needs to be used to interpolate between the seed 394

sample and the neighbor samples. If there are too few samples 395

in the cluster, overlapping samples will be synthesized, 396

resulting in overfitting. 397

|Dc−| ≥ knn (8) 398

Eligible clusters are called seed clusters. In order to 399

effectively quantify and utilize spatial information, two 400

quantitative techniques are proposed within the optimized 401

clustering space. Specifically, to avoid overgeneralization 402

of region-emphasizing sample synthesis and intra-class 403

imbalance, the two quantitative techniques measure the 404

distributional characteristics of clusters in terms of spatial 405

sparsity and multi-class distributional information, respec- 406

tively. Then the number of sample synthesis within clusters 407

are reasonably allocated. These two techniques are sparsity 408
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and multi-class density information of the cluster. The409

corresponding definitions and calculation method has been410

given in the Def. (3) and Def. (4).411

Definition 3 (Sparsity, ζ ): Given a cluster C with center412

xc and the minority setDc− with n− samples and the majority413

set Dc+ with n+ samples. d(xi, xj) is the distance of any two414

samples xi and xj. The radius r of cluster C is the average415

of the deviations of all minority samples’ distances to the416

cluster center. The sparsity of a cluster (ζ ) is the reciprocal of417

the number of minority samples per unit area in the cluster,418

as defined below.419

r =

∑
d(xc, xi)
n−

, xi ∈ Dc− (9)420

ζ =
π ∗ r2

n−

(10)421

Specifically, the space within a cluster is quantified as422

the simulated area based on the mean of the intra-cluster423

distance deviation, i.e., the radius. After that, the number of424

minority classes in a given space, i.e., the minority density,425

is quantized. Thus, intra-cluster sparsity based on spatial426

sparsity quantifies the sparsity of minority classes per unit427

of cluster space. The more minority classes per unit cluster428

space, the smaller the value of intra-cluster sparsity (ζ ).429

The fewer the minority samples in the unit cluster space,430

the larger the value of intra-cluster sparsity (ζ ). Therefore,431

intra-cluster sparsity (ζ ) considers the difference in the432

spatial sparsity sparsity of clusters and requires allocating433

a reasonable number of samples for generalization. The434

sparser the samples within a cluster, the more samples can be435

allocated to generalize the space, and the denser the samples436

within a cluster, the fewer samples can be allocated to avoid437

overgeneralization or generation of overlapping samples with438

low values.439

Definition 4 (Multi-Class Density Information, ρ): Given440

a cluster C with center xc and the minority class c− and the441

majority class c+. The absolute density information within442

a cluster, i.e., σ (c.), indicates how densely the samples of443

a certain class are distributed within the cluster. The larger444

the absolute density information within a cluster, the more445

dense the distribution of such samples are. The multi-class446

density information, i.e., ρ, fully integrates the intra-class447

and inter-class distribution information within a cluster, as448

follows.449

σ (c.) =
n−∑
d(xc, xi)

, xi ∈ Dc. (11)450

ρ =
σ (c−)
σ (c+)

=
n−/

∑
d(xc, xi)(xi ∈ Dc−)

n+/
∑
d(xc, xi)(xi ∈ Dc+)

(12)451

Specifically, according to Eq. 11, the absolute density452

information is the number of class per unit distance from453

the cluster center xc to the given class. Thus for any given454

cluster, the farther the cluster center xc is from the unit455

distance to the given class, the sparser the distribution of456

the given class within the cluster; conversely, the denser457

it is. Then, information about the spatial distribution of458

a given class within the cluster is quantized. In addition, 459

based on the ratio of the cluster center xc to the multiple 460

classes of homogeneous and heterogeneous samples, the 461

difference distribution information within the cluster space 462

for multiple classes is quantified. The multi-class density 463

information of the cluster ρ is a composite measure of 464

the multi-class distribution information within the cluster 465

to synthesize more samples in clusters far from the dense 466

distribution of heterogeneous classes. By definition 4, 467

the larger the value of σ (c−)/σ (c+), the relatively denser the 468

distribution of minority classes and the relatively sparser the 469

distribution of majority classes within the cluster. Therefore, 470

the larger the multi-class density information within a cluster 471

(ρ) indicates, the closer it is to the densely distributed 472

minority class and away from the densely distributedmajority 473

class. 474

3) SAMPLING WITH ORIENTED INFORMATION 475

During the sampling process, on the one hand, most current 476

sampling algorithms emphasize synthesizing more samples 477

in specific regions or synthesizing the same samples in 478

distinct regions. It not only tends to lead to overgeneralization 479

in specific regions, but also suffers from sample general- 480

ization blindness. Few sampling algorithms consider spatial 481

information to guide the oriented allocation of the number 482

of synthesized samples for different clusters. Therefore, after 483

obtaining the simple optimized clustering space and the 484

quantitative measures of cluster distribution characteristics, 485

the sampling number within minority clusters is assigned 486

reasonably to avoid overgeneralization of specific regions 487

and to alleviate both intra- and inter-class imbalances. The 488

number of synthesis per cluster with oriented information2C 489

is defined as follows. 490

Definition 5 (Synthesized Number, 2C ): Given a dataset 491

D = D+ ∪ D−, in which the majority and minority samples 492

are D+ and D−, respectively. Ci represents one of the seed 493

clusters (i = 1, . . . |0|). The normalization of the sparsity 494

and multi-class density information of Ci are norm(ζ (Ci)), 495

norm(ρ(Ci)). The specific calculation formula for the number 496

of new samples of Ci (2Ci ) is as following: 497

G(D) = |D+| − |D−| (13) 498

2Ci = G(D) ∗
norm(ζ (Ci)) ∗ norm(ρ(Ci))∑|0|

1 norm(ζ (Ci)) ∗ norm(ρ(Ci))
(14) 499

During the sampling process, on the other hand, most 500

current sampling algorithms either fail to detect and handle 501

noise efficiently or rely on noise filtering mechanisms that 502

require iteration and optimization. Not only do they suffer 503

from noise-induced performance deterioration, but most of 504

the current sampling algorithms are blind based on the smote 505

random sampling mechanism. Blind generalization of seed 506

samples and selection of nearest neighbors can extend the 507

performance deterioration caused by noise generalization. 508

Furthermore, the blind synthesis position between samples 509

tends to introduce more chaotic samples. Thus, OOSI not 510
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only detects suspicious noise and prevents noise expansion511

by avoiding the selection of noisy samples as seed samples512

through neighborhood space information. The neighbor space513

of a suspicious noise sample tends to be distributed with514

more heterogeneous samples. It indicates that its neighbor515

space has been invaded by majority classes, then it is prone516

to synthesize new confusion samples or noise samples. Thus517

according to Eq. 15, the set of non-noise seed samples is518

obtained. Also, the oriented weights are assigned based on519

the multi-class information level of the seed samples to guide520

the generation path improvement of synthetic samples and521

avoid generating additional chaotic samples. Thus, the seed522

samples (η) and the synthetic new samples (snew) are defined523

as follows.524

Definition 6 (Seed Samples, η): Given a cluster Ci, each525

sample s ∈ Ci has minority neighbors Dk− and majority526

neighbors Dk+. The seed samples η of cluster Ci and their527

oriented weights ω(s) are defined exactly as following.528

η = {s||Dk−| > |Dk+||} (15)529

ω(s) =
σ (k−)
σ (k+)

=
|Dk−|/

∑
d(s, sj)(sj ∈ Dk−)

|Dk+|/
∑
d(s, sj)(sj ∈ Dk+)

(16)530

Definition 7 (New Samples, snew): Given any two seed531

samples ss and cs, where ω(ss) > ω(cs), the reasonable532

synthesis of a new sample snew with oriented weights is as533

follows. ξ is the random number between [0, 1] to maintain534

the randomness.535

snew = ss+ (cs− ss) ∗
min(ω(ss), ω(cs))

ω(ss) + ω(cs)
∗ ξ (17)536

Specifically, according to Eq. 16, Specifically, the537

multi-class information level of the non-noise seed samples538

are based on their k-neighborhoods, which portray their539

local characteristics. According to Eq. 16, the multi-class540

information level of a non-noise seed sample is determined541

by calculating the ratio of the distances of the number of542

classes per unit distance between the k homogeneous and543

heterogeneous neighbors. The multi-class information level544

of the non-noise seed samples integrates the multi-class545

distribution information of the samples and fully reflects546

the information of homogeneous and heterogeneous samples547

within the neighborhoods in order to efficiently differentiate548

and guide diverse sampling. Therefore, the larger the value of549

ω(s), the closer the seed sample is to homogeneous samples,550

the further it is from heterogeneous samples, and the safer it551

is.552

According to the multi-class information level of the seed553

samples, it is reasonable toguide the synthetic synthesis554

path improvement, which makes the new samples close to555

the safe region and away from the chaotic region. As in556

Figure 2 (a), ss is for any seed sample, and neighbors nn =557

[n1, n2, n3](k = 3) is its near neighbor sample. According558

to the information of the distribution of homogeneous and559

heterogeneous samples in the neighborhood, it is easy to560

see the discrepancy that exists in different seed samples.561

According to Eq. 16, the multi-class information level562

between samples can be calculated i.e. ω(n1) < ω(n2) < 563

ω(ss) < ω(n3). When synthesizing new samples, if based on 564

ss and n1, sinceω(n1) < ω(ss), the safer sample at this time is 565

ss, the position of the synthesized sample is closer to the ss, 566

as shown in Figure 2 (b). if based on ss and n3, sinceω(ss) < 567

ω(n3), the safer sample at this time is n3, the position of 568

the synthesized sample is closer to the n3. Therefore, the 569

multi-class information level of the non-noise seed samples 570

effectively guides the improvement of the synthetic sample 571

generation path, ensures the synthetic quality of the new 572

samples, and avoids the confusion introduced by blind 573

generalization. 574

Algorithm 1 The OOSI Algorithm.
Input: Imbalanced dataset D=D+∪D−, |D−|: the minority samples, |D+|:

the majority samples, n= |D−| + |D+|

Output: Balanced dataset D′.
//FIRST : Adaptive data space partitioning.

1: Computing dataset specificity’s adaptive clusters k according to Eq. 1.
2: Division space with the clustering strategy, D → S(n, k).
3: clustering(k)

//SECOND: Quantification of spatial information.
4: Initialize 0 = ∅
5: for Ci in S(n, k) do
6: if IRC > 0.5 ∗ IR and |Dc−| ≥ knn then
7: 0 = 0 ∪ Ci
8: Calculate sparsity ζ according to Def. (3).
9: Calculate multi-class density information ρ according to Def. (4).
10: end if
11: end for

//Third Sampling with oriented information.
12: Initialize Dnew = ∅
13: for Ci in 0 do
14: Calculate 2Ci by Eq. (14)
15: for s in Ci do
16: if s is η judge by Eq. (15) then
17: Select nearest neighbor sample of sj;
18: Synthesize a new sample snew between s and neighbours;
19: Dnew = Dnew ∪ snew;
20: end if
21:
22: end for
23: end for
24: D′

= D+∪D−∪Dnew
25: Return Balanced dataset D′.

C. TIME COMPLEXITY ANALYSIS 575

The time complexity of the proposed method is deter- 576

mined by three main parts: adaptive data space partition- 577

ing,quantification of spatial information and sampling with 578

oriented information. Given a datasetD containingN samples 579

and n minority samples. For adaptively partitioning data 580

space with specificity k , The time complexity of the kmeans 581

clustering is O(k ∗ t ∗ N ), where t is the constant number 582

of iterations. For quantifying spatial information, the time 583

complexity of computing the cluster sparsity and multi-class 584

density information are less than O(k ∗ n). For sampling with 585

oriented information, The time complexity of distributing the 586

number of synthetic samples within a cluster and synthesizing 587

new samples is no greater thanO(k) andO(n∗n), respectively. 588

Therefore, the overall time complexity of the proposed 589

method is O(k ∗ t ∗ N + n2). 590
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FIGURE 2. Schematic diagram of the synthesized new samples. (a) Original data distribution, (b) Location of sample
synthesis.

IV. EXPERIMENTS591

A. EXPERIMENTAL DATASETS592

In order to evaluate the effectiveness of the proposed method,593

11 real-world application datasets are obtained from the594

UCI and KEEL dataset repositories [41]. Moreover, the595

one versus others data processing strategy is employed to596

restructure the imbalanced multi-class datasets into binary597

classes. The specific information of all datasets is shown in598

Table 2. Among them, Minority, Majority, Features, and IR599

denote the number of minority class samples, the number600

of majority class samples, the number of attributes, and601

the imbalance ratio. The imbalance ratio equals Majority602

divided by Minority. In order to effectively evaluate the603

performance and stability of the method, hierarchical ten-fold604

cross-validation is used for data division to maintain the605

consistency of the distribution characteristics and imbalance606

ratio of each class. Furthermore, to validate the robustness607

of the proposed method, the dataset is manually added with608

varying levels of flip noise. Specifically, the same number609

of samples (n ∗ nl) from minority and majority classes610

are randomly flipped into heterogeneous classes, where n611

is the number of minority class and nl is the noise level612

(0% ≤ nl ≤ 20%).613

B. EVALUATION METRICS614

Frequently, the proportion of positive (minority) and negative615

(majority) samples is disproportionate in practical applica-616

tions. Currently, traditional classification evaluation metrics617

such as accuracy rate and error rate may be misleading and618

cannot effectively reflect the model’s true performance. Since619

these metrics are more biased toward the predictions of the620

majority classes, they are insensitive to the prediction errors621

of the minority classes [42]. Therefore, specific evaluation622

metrics for imbalanced datasets, such as F-measure, G-mean,623

and AUC, are required [43].624

The F-measure is the harmonic mean of precision and625

recall, which can reflect the model’s predictive ability for626

TABLE 2. The specific information of all datasets.

the minority class. The precision refers to the proportion of 627

truly positive samples in the predicted positive examples, and 628

the recall refers to the proportion of truly positive samples 629

predicted to be positive. The higher the F-measure value, the 630

better the model can correctly classify the positive samples. 631

The calculation of F-measure is as formula (18). 632

F−measure =
2 ∗ Recall ∗ Precision
Recall + Precision

, (18) 633

The G-mean is the geometric mean of sensitivity (recall) 634

and specificity, reflecting the model’s predictive performance 635

for positive and negative samples. Specificity refers to the 636

proportion of truly negative samples predicted to be negative. 637

The calculation method of the G-mean considers the true 638

class rate and the true negative class rate. Therefore, the 639

higher the G-mean, the more balanced the model’s ability 640

to identify positive and negative samples. The calculation of 641

G-mean is as formula (19). 642

G−mean =
√
Sensitivity ∗ Specificity. (19) 643

The AUC is the area under the ROC curve, which can 644

reflect the ability of the model to distinguish positive and 645

negative examples under different thresholds. Among them, 646
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FIGURE 3. The average results of five classifiers on 11 real-world datasets for method comparison with varying noise levels (0% ≤ nl ≤ 20%).

the ROC curve is a curve with the false positive rate647

as the horizontal axis and the true positive rate as the648

vertical axis. The larger the AUC value, the better the649

classification performance of the model for different classes.650

The calculation of AUC is as formula (20).651

AUC =
Sensitivity + Specificity

2
. (20)652

C. COMPARATIVE OVERSAMPLING METHODS653

To demonstrate the superiority of the proposed method,654

11 related oversampling methods with distinct strategies655

are compared, and sample synthesis is conducted on656

twelve real-world application datasets. SMOTE-TomekLinks657

(S.-TkL) [13], SMOTE-IPF (S.-IPF) [24], and SMOTE-658

FRST-2T (S.-FRST) [25] are noise-filtering techniques.659

ADASYN [30], MWMOTE [27], and Adaptive-SMOTE660

(AdaptS.) [33] are region-emphasizing approaches.661

DBSMOTE [35], kmeans-SMOTE (means-S.) [37], and662

RSMOTE [34] are competitive clustering-based methods.663

Geometric SMOTE (G-SMOTE) [39] and SMOTE-SW664

(S.-SW) [40] are enhanced sampling mechanisms. The core665

idea of their algorithm has been presented in Section II.666

All sampling methods are provided with concrete imple-667

mentations by the SMOTE-variant library [44] or respective668

authors. To verify the general validity and stability of the669

proposed method, five mainstream classifiers were used to670

evaluate the classification performance, including logistic671

regression (LR), support vector machine (SVM), adaptive672

boosting (AdaBoost), Gradient Boosted Decision Trees673

(GBDT), and Backpropagation Neural Networks (BPNN).674

D. COMPARATIVE EXPERIMENTS ON REAL DATASETS 675

To verify the superiority of the proposedmethod when coping 676

with imbalanced and noisy datasets, 11 sampling methods 677

with distinct strategies are compared on five classifiers 678

and 11 real-world datasets. These datasets involve different 679

samples, features, and imbalance ratios to comprehensively 680

evaluate the performance of different methods under various 681

data distributions. Furthermore, to demonstrate the robust- 682

ness of the proposed method, different levels of flip noise are 683

randomly introduced into each experimental datasets (nl ∈ 684

{0%, 5%, 10%, 15%, 20%}). 685

The average results of method comparisons averaged over 686

5 classifiers and 11 datasets are shown in Figure 3. Each 687

subplot in Figure 3 depicts the variation trend of the ten 688

methods with increasing noise level for a particular metric. 689

The solid red line with a five-pointed star represent the 690

proposed method OOSI. Each color represents a comparative 691

algorithm for a group of strategies. 692

In general, the solid red line with a five-pointed star 693

is always above other lines for all metrics, noise levels, 694

and methods. It demonstrates that OOSI consistently out- 695

performs its competitors, regardless of the metrics and 696

noise levels. It is common knowledge that the presence 697

of noise impairs decision-making, leading to performance 698

degradation. When noise is present, i.e., at 5% noise 699

level, the performance of other lines (comparison method) 700

decreases significantly, particularly for ADASYN. However, 701

there is a slight decrease in OOSI performance and a 702

larger performance improvement in OOSI compared to 703

Noiseless. Notably, as the level of noise increases, OOSI 704

achieves greater enhancement thanmost contrastingmethods, 705

particularly filtering-based methods, and region-emphasizing 706
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TABLE 3. Mean and variance of 12 oversampling methods under 5 classifiers on each real-world dataset (nl = 0%).

TABLE 4. Mean and variance of 12 oversampling methods under 5 classifiers on each real-world dataset (nl = 10%).

methods. One explanation for this could be that OOSI fully707

mines the data space information and adaptively obtains708

a specific clustering space with the characteristics of the 709

dataset. Additionally, reasonable sample generalization is 710
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TABLE 5. Mean and variance of 12 oversampling methods under 5 classifiers on each real-world dataset (nl = 20%).

performed by merging the intra-cluster sparsity and multi-711

class density information of the samples. For clustering-712

based methods, particularly means-S. and RSMOTE, even713

though they combine clustering with synthetic sample714

size assignment. However, OOSI utilizes oriented weights715

containing multi-class information levels of samples to716

effectively guide the improvement of the sample synthesis717

path, generating new samples close to information-rich areas718

and preventing the development of extra noise samples and719

overlapping samples. These extensive results demonstrate the720

overall advantage of OOSI in handling imbalanced and noisy721

data.722

Tables 3-5 present, due to limited space, the mean723

and standard deviation of each real dataset for the ten724

methods under five classifiers and three metrics. In each725

row of Tables 3-5, the method that outperform OOSI726

are highlighted in bold. The rows labeled ‘‘Average’’727

contain the results for all datasets as a whole. The rows728

labeled ‘‘Win-Lose’’ represent the cumulative results of the729

method outperforming or underperforming OOSI across all730

datasets.731

Overall, it can be seen from Tables 3-5 that for all732

noise levels, metrics, and datasets, the ‘‘Win-Lose’’ of the733

comparison methods is almost ‘‘0-11’’. It demonstrates734

that for all noise levels, metrics, and comparison methods,735

OOSI outperforms the comparison method on 11 datasets736

in most cases. Additionally, the bolded portion, which is737

slightly better than OOSI’s comparison method, is almost738

TABLE 6. The results of p-value for the friedman test.

concentrated in relatively small datasets, which shows that 739

the OOSI performs better with larger datasets. The possible 740

reason is that larger datasets contain more information, and 741

the OOSI fully excavates and utilizes the data information 742

to guide reasonable sampling. Even in the absence of 743

noise, the OOSI method improves F-measure, AUC, and 744

G-mean by 2.6%, 2%, and 3.2%, respectively. When there 745

is noise, that is, the noise level is 10%, the OOSI method 746

improves F-measure, AUC, and G-mean by 11.5%, 8.4%, and 747

11.7%, respectively. Particularly in comparison to ADASYN, 748

the greatest improvement has been made. When there is 749

no noise, the F-measure, AUC, and G-mean increase by 750

5.3%, 3.9%, and 5.6%, respectively, whereas they increase 751

by 21.6%, 16.7%, and 19.2% when the noise level is 752

20%. It emonstrates that the OOSI method outperforms the 753

comparison algorithms of 11 different strategies and achieves 754

better performance improvements on the noisy imbalanced 755

dataset. 756
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FIGURE 4. The average rank sums of comparing algorithms on five classifiers and 11 datasets.
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TABLE 7. Average running time of comparative oversampling algorithms (Sec).

E. NONPARAMETRIC STATISTICAL ANALYSIS757

To verify whether the performance of different algorithms758

has a statistically significant difference, the non-parametric759

friedman test is used to analyze the experimental results of760

12 methods on five classifiers and 11 datasets. The Friedman761

test contributes significantly to experimental analysis. It can762

be used to compare whether or not three or more related763

samples differ substantially without making any assumptions764

about the samples’ distributions [45]. The fundamental765

concept of the Friedman test is to arrange each algorithm’s766

experimental data on distinct datasets in ascending order767

and designate ranks. The ranks with the greatest and worst768

performance are 1 and 12, respectively, at this time. Then,769

statistics and p-values are calculated based on the rank sums770

determined for each algorithm. If the statistic exceeds the771

critical value or the p-value is less than the significance772

level (typically 0.05), the null hypothesis is rejected and the773

performance of distinct algorithms is deemed significantly774

different.775

Figure 4 depicts the average rank sums of the contrasted776

algorithms on five classifiers and 11 datasets. The red and777

blue columns, respectively, represent OOSI and comparison778

algorithms. The crimson bars are consistently larger than the779

blue bars for all noise levels and metrics. It demonstrates that780

the OOSI algorithm’s average rank sum is superior to the781

comparison algorithm’s. Additionally, Table 6 displays the782

p-value results of the Friedman test on five classifiers and783

eleven data sets. The * indicators reject the null hypothesis at784

a significance level of 0.05. For all noise levels and metrics,785

the calculated p-values are less than 0.05, indicating that the786

performance of the various algorithms differs significantly.787

Likewise, the smaller the p-value, the more significant the788

difference. It can be observed from the table that as the noise789

level increases, the p-value continues to decrease, indicating790

that the performance difference between the algorithms is791

also intensified.792

F. VALIDATING AVERAGE RUNNING TIME793

The average running time of ten executions of the compared794

oversampling algorithms is shown in Table 7. Each dataset’s795

least time-consuming algorithm is highlighted in bold. In the796

column designated ‘‘Mean rank’’, the friedman test’s mean 797

rank sum is analyzed. The method with the lowest rank 798

is the fastest, and the algorithm with the lowest average 799

rank sum is highlighted in red bold. From Table 7, it can 800

be seen that OOSI achieves four of the quickest running 801

efficiencies across 11 datasets, as well as the most victories. 802

Although the OOSI algorithm is not the least time-consuming 803

on every data set, in most cases, the difference between it 804

and the least time-consuming algorithm is tiny, and it is 805

almost always ranked highly in terms of time-consumption 806

relative to other comparable algorithms. Consequently, 807

by integrating all eleven data sets, the OOSI algorithm 808

achieves the lowest average time-consuming ranking. As a 809

whole, the OOSI algorithm’s average running time is 810

competitive. 811

V. CONCLUSION 812

To cope with both imbalance and noise problems, an adaptive 813

and robust oriented oversampling method with spatial 814

information (OOSI) is proposed. It is an adaptive and 815

rare sampling method that can guide rational sample 816

generalization and sample synthesis path boosting with 817

spatial information. First, the dataset-specific clustering 818

space is adaptively partitioned to mine the data distribution 819

information. After that, OOSI integrates intra-cluster sparsity 820

and multi-class density information to quantify spatial infor- 821

mation to guide reasonable sample generalization in different 822

clusters, which not only prevents over-generalization in 823

specific regions but also effectively alleviates intra-class 824

inter-class imbalance. Finally, to avoid noisy samples from 825

introducing deteriorating generalization, sample synthesis 826

paths are guided according to the level of multi-class 827

information among non-noisy seed samples, avoiding the 828

uncontrollability associated with random linear interpolation. 829

The main advantages of OOSI compared to existing methods 830

are that a) It is a rare adaptive and robust oversampling 831

method; b) it can prevent noise hazards with the innovative 832

three-stage noise suppression strategy rather than removing 833

them; c) it can create safe synthetic minority samples with 834

spatial information to avoid overgeneralization and sampling 835

blindness of SMOTE. 836
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Extensive comparative experiments were performed with837

11 sampling algorithms with different strategies. Experi-838

ments demonstrated that (a) OOSI outperforms comparative839

sampling algorithms in 5 baseline classifiers on extensive840

real-world datasets with varying noise levels; (b) OOSI841

with the lowest average rank is statistically superior to the842

comparison algorithms; (c) the average running time of OOSI843

is competitive due to its lowest average time-consuming844

ranking.845

In the future, these results encourage the development846

of OOSI as a useful tool for improving the sampling847

mechanism to rebalance the dataset by generating high848

quality artificial data. In addition, OOSI may not have849

optimal runtime on certain complex datasets. To overcome850

this limitation, efficient clustering improvement strategies851

will be further explored. Furthermore, while oversampling852

equalizes class imbalances and improves the learning ability853

of unrepresented classes and reduces overfitting. However,854

the potential drawbacks that have received little attention i.e.,855

local ambiguity and unnaturalness may introduce ambiguous856

and deviating samples from the data distribution. Although857

the proposed OOSI not only prevents the intrusion of858

noisy or unsuitable samples through a three-stage noise859

suppression strategy, but also guides rational and data-860

distribution-compliant sampling through the quantization of861

spatial information. While this mitigates local ambiguity862

and unnaturalness to some extent, further attention and863

exploration of more solutions are critical.864
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