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ABSTRACT Brain-computer interfaces (BCIs) have undergone significant advancements in recent years.
The integration of deep learning techniques, specifically transformers, has shown promising development
in research and application domains. Transformers, which were originally designed for natural language
processing, have now made notable inroads into BCIs, offering a unique self-attention mechanism that
adeptly handles the temporal dynamics of brain signals. This comprehensive survey delves into the
application of transformers in BCIs, providing readers with a lucid understanding of their foundational
principles, inherent advantages, potential challenges, and diverse applications. In addition to discussing the
benefits of transformers, we also address their limitations, such as computational overhead, interpretability
concerns, and the data-intensive nature of these models, providing a well-rounded analysis. Furthermore,
the paper sheds light on the myriad of BCI applications that have benefited from the incorporation of
transformers. These applications span from motor imagery decoding, emotion recognition, and sleep stage
analysis to novel ventures such as speech reconstruction. This review serves as a holistic guide for researchers
and practitioners, offering a panoramic view of the transformative potential of transformers in the BCI
landscape. With the inclusion of examples and references, readers will gain a deeper understanding of the
topic and its significance in the field.

INDEX TERMS Deep learning, brain–computer interfaces, review, transformer architecture, EEG, emotion
recognition, seizure detection, self-attention mechanism, neural networks, motor imagery, sleep stage
analysis, transformer models, CNN, BCI.

I. INTRODUCTION
Brain-computer interfaces (BCI) enable communication
between the human brain and external devices without the
intervention of peripheral nerves and muscles. They provide
a direct channel to translate mental processes into tangible
actions, fundamentally reshaping how humans interact with
technology. The concept of a BCI dates back to the early
1970s [1], [2], but it wasn’t until the advent of sophisticated
signal processing techniques and computational power in the
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late 20th century that significant progress was made [3],
[4], [5], [6], [7], [8], [9], [10]. Early BCIs were primarily
experimental, used in controlled laboratory settings, and
often involved invasive procedures where electrodes were
implanted directly into the brain [11], [12].

BCIs are generally categorized into three types, each
differing in the degree to which they interface with the
brain. Invasive BCIs necessitate the surgical implantation
of electrodes directly into the brain [13], [14]. Although
this type provides high-resolution neural signals, due to the
inherent risks of surgery and the potential formation of
scar tissue, it is seldom used in non-medical applications.
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Most non-invasive BCIs rely on Electroencephalography
(EEG) to obtain real-time data on neural activity by
placing electrodes on the scalp [15]. This technique enables
immediate interfacing between the brain and external devices,
which is invaluable in BCI applications. However, the spatial
resolution is generally lower due to its non-invasive nature,
as the signals have to pass through the skull and scalp. On the
other hand, partially invasive BCIs are based on implanted
electrodes within the skull, while the remaining electrodes are
outside the brain [16]. These BCIs balance signal quality and
medical risk, serving as a compromise between the invasive
and non-invasive types. Nevertheless, these devices require
neural surgery, worth considering the potential benefits they
offer. There are also other types of BCIs that use different
techniques, such as magnetoencephalography (MEG) [17],
functional magnetic resonance imaging (fMRI) [18], and
functional near-infrared spectroscopy (fNIRS) [19]. These
methods allow for more precise measurements of brain
activity, but they are often more expensive and less accessible
than EEG-based BCIs.

BCIs find applicability in diverse domains such as medical
rehabilitation [20], [21], entertainment [22], [23], and com-
munication for those with motor or speech constraints [24].
For patients with paralysis or limb amputation, BCIs can
help in controlling prosthetic limbs and wheelchairs or even
restore speech [25], [26]. Gamers can use BCIs for a more
immersive experience, where mental states or focus can
control game elements. Moreover, BCIs are particularly
useful for individuals with severe motor or verbal limitations,
such as those with advanced ALS [27]. Nevertheless, BCI
technology comes with challenges, including poor signal-to-
noise ratio, user training, and hardware limitations. Accu-
rately decoding brain signals can be difficult due to noise, and
huge variability in data, especially in non-invasive BCIs [28],
[29], [30]. Many BCIs require users to undergo training
to use the system effectively [31]. Miniaturization and
improvement in electrode technology are ongoing challenges
[32], [33], [34].

A. EMERGENCE AND RELEVANCE OF DEEP LEARNING IN
BCIS
BCIs have evolved significantly with the integration of
advanced computational techniques. A prominent factor
in this evolution is deep learning—a machine learning
paradigm that utilizes multi-layered artificial neural networks
to analyze data [35], [36]. Given its ability to handle
extensive data sets and decode complex patterns, deep
learning has become increasingly relevant to BCI applica-
tions [8], [37], [38], [39]. Deep learning, inherently inspired
by the human brain’s structure, leverages interconnected
nodes in multiple layers to automatically learn and extract
features from raw data. This capability becomes especially
advantageous in the context of BCIs. Traditionally, BCIs
relied on manual feature extraction and classical machine
learning methods, which often required domain-specific

expertise and were constrained by the limited capacity
to process high-dimensional data [6], [15]. However, with
deep learning, automated feature extraction from raw neural
data became feasible, minimizing the need for manual
intervention and domain-specific preprocessing [40], [41],
showcasing enhanced performance in tasks such as motor
imagery classification [42], [43]. Beyond enhancing accuracy
in standard tasks, deep learning has expanded BCIs’ scope.
BCIs that utilize deep learning algorithms have improved the
reaction time and accuracy of prosthetics and exoskeletons,
particularly for individuals with mobility challenges [44].
Additionally, these systems can offer invaluable insights into
a person’s cognitive state during therapeutic scenarios [45].
The application of deep learning has also made BCIs more
versatile and user-friendly, broadening their applicability to
fields such as gaming and mindfulness practices [46], [47].
Nevertheless, deep learning models require significant

amounts of data, which is problematic as brain data is often
limited. The ‘‘black-box’’ nature of these models can also
impede interpretation, raising concerns about the use of brain
data in decision-making [48]. Additionally, deep learning
models may overfit due to the high dimensionality of BCI
data and the potential scarcity of samples.

B. INTRODUCTION TO TRANSFORMER MODELS
The transformer architecture, introduced in the groundbreak-
ing paper ‘‘Attention Is All You Need’’ by Vaswani et al.
in 2017 [49], has redefined the landscape of natural language
processing. It has led to the development of models such
as BERT, GPT, and many others, pushing the boundaries of
machine learning tasks across various domains beyond just
NLP [50], [51], [52], [53], [54].

Transformers are known for several unique and innovative
components, most notably the self-attention mechanism,
which allows the model to weigh the importance of different
parts of the input data relative to each other, and the
positional encoding, which gives the model a sense of
order and ensures that it can account for the position
of data in a sequence. Transformers also use multi-head
attention, allowing the model to focus on different parts
of the input simultaneously [55]. The benefits of trans-
former architectures include parallelization, scalability, and
flexibility. Transformers process all data points in parallel,
leading to faster training times. They are highly scalable,
with large models capable of capturing intricate patterns in
massive datasets, leading to state-of-the-art performance in
various tasks. Although initially designed for NLP tasks,
transformers have shown great potential in other domains,
such as vision and BCIs [56], [57], [58], [59], [60].
The success of the initial transformer model led to the
development of numerous variants tailored for different tasks,
such as BERT, GPT, and Vision Transformers [52], [53], [54],
[58], [61], [62], [63].

While the impact of the transformer architecture on
machine learning and BCI applications are evident, it is also
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important to understand its inherent challenges. Primarily,
the intensive computational requirements of transformers
can pose a barrier to individual researchers or smaller
teams with limited computational resources. Additionally,
the risk of overfitting, especially when working with the
relatively smaller datasets frequently encountered in the BCI
domain, is a pertinent concern. Nevertheless, the versatility
of the transformer model and its capacity to address diverse
problems underscore its significance in research. For optimal
application in BCI decoding tasks, a clear understanding of
both the strengths and limitations of transformer architecture
is essential. With this balanced perspective, the academic
community can harness the full capabilities of transformers,
ensuring continued progress in machine learning research.

This work provides a comprehensive overview of the rele-
vance and emergence of transformer models in non-invasive
EEG-based BCI systems. We discuss several technical and
practical considerations related to BCIs and deep learning,
including signal accuracy, invasiveness, hardware limitations,
and interpretation complexity. Overall, this study provides an
overview of the current state of research into BCIs and deep
learning, highlighting their potential and the challenges that
must be overcome to realize their full potential.

The paper is structured into nine cohesive sections.
Section I sets the stage with an overview of BCIs, empha-
sizing the role of deep learning architectures. In Section II,
we delve into the foundational concepts of BCIs, tracing
their historical evolution, identifying major applications, and
emphasizing the pivotal role of deep learning in modern BCI
research. Section III transitions to a deep dive into the Trans-
former Architecture, including mathematical formulations.
This section elucidates its evolution from RNNs and LSTMs,
shedding light on its distinct structure, the innovative self-
attention mechanism, and its intrinsic benefits. Section IV
reviews the real-world applications of transformers, from the
decoding of Motor Imagery EEG to Emotion Recognition,
underscoring their relevance and highlighting transformer
model applications. The benefits of leveraging transformers
in BCIs are systematically laid out in Section V. We discuss
their properties for handling EEG’s temporal nuances,
capturing long-range dependencies, and ensuring scalability.
Section VI critically assesses the challenges posed by
transformer models, from their computational intensity and
requirement for huge data to the interpretability issues in BCI
contexts.

In Section VII, we explore potential avenues for future
research in the field of BCIs. These include developing
efficient transformer variants specifically designed for BCIs,
integrating BCIs with other modalities using transformers,
and investigating ways to achieve real-time BCI processing
using these models. Sections VIII and IX summarize the key
findings of the studies surveyed and distill the main insights
gained from this exploration. Incorporating Transformer
models into EEG-based BCIs is a complex process that
requires careful attention to several key aspects to ensure
effective and reliable system performance. To help with this,

FIGURE 1. Illustration of the Brain-Computer Interface (BCI) Framework.
The components represent the entirety of the BCI Framework, detailing
the critical stages: Data Acquisition, Data Preprocessing, Feature
Extraction, Machine Learning, and Feedback. Each stage is pivotal in
determining the interpretive and responsive functionalities of BCI
systems.

the Appendix provides a crucial checklist that outlines key
questions to consider.

II. BCI FUNDAMENTALS
The brain-computer interface, alternatively recognized as a
brain-machine interface or direct neural interface, represents
a communication channel established directly between the
human brain and external machinery. The premise of
BCI technology centers on harnessing and interpreting
neural signals, subsequently converting them into actionable
commands that can drive external devices, ranging from
computers to prosthetic devices [13], [64], [65].

Historical accounts pinpoint the genesis of BCI research
to the early 1970s, marking the period when pioneering
experiments involving animals were undertaken [66]. Pro-
gressing towards the close of the 20th century, the inaugural
human-centric BCI experiments emerged, predominantly
catering to medical interventions, especially for individu-
als grappling with neuromuscular impediments [67], [68].
Spanning several decades, the synergy of neuroscience,
engineering, and computational disciplines has dynamically
driven the development and democratization of BCI modali-
ties [4].

BCIs are complex systems with multiple critical com-
ponents, as detailed by Gerven et al. [69]. Primarily, data
acquisition involves capturing neural signals from the brain
using a variety of techniques. Invasive techniques might
utilize micro-electrode arrays, positioned directly on the
brain’s surface [70], while non-invasive methods could
employ EEG, where electrodes are placed on the scalp [71].
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However, acquired neural data frequently contains noise and
necessitates careful preprocessing. Essential preprocessing
tasks include noise filtering, artifact removal, and segmenta-
tion [72]. Noise filtering seeks to eliminate undesired signals
that might corrupt the true neural signals [73]. In contrast,
artifact removal targets extraneous signals not originating
from the brain, for instance, those originating from muscle
contractions or eye movements [74]. Segmentation entails
subdividing the continuous data into segments for further
processing [75]. Subsequent to these preprocessing steps,
the data undergoes further analysis to extract meaningful
patterns or features, indicative of underlying neural activities.
In EEG data, these patterns may include spectral power,
coherence, event-related potentials, and motor imagery
patterns such as event-related desynchronization (ERD) and
event-related synchronization (ERS) [76]. Spectral power
reflects the strength of the neural signals in different
frequency bands [77]. Coherence indicates the degree of
synchronization between various brain regions [78]. Event-
related potentials represent the brain’s response to a specific
stimulus or task [79]. Meanwhile, ERD patterns indicate
a decrease in power, usually related to motor preparation
or movement initiation [80], whereas ERS patterns denote
an increase in power, typically associated with motor
termination or post-movement processes [81]. These patterns
are then used in subsequent analysis within predictive models
to classify them into different classes, such as motor imagery
classification.

Machine learning algorithms play a crucial role in analyz-
ing brain data [6] and decoding and interpreting specific brain
states or intentions, enhancing the precision and effectiveness
of BCI systems [38]. Once a mental intention is decoded, the
BCI translates it into a specific action for the corresponding
external device, with the user receiving real-time feedback.
This enables an interactive loop, enhancing the usability of
BCIs.

Figure 1 depicts the various components integral to the BCI
framework, including data acquisition, data preprocessing,
feature extraction, machine learning, and feedback. Each of
these components is vital, collectively ensuring the efficacy
and accuracy of the BCI’s operations. While the BCI
ecosystem spans from the initial data acquisition to the final
real-time feedback, significant research gravitates towards
the interpretation and prediction of brain data [35]. This
concentrated focus underscores the critical importance of
data analysis in harnessing the full capabilities of BCIs,
enabling their effective deployment across a spectrum of
applications [8].

A. MAIN APPLICATIONS
BCIs are useful systems that have had a significant impact
in various domains. In the field of medical rehabilitation,
they can provide a new level of independence for patients
who are dealing with paralysis, neuromuscular disorders,
or limb amputations. BCIs allow these individuals to control

prosthetic limbs or wheelchairs in real-time [82]. This
advancement has a profound effect on their quality of life,
giving them a restored sense of autonomy [20], [21], [83].
Furthermore, BCIs have the potential to restore lost sensory
feedback, especially for those who have lost the sense of
touch or proprioception [84], [85], [86]. This allows patients
to regain some of their lost motor skills, leading to a more
independent daily life [31].
Simultaneously, in the domain of communication, BCIs

can offer a practical means of communication [87], [88].
People with locked-in syndrome, advanced ALS, or other
similar conditions are often unable to move or speak,
making communication very challenging [82]. To date, most
BCIs have been designed specifically for these individuals,
to support them to communicate by translating their mental
activities into commands. These systems can be used to type
messages on a computer screen or even control external
devices, such as wheelchairs or prosthetic limbs [89].
In summary, the development of BCI systems has helped
to improve the quality of life for many individuals to
communicate effectively.

A relatively novel application space for BCIs is emotion
recognition. This area primarily involves the analysis of
neural signals to understand and classify human emotional
states [90], [91], [92]. By identifying distinct patterns in
brain activity associated with various emotions, BCIs can
offer a novel approach to detecting and analyzing these
states. Potential applications include improved mental health
diagnostics, where accurate emotion detection could provide
clinicians with valuable insights. Moreover, in the domain
of media, real-time emotion feedback can guide content
adaptation, leading to user-specific experiences. Similarly,
adaptive environments in educational or occupational settings
can be developed based on emotional feedback, potentially
enhancing learning and productivity. As research progresses,
it is expected that the integration of BCIs in emotion
recognition will open new avenues for further exploration and
application.

Additionally, the gaming industry is actively investigating
the use of BCI to create a more immersive gaming
experience [93], [94]. BCIs allow players to navigate virtual
environments using their thoughts and feelings. This means
gamers might soon control game characters and execute
actions just by thinking. Such an approach can increase the
feeling of being ‘‘in’’ the game, making gameplay even
more enjoyable. BCIs also offer a chance for people with
disabilities, especially those who can not use regular game
controllers or keyboards, to engage in gaming [22], [95], [96].
The integration of BCI in gaming suggests a future where
games become more interactive and inclusive.

B. EMERGING APPLICATIONS
Beyond traditional applications, BCIs have expanded into
cognitive enhancement, sleep analysis, seizure detection, and
speech reconstruction.

127274 VOLUME 11, 2023



B. Abibullaev et al.: Deep Learning in EEG-Based BCIs

Researchers are exploring the potential of BCIs in cogni-
tive enhancement, specifically to improve concentration [97],
[98]. Neurofeedback is one such technique that offers
individuals real-time feedback on their neural activities,
facilitating the enhancement of particular cognitive functions.
This BCI application shows promise for individuals with
attention disorders. As advancements in the field continue,
neurofeedback and associated techniques might play a
pivotal role in advancing our comprehension of cognitive
enhancement and overall brain functionality [90], [91], [92],
[99], [100], [101].

Sleep research can also benefit from BCI methods,
particularly in the classification of sleep stages—a pivotal
aspect of diagnosing sleep disorders [102]. Using EEG data,
machine learning algorithms can discern sleep stages such
as Wake, REM, and the non-REM stages (N1, N2, N3)
with pronounced accuracy [103]. By decoding the EEG
signatures of various sleep phases, machine learning methods
used in BCIs can present diagnostic insights and therapeutic
interventions. Moreover, combining BCIs with wearable
technology holds promise for non-invasive, real-time sleep
monitoring, warranting further investigation.

Another crucial application area is epileptic seizure detec-
tion. Given the characteristic irregular brain activities during
seizures, BCIs, equipped with EEG monitoring, emerge
as important tools for capturing these anomalies [104].
BCI-driven algorithms can pinpoint these atypical patterns,
facilitating early seizure detection and intervention [105].
The prospective ability of BCIs to predict seizures before
their onset can enhance the management of epilepsy,
providing patients with preemptive alerts. The conjunction of
BCIs with wearables emphasizes its importance in neurology
and biomedical engineering research.

In speech reconstruction, BCIs are employed to decode
neural activity related to auditory processes and produce
intended speech [106]. This is particularly valuable for
individuals who cannot communicate verbally due to spe-
cific conditions. By integrating machine learning models
with BCIs, researchers are working to convert EEG-based
neural patterns into understandable speech [107]. Although
challenges, such as EEG noise and variations in individual
neural patterns, persist, initial studies indicate the potential
of BCIs in this area [108].

C. BCI CHALLENGES
Signal Accuracy: Acquiring accurate and consistent neural
signals is fundamental for both neuroscience and BCI
research. However, achieving consistent and precise record-
ings is challenging, particularly due to external interferences
such as electronic devices [109]. Moreover, inherent variabil-
ity in EEGdata, attributed to individual brain differences [71],
as well as inconsistencies across trials due to factors such
as attention fluctuations [110], poses significant analytical
challenges.

Factors such as inter-subject differences in brain struc-
tures, intra-subject variability, inaccuracies in electrode

placement [111], and device-specific biases [112] are notable
contributors to data variability. External environmental con-
ditions can further complicate the data collection process.
However, by employing rigorous methodologies and leverag-
ing advanced techniques, researchers can effectively mitigate
these challenges, ensuring the integrity of neural data and
thereby advancing the neuroscience domain.

Invasiveness: The invasiveness of BCIs poses one of the
primary challenges in the realm of neural interfacing. While
non-invasive methods such as EEG-based systems are widely
adopted due to their relative safety and ease of application,
they often compromise on signal quality and precision.
In contrast, invasive methods, which involve the direct
implantation of electrodes into or on the surface of the brain,
can yield higher signal fidelity and specificity [113], [114].
However, these methods introduce increased medical risks,
including potential complications from surgery and long-term
biocompatibility concerns. The ethical considerations sur-
rounding invasive procedures, especially in non-medical or
elective contexts, further compound the challenges. Thus,
determining the optimal balance between invasiveness and
functionality remains a pivotal challenge in advancing BCI
technology.

Hardware Limitations: While current BCI systems have
made significant progress in helping individuals control
devices with their brain activities, there is still much room
for improvement. One area that particularly stands out
is miniaturization [34], [115]. By reducing the size of
BCI systems, they can become more portable and less
obtrusive, allowing users to integrate them into their daily
lives more easily. These improvements can lead to greater
adoption and utilization of BCI technology in the future,
ultimately benefiting individuals who rely on these systems
for communication and independence.

Interpretation Complexity: The brain, which is the
central organ of the nervous system, is incredibly complex
in its structure and function. It is responsible for receiving
and interpreting signals from various parts of the body, and
it performs this task with remarkable efficiency. In fact, the
brain works in tandemwith the spinal cord to form the central
nervous system, which controls all the functions of the body,
including movement, sensation, and cognition [116], [117].
To accurately and consistently interpret the signals generated
by the brain, scientists and researchers have developed
sophisticated algorithms and models. These models are
capable of processing vast amounts of data and identifying
complex patterns that are simply impossible for humans to
discern. However, the development of such models requires
significant computational power, which can be a challenging
task [118], [119]. Despite the complexity of the brain
and the challenges associated with interpreting its signals,
researchers are committed to unlocking its mysteries by
developing new algorithms and models. This will help us
better understand how the brain works and how we can use
this knowledge to improve our lives and the world around
us.
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BCIs stand at the intersection of neuroscience and technol-
ogy and hold the promise of fundamentally reshaping various
sectors, particularly healthcare. As BCI technology continues
to evolve, it is essential to approach its applications with
a balance of optimism and caution, addressing challenges
head-on.

D. DEEP LEARNING IN BCIS
Deep Learning is a subset of machine learning, which, in turn,
falls under the broader category of artificial intelligence [15],
[120], [121]. It’s characterized by the use of deep neural
networks – layered computational structures inspired by the
biological neurons in the human brain. These networks,
comprising of multiple layers, enable the algorithm to
learn representations of data through multiple levels of
abstraction automatically. Classic examples include Convo-
lutional Neural Networks (CNNs) used in image recognition
or recurrent neural networks used in sequence prediction
tasks [122].

Where traditional machine learning techniques might
require feature engineering – a manual process where
the most relevant features of data are selected for model
training – deep learning models are known for their ability
to automatically extract and learn features directly from
raw data. This makes them particularly powerful for tasks
involving large and complex datasets, such as images, speech,
and, notably for this context, brain signals [8], [37], [39], [40],
[123], [124], [125], [126], [127].

1) IMPORTANCE AND IMPACT ON OF TRANSFORMERS IN
BCI RESEARCH

• Automated Feature Extraction: The neural data from
the brain is highly complex and multi-dimensional.
Deep learning, with its ability for automatic feature
extraction, has made it possible to interpret raw brain
signals without the need for extensive manual feature
engineering. This reduces the potential for human
bias and error and simplifies the process of model
development.

• Enhanced Accuracy: BCIs demand high accuracy to
be practically useful, especially in medical or assistive
contexts. Deep learning models, given their capability
to handle vast datasets and complex structures, have
consistently demonstrated superior accuracy in decod-
ing brain signals compared to traditional methods.

• Real-time Processing:With advancements in hardware,
such as GPUs, deep learning models can process and
interpret brain signals in real time. This is crucial for
BCIs where fast command output is key, such as in
prosthetic limb control or communication aids.

• Scalability: Deep learning models are scalable. As more
data becomes available – from awider variety of subjects
and conditions – these models can continue learning and
refining their interpretations, improving the robustness
and versatility of BCIs.

• Addressing Subject Variability: One of the core
challenges in BCI is the variability of signals between
different individuals. Deep learning, with architectures
such as convolutional layers or attention mechanisms,
has shown potential in capturing these latent temporal
patterns, paving the way for subject-independent BCIs.

Deep learning has played an important role in advancing
BCI research, enabling the automatic decoding of intricate
neural patterns. This has resulted in the creation of more
dependable, effective, and robust BCIs. With the continuous
improvement of computational techniques and the expansion
of BCI datasets, the integration of deep learning and BCIs has
the potential to produce even more promising developments
in the coming years.

III. TRANSFORMER ARCHITECTURE
Historically, sequence data processing in neural networks
began with Recurrent Neural Networks (RNNs). These
architectures were equipped with an inherent ‘memory’
mechanism, retaining hidden states across sequence steps.
Yet, their efficacy weakened with longer sequences due to
issues such as the vanishing and exploding gradient prob-
lems, which impeded successful training. Addressing these
limitations, Long Short-Term Memory Networks (LSTMs)
emerged as an advanced form of RNNs. By employing gated
cells, LSTMs adeptly controlled information flow, enhancing
the network’s capacity to recognize long-term dependencies
in sequential data [122]. Nevertheless, inherent to their
design, LSTMs processed sequences serially, constraining
parallel processing possibilities across sequence elements.

A paradigm shift occurred with the introduction of the
Transformer architecture, as presented by Vaswani et al.
in 2017 [49]. Eliminating the recurrent structure, Transform-
ers capitalized on parallel processing capabilities, processing
entire sequences concurrently. This adjustment significantly
accelerated training phases, especially on contemporary
hardware optimized for parallel computation. Central to
Transformers is the attention mechanism, particularly self-
attention, which intelligently assigns different weights to
sequence elements based on their task-specific relevance.
This mechanism enables the model to selectively emphasize
parts of the input, optimizing comprehension and representa-
tion of data sequences.

A. TRANSFORMER’S ARCHITECTURE FOR EEG
CLASSIFICATION
This section presents the ‘‘standard’’ approach for utilizing
the Transformer encoder to classify EEG patterns for BCIs.

1) INPUT STANDARDIZATION AND POSITIONAL ENCODING
Let the set of pairs Dtrain = {(X1, y1), . . . , (Xn, yn)} denote n
trials of EEG recordings where yi is the scaler class variable
with L possible labels (e.g., RH and LH imagery in a binary
classification) and Xi ∈ Rc×p is the collection of EEG
observations in the ith trial over c channels and p time points;
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FIGURE 2. Visual summary underscores the transformative role of transformers models in Brain-Computer Interfaces (BCI), highlighting key application
domains—including motor imagery decoding, emotion recognition, sleep stage analysis, as well as the emerging applications—and encapsulating both
the advantages and inherent challenges in the BCI landscape.

that is to say,

Xi = [xi1, xi2, . . . , xic]T , i = 1, . . . , n, (1)

with xij = [xij1, . . . , xijp]T ∈ Rp×1, j = 1, . . . , c, where
xijk , k = 1, . . . , p denotes the k th element of vector xij, and T
denotes the transpose operator. The goal is to use Dtrain and
train a classifier ψ : Rc×p

→ {0, 1, . . . ,L − 1} that maps a
given X to a possible value of the class variable.

It is common to apply standardization for each channel
to make the sensory data across all channels comparable
(see [128], [129], [130]). In this regard, each Xi is converted

to X̂i where

X̂i = [x̂i1, x̂i2, . . . , x̂ic]T , i = 1, . . . , n, (2)

and where x̂ij = [x̂ij1, . . . , x̂ijp]T such that

x̂ijk =
xijk − mij

sij
, (3)
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with mij and sij being the sample mean and sample standard
deviation of vector xij given by

mij =
1
p

p∑
k=1

xijk , (4)

sij =

√√√√1
p

p∑
k=1

(xijk − mij)2, (5)

respectively.
In order for the Transformer to make use of EEG recording

orders, it is common to encode some information about
the position of sequence elements in its input [49]. This
positional encoding is generally realized by adding each X̂i
to a matrix P ∈ Rc×p that is defined based on trigonometric
functions with different frequencies for each channel [49].
As a result, we obtain

X̃i = X̂i + P, i = 1, . . . , n, (6)

where the element on row (channel) j = 1, . . . , c, and column
(time index) k = 1, . . . , p, of P, denoted pjk is given by

pjk =

 sin
(
k/10000j/c

)
, for even j,

cos
(
k/10000(j−1)/c

)
, for odd j.

(7)

2) SELF-ATTENTION MECHANISMS: CAPTURING CONTEXTS
FOR EEG CLASSIFICATION
Capturing contexts is the essential concept that makes atten-
tionmechanism a promising operation for EEG classification.
A context is simply another representation of an element of
the input sequence (here, one column of each X̃i) based on its
compatbility with other elements within the sequence. The
most widely used attention operation for EEG classification
is scaled dot-product self-attention, denoted SAd

V,K,Q(X̃i) :

Rc×p
→ Rd×p, which was initially proposed and used for

translation tasks [49]. In particular,

SAd
V,K,Q(X̃i) = VX̃i × softmax

( X̃T
i K

TQX̃i
√
q

)
, (8)

where V ∈ Rd×c, K ∈ Rq×c, Q ∈ Rq×c are projection
matrices that are learned in the training process, q is known as
attention dimensionality, and d , which is generally a tuning
parameter, denotes the dimensionality of the columns of
the output matrix (context vectors). We use superscript d
in SAd

V,K,Q(X̃i) to highlight the dimensionality of context
vectors.

3) MULTI-HEAD SELF-ATTENTION
Rather than a single self-attention operation, it is generally
beneficial to apply multiple self-attentions in parallel. Using
this operation, we view the compatibility of sequence
elements using different learned projections. In this context,
it is also common to refer to the output matrix of each
self-attention as a head. In particular, the multi-head self-
attention, denoted MHSA(X̃i) : Rc×p

→ Rdh×p, is defined

as

MHSAdh (X̃i)

= W[SAd
V1,K1,Q1

(X̃i)T , . . . ,SAd
Vm,Km,Qm

(X̃i)T ]T (9)

where W ∈ Rdh×md is another learnable projection matrix,
m is the number of self-attentions used in (9), which is also
known as the number of heads, and dh is the dimensionality
of columns in the output of MHSAdh (X̃i) operation.

4) IDENTITY SKIP-CONNECTION AND LAYER
NORMALIZATION
To ensure the stability and efficacy of the training process,
especially with the complex nature of EEG data, the
Transformer encoder utilizes identity skip-connections [68]
followed by layer normalization [131]. Here, we define these
operations. Let SKP

(
LAY(Y)

)
: Ra×b

→ Ra×b denote
the identity skip-connection around a layer LAY(Y) (an
operation) that operates on an input Y ∈ Ra×b to produce
an output of the same size as the input. Then

SKP
(
LAY(Y)

)
= Y + LAY(Y). (10)

That is to say, we simply add the output of LAY(Y) to its
input. Furthemore, let LN(Y) : Ra×b

→ Ra×b denote the
layer normalization applied to an (a > 1) × b matrix Y with
elements yjk , j = 1, . . . , a, k = 1, . . . , b where each row
records measurements for a ‘‘features’’ (here, channel). Then,
LN(Y) produces Y, which is a matrix of the same size as Y,
with elements yjk where

yjk =
yjk − mk

sk
, (11)

and where

mk =
1
a

a∑
j=1

yjk , (12)

sk =

√√√√1
a

a∑
j=1

(yjk − mk )2. (13)

In other words, Y is a type of standardization where the
sample mean and sample standard deviation are computed
for a column of Y (in the EEG context, means for each time
point in the sequence) over all features. One place that these
operations are used in the transformer encoder is to produce
Xi as follows:

Xi = LN
(
SKP

(
MHSAc(X̃i)

))
; (14)

that is, the skip-connection is used around themulti-head self-
attention, which is then followed by layer normalization. Note
that the use of skip-connection in (14) enforces setting dh
defined in (9) to c, which is the number of channels.
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5) POSITION-WISE FEED-FORWARD NETWORKS
The Transformer encoder utilizes a fully connected
feed-forward network that transforms each element of a given
sequence individually. Let Y ∈ Ra×b be the generic matrix
defined before. The effect of this position-wise feed-forward
network operated on an input Y, denoted FFNs(Y), is:

FFNs(Y) = [g(y1), . . . , g(yb)], (15)

where yk , k = 1, . . . , b, are columns of Y and

g(yk ) = W2 × f (W1yk + b1) + b2, (16)

where f (.) denotes an element-wise nonlinear activation
function (e.g., ReLU), and W1 ∈ Rr×a, W2 ∈ Rs×r , b1 ∈

Rr×1, and b2 ∈ Rs×1 are learnable matrices and vectors—
r is generally a tuning parameter. We use superscript s in
FFNs(Y) to highlight the dimensionality of output vectors
in (15). In the Transformer encoder, a position-wise feed-
forward network is used to produce an output Oi from Xi
obtained in (14), which is then added to its input through
the skip-connection, followed by layer normalization. This
operation is characterized as follows:

Oi = LN
(
SKP

(
FFNc(Xi)

))
. (17)

Note that the use of skip-connection in (17) enforces setting
s defined in (15) to c. The classification can be performed by
vectorizingOi and using that as the input to a fully connected
layer with a softmax activation function.1

B. BENEFITS OF THE TRANSFORMER MODELS
Transformers offer a significant advantage in parallelization.
Unlike traditional RNNs that process sequences one element
at a time, transformers can handle all sequence elements
simultaneously due to their non-recurrent nature. This
parallel processing approach is highly optimized for parallel
hardware such as GPUs, leading to noticeably reduced
training times [156]. Additionally, transformers are adept
at handling long-range dependencies within sequences, due
to their attention mechanisms. These mechanisms allow the
model to effectively associate distant elements in sequences,
offering a notable improvement over conventional models
such as LSTMs in capturing the context within extended texts
[157]. On the scalability front, transformer-based models,
including BERT [63] and GPT [50], have demonstrated the
ability to scale up to billions of parameters. This scalability
has played a key role in setting new performance benchmarks
across a wide array of tasks. Moreover, the flexibility of
transformer models is prominent. Even though they were
initially designed for sequence-to-sequence tasks, they have
been successfully adapted for a variety of applications,
ranging from classification to image processing [52]. Their
capability to cater to diverse data types underscores their
potential as a versatile tool in machine learning research.
The combination of parallel processing, efficient handling of

1Supplementary Material provides a sample code in PyTorch that
complements the mathematical formulation discussed in this section

long dependencies, scalability, and broad adaptability make
transformer models a popular choice for various tasks.

IV. APPLICATIONS OF TRANSFORMERS IN BCIS
With the advent of the Transformer architecture, there has
been an increasing interest in leveraging these state-of-
the-art machine-learning models to advance BCIs. In the
subsequent sections, we will explore how transformer models
have significantly advanced the BCI domain. Figure 2
provides an overview of the fundamental principles, areas of
application, benefits, and challenges of transformers in BCIs.
It highlights the potential of transformers in tasks such as
motor imagery decoding and sleep stage analysis, where they
can effectively handle brain signal dynamics. We will discuss
the various ways in which transformers can be utilized in
BCIs, potentially leading to beneficial developments in both
research and practical applications.

Figure 3 presents diverse architectural configurations that
integrate the Convolutional Neural Network (CNN) and
Transformer Encoder components, as discussed in this study,
tailored for EEG data analysis for BCIs. These configurations
differ in their approach to feature extraction from EEG
signals: while some models emphasize temporal charac-
teristics, others concentrate on spatial patterns. Notably,
there are also hybrid models designed to capture both
spatial and temporal features concurrently. By fusing the
capabilities of CNNs with Transformer techniques, these
architectures underscore the potential and adaptability of
advanced transformer approaches in EEG data processing.
Furthermore, in Table 1, we list abbreviations used in the
work. It includes full terms in the first and third columns and
their corresponding abbreviations in the second and fourth
columns. The terms cover relevant topics in BCI research
and are crucial for understanding the discussed components
and techniques. For example, it includes abbreviations for
movements such as ‘‘Left Hand’’ (LH) and ‘‘Both Feet’’ (BF),
metrics such as ‘‘Average’’ (AVG) and ‘‘Precision’’ (PREC),
and technical terms such as ‘‘Multi-Head Self-Attention’’
(MHSA) and ‘‘Batch Normalization’’ (BN).

A. MOTOR IMAGERY EEG DECODING
Motor Imagery (MI) refers to the cognitive process where
individuals mentally visualize and rehearse specific motor
tasks without physically moving. This mental representation
is important in BCIs, particularly in creating effective com-
munication and control methods for people with severe motor
disabilities. MI-BCIs aim to convert these imagined motor
tasks into control signals that can be used to operate external
devices, such as computer cursors, robotic prosthetics, and
electric wheelchairs [7], [158], [159], [160], [161].
However, there are several challenges associated with the

decoding process of MI:
• Intra and Inter-Subject Variability: EEG patterns that
correspond with MI manifest considerable variability.
This variability is discernible not only within individual
sessions but also across different individuals. Such
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FIGURE 3. Architectural Configurations of Convolutional Neural Network (CNN) and Transformer
Encoder Components for EEG Analysis. The diagram illustrates the diverse possible configurations
combining CNNs and Transformers, tailored to extract temporal, spatial, or integrated
spatiotemporal features using advanced transformer methodologies.

TABLE 1. List of abbreviations used in this work.

inconsistencies render the formulation of universally
applicable models a complex undertaking [129], [132],
[133], [135], [136], [146], [148].

• Susceptibility to Noise: Inherent noise within EEG
signals, compounded by external artifacts originating
from muscle twitches, eye movements, or other external

electromagnetic interferences, can convolute the accu-
rate decoding of MI patterns [129], [130], [135], [142],
[151].

• Non-stationarity: Overextended durations, EEG pat-
terns linkedwithMImay undergo alterations attributable
to factors such as fatigue, learning adaptations,
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TABLE 2. Summary of datasets used in MI EEG-based studies.

or other dynamic neural processes, leading to potential
decrements in decoding efficacy [132], [135], [142].

• High Dimensionality: Given the time-series nature of
EEG recordings, the data encapsulates high dimen-
sionality. This necessitates the deployment of refined,
computationally intensive algorithms to sift through,
process, and efficaciously decode the embedded
information [142], [146], [151].

It is crucial to take a comprehensive and diverse approach
to the development and optimization of MI-BCI systems to
ensure their effectiveness in various real-world situations,
given the aforementioned challenges.

B. TRANSFORMER-BASED MODELS IN MI-BCI
The transformer architecture has been widely adopted in
the research community to enhance Motor Imagery (MI)
decoding in BCIs. A number of EEG analysis models have
been devised and assessed in this context, with technical
details of certain models summarized in Table 3, Table 4,
and Table 5. These tables outline distinct approaches, datasets
used for testing, and their corresponding performance
outcomes. In addition to the technical details of the studies,
we include Table 2 to provide a better understanding of the
data sources used. This table outlines each dataset’s specific
details and is organizedwith various columns that offer a clear
overview of each dataset. The ‘‘Private Datasets’’ section is
proprietary and absent from public access, while the ‘‘Other
Datasets’’ section covers datasets with applications beyond
Motor Imagery, such as speech imagery.

A study conducted by Ma et al. [138] demonstrates
significant progress in this field. Their hybrid CNN-
Transformer model, which includes spatial, spectral, and
temporal transformers, achieved an impressive MI-EEG
decoding performance improvement with an accuracy of
83.91%. Following a similar path, Wu et al. [144] introduced
the TransEEG model. This model combines a CNN encoder

with transformer blocks and enhances it further with graph
embedding. It achieved accuracies of 89.5% and 77.4% in
their private data set and the BCI IV-1 dataset, respectively.
Ma et al. presented important work [139], where their
CNN model equipped with an attention mechanism decoded
temporal EEG features. Their work performed well on the
BCI Competition IV 2a and OpenBMI datasets, achieving
session-dependent accuracies of 82.32% and 77.52% and
session-independent accuracies of 79.48% and 70.43%,
respectively. Kostas et al. [140] presented the BENDR
methodology, a unique approach that uses unlabeled EEG
data. Their results were impressive across several MI
datasets, notably achieving 86.7% accuracy on the PhysioNet
dataset. Moving forward, Hameed et al. [129] introduced
the Temporal-Spatial Transformer model. This model incor-
porates an ICA filter and attention mechanisms, achieving
remarkable accuracies of 96.11% and 84.89% in the BCI
IV 2a and 2b datasets, respectively. In a novel merger of
BCI and VR, Lee et al. [150] employed the TSTN model
with continuous learning. Through VR-aided MI tasks, they
achieved progressive accuracy increments in AO+MI ses-
sions, showcasing the transformative power of VR inMI EEG
research. Wang et al. [151] embarked on a unique endeavor,
using MI EEG signals to decode sign language. With
their Motion Imagery Trajectory Reconstruction Transformer
model, they achieved an impressive accuracy of 0.975 in
reconstructing motion trajectories. Ahn et al. [130] further
contributed to the field with their multiscale convolutional
transformer, which combines various imagery tasks. This
model achieved notable accuracies of 0.62, 0.70, and 0.70 on
their private dataset, the BCI IV 2a dataset, and the
Arizona State University (ASU) dataset, respectively. The
aforementioned studies show the remarkable potential of
transformer models in MI-EEG decoding.

Several other research groups have proposed novel
transformer models for MI-BCI systems. One notable
innovation is the hierarchical transformer introduced by
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TABLE 3. Overview of transformer models in motor imagery brain-computer interfaces (BCIs) (Continued on next page).
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TABLE 4. (Continued from previous page) Overview of transformer models in motor imagery brain-computer interfaces (BCIs).
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TABLE 5. (Continued from previous page) Overview of transformer models in motor imagery brain-computer interfaces (BCIs).

Deny et al. [146], which partitions attention across two
levels: a low-level transformer for feature extraction and
a high-level transformer for highlighting crucial features.
Tan et al. [132] combined VAT regularization with Particle
Swarm Optimization to enhance EEGNet with self-attention.
Wang et al. [149] fused EEG channel attention with the
Swin Transformer, diverging from traditional CSP and
CNN models. Additionally, Luo et al. [133] ventured
into data augmentation and probability ensembling with a
shallow mirror transformer. Song et al. [135] developed
an attention-based domain adaptation model to enhance
decoding across subjects. Tailoring transformer models to
BCI’s unique requirements, Tao et al. [148] demonstrated
the efficacy of gated Transformer models. In contrast,
Jiang et al. [142] combined Auto Encoders with FBCSP for
efficient feature extraction. In addition to these contribu-
tions, Xie et al. [60] combined spatial and temporal CNN
transformers, achieving good results in subject-independent
scenarios. Ma et al. [138] refined the spectral transformer,
whileWu et al. [144] explored graph embeddings for dynamic

extraction. Reflecting the versatility of transformer models,
Kostas et al. [140] delivered a methodology that spans mul-
tiple EEG datasets. In an imaginative blend, Lee et al. [150]
integrated their model within the immersive realm of virtual
reality, creating a data set rooted in VR-based motor imagery
tasks. Other novel applications include Wang et al.’s [151]
effort to interpret 3D motion from Chinese sign language,
and Ahn et al.’s [130] multiscale convolutional transformer
for diverse mental imagery decoding.

When considering the specific uses of transformer models
in the context of MI-BCIs, we can identify several important
utilities:

• Feature Extraction: One of the prominent advantages
of transformers is their ability to automatically extract
features from raw EEG signals. This largely eliminates
the need for laborious and complex manual feature
engineering, which has traditionally been a significant
part of BCI research [128], [129], [132].

• Robustness to Noise: Transformers utilize multi-head
attentionmechanisms to focus on the relevant portions of
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an EEG sequence selectively. This feature contributes to
substantial reductions in the influence of noise and other
artifacts, leading to more reliable BCI outputs [129],
[132], [135], [151].

• Temporal Dynamics: The Transformer architecture
is particularly well-suited for handling the sequential
nature of EEG data. This enables it to capture the
temporal dynamics of Motor Imagery (MI) with greater
efficacy than traditional models such as CNNs or RNNs.
This has been shown to improve decoding accuracy
across multiple studies [129], [134], [136], [137], [146],
[148], [151].

• Transfer Learning: The adaptability of Transformer
models also allows them to benefit from pre-training
on large datasets. This enables these models to start
at a more advanced point when tailored for specific
BCI tasks, potentially mitigating challenges related to
inter-subject variability [135].

• Hybrid Models: Some research efforts have explored
the combination of Transformers with other machine
learning architectures, such as CNNs. These hybrid
models aim to capture spatial and temporal features
more effectively for enhancedMI decoding [128], [132],
[133], [134], [137], [162].

The research landscape in MI-EEG decoding shows a
growing interest in transformer models. Various models
have shown promising results in different datasets and
methodologies. These advancements highlight the significant
impact of these models and the wide potential of BCI
research.

C. EMOTION RECOGNITION
BCIs, originally designed to aid communication and control
for those with motor impairments, are now expanding in their
potential applications [163]. Recent advancements in BCIs
have shown promise in recognizing and decoding emotions
directly from the brain, with potential uses in entertainment
and medical therapy [164], [165]. By accurately detecting
human emotions, machines can respond in a more empathetic
manner, resulting in more natural and personalized interac-
tions [166]. Furthermore, continuous emotional monitoring
can facilitate the early detection of mood disorders and severe
conditions such as post-traumatic stress disorder (PTSD)
[161]. The entertainment industry, particularly gaming and
virtual reality, can capitalize on this technology to customize
user experiences based on their emotions, leading to height-
ened engagement and satisfaction [167]. BCIs can also offer
real-time emotional feedback for patients undergoing therapy
for trauma or emotional disorders, enabling therapists to
devise more effective and tailored treatment plans [168].
Emotion recognition BCIs utilize EEG data for its high
temporal resolution [167]. With advancements in signal
processing and machine learning, including the use of Trans-
formers [168], emotion decoding accuracy has significantly
improved.

D. TRANSFORMER MODELS IN EMOTION RECOGNITION
The application of Transformers in EEG data for emotion
recognition has generated significant interest in the literature.
Transformer models automatically extract relevant features
from EEG signals associated with emotional states, eliminat-
ing the need for laborious manual feature engineering.

Several EEG datasets related to emotions were examined
as summarized in Table 6. These datasets vary in the number
of subjects, trials per session, EEG channels used, emotional
states examined, and relevant academic literature. The DEAP
and SEED datasets have gained popularity for EEG-based
emotion recognition, as indicated by insights from these stud-
ies. A number of studies on the applications of transformers
in BCI-based emotion recognition have been devised and
assessed in this context, with technical details of certain mod-
els summarized in Table 7, Table 8, and Table 9. These tables
outline distinct approaches, datasets used for testing, and their
corresponding performance outcomes. Studies presented in
the tables have empirically demonstrated the effectiveness of
Transformers in capturing long-term dependencies in EEG
data for emotion recognition tasks. They also highlight the
challenges and potential for further optimization in this
domain. Transformers, when combined with other techniques
such as convolution or tailored for specific spatial-temporal
features, can achieve impressive results. However, a common
challenge across these studies is the decrease in performance
in subject-independent classification tasks, underscoring
the need for models that generalize well across different
individuals.

For instance, Li et al. [61] achieved superior classification
accuracies by utilizing the DEAP and DREAMER datasets.
Their proposed Transformer Neural Architecture Search
model, which integrated a Supernet with a Multi-Objective
Evolutionary Algorithm (MOEA) and a classifier, achieved
the highest average accuracy in emotion classification for the
DREAMER dataset. Koorathota et al. [181] introduced the
Multimodal Neurophysiological Transformer (MNT) on
the DEAP dataset. By integrating raw time series with
extracted features, their model demonstrated the potential
for sequential modeling of EEG data, achieving notable
results for valence and arousal. Xiao et al. [170] worked
with the DEAP, SEED, and SEED-IV datasets. Their
four-dimensional attention-based neural network, which
integrated spectral, spatial, and temporal attention mecha-
nisms, achieved commendable performance across multiple
datasets. Wang et al. [182] addressed binary and four-class
emotion classifications using the DEAP and MAHNOB-HCI
datasets. Their Hierarchical Spatial Learning Transformer,
focusing on electrodes and brain-region-level spatial learn-
ing, highlighted the contribution of brain regions in capturing
enhanced spatial dependencies. Sun et al. [62] leveraged
the DEAP, SEED, and SEED-IV datasets and proposed a
Dual-Branch Dynamic Graph Convolution with Adaptive
Transformer Feature Fusion. Their proposed model achieved
impressive results on SEED and SEED-IV, showcasing its
potential. Arjun et al. [183] reported exceptionally high
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TABLE 6. Overview of EEG datasets utilized for emotion recognition with transformers.

accuracies using Continuous Wavelet Transform (CWT) and
raw EEG signal for emotion classification. Although specific
model details were not provided, their study demonstrated
the effectiveness of these techniques. In addition to these
studies, Song et al. [134] presented an EEGConformer model
that effectively generalized across both Motor Imagery (MI)
and emotion recognition tasks. Liu et al. [186] proposed the
EEG Emotion Recognition Transformer (EeT) and achieved
noteworthy results, particularly on the SEED dataset.

The aforementioned studies highlight the effectiveness of
Transformers in utilizing a multi-head attention mechanism
to focus on relevant parts of an EEG sequence. This
improves the model’s ability to filter out noise, leading
to enhanced accuracy in emotion recognition. Additionally,
studies demonstrate that Transformer models are scalable,
benefiting from pre-training on extensive datasets and
fine-tuning on specific BCI emotion datasets. This allows
the models to leverage prior knowledge and achieve more
precise emotion decoding. These models are also flexible and
can be customized to recognize a wide range of emotions,
including subtle shifts in emotional states. This capability
enables a detailed emotional spectrum instead of simple or
binary classifications.

The use of BCIs for emotion recognition holds transforma-
tive potential across various sectors. As our understanding of
the neural basis of emotions and Transformer architectures
deepens, we can expect continuous improvements in the
accuracy, reliability, and adaptability of emotion recognition
BCIs. With these advancements, significant progress is
anticipated in this field in the coming years.

E. OTHER EMERGING APPLICATIONS
The potential of transformer models in the field of BCIs
extends beyond motor imagery decoding and emotion
recognition. Several lesser-known but promising areas of
EEG research are utilizing transformer models, hinting at a
future where our understanding and interaction with the brain
will be transformed. In this section, we will outline some
emerging applications that harness the power of transformers.

While motor imagery is already extensively explored,
another promising avenue is language reconstruction from
neural data. The goal is to reconstruct perceived or imagined
speech directly from neural signals. Achieving this would

have profound implications, enabling locked-in patients
to communicate or even translating thoughts into under-
standable speech. Additionally, sleep stage classification
can benefit from transformer intervention. Traditionally,
EEG data has been used to classify different sleep phases.
Transformers, with their ability to process and assign
significance to temporal data points, offer improved accuracy
in discerning sleep stages.

In Tables 10 and 11, we present studies covering emerging
application areas of transformer models including person
identification, sleep stage classification, speech reconstruc-
tion, epilepsy prediction, Alzheimer’s disease detection, and
seizure detection. A study by Du et al. [128] focused on using
an EEG temporal-spatial transformer for person identifica-
tion. They used an EEG temporal-spatial transformer, which
consisted of a temporal transformer encoder (TTE) and a
spatial transformer encoder (STE) and achieved impressive
results, with accuracies ranging from 97.29% to 100% for
different states of EEG signals. Transformers have also shown
promise in sleep stage classification. Dai et al. [56] proposed
a multi-channel sleep network that combined transformer
encoders with other feature extraction techniques. Their
approach achieved accuracies of 85.0% to 87.5% on different
datasets, demonstrating a strong correlation with the physio-
logical features of sleep stages. Kostas et al. [140] presented
a methodology called BENDR that utilized Transformers for
analyzing multiple domains of EEG data, including motor
imagery, event-related potentials, and sleep staging. Their
approach achieved competitive performance on different
datasets, showcasing the ability to learn from diverse EEG
tasks and generalize well. In another study, Lee et al. [188]
explored the classification of imagined speech and overt
speech using EEG signals. They proposed a classification
framework that incorporated convolution layers, separable
convolution layers, self-attention mechanisms, and feed-
forward networks. The results indicated that overt speech
recognition outperformed imagined speech, although the
difference was not as significant as initially anticipated.

Several other studies have investigated the use of
Transformers for seizure detection and prediction. Hus-
sein et al. [189] introduced MViT, a multi-channel vision
Transformer, for epileptic seizure prediction. Their model
achieved high prediction sensitivity across different public
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TABLE 7. Summary of reviewed studies on the applications of transformers in BCI-based emotion recognition (continued on next page).
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TABLE 8. (Continued from previous page) Summary of reviewed studies on the applications of transformers in BCI-based emotion recognition.

datasets. Similarly, Hu et al. [190] proposed a hybrid Trans-
former model for epilepsy prediction, which demonstrated
excellent performance compared to CNN-based structures.
The application of Transformers in Alzheimer’s disease
detection has also been explored. Ravikanti [191] developed
EEGAlzheimer’sNet, a transformer-based attention LSTM

network for detecting Alzheimer’s disease using EEG
signals. The model achieved high accuracy and demonstrated
potential for early diagnosis. Transformers have been applied
to speech recognition and motor action recognition tasks
as well. Murphy et al. [106] successfully decoded unigram
and bigram parts-of-speech tags from single-trial EEG
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TABLE 9. (Continued from previous page) Summary of reviewed studies on the applications of transformers in BCI-based emotion recognition.

data using Transformers. Kaushik et al. [192] proposed an
ensemble of BLSTM-LSTM and EEG-Transformer models
for motor action recognition, achieving superior performance
compared to existing methods. These studies represent just
a fraction of the emerging applications of Transformers in
EEG research. The versatility and effectiveness of Trans-
formers in handling EEG data offer exciting possibilities
for advancing our understanding of brain dynamics and
developing innovative EEG-based applications in various
domains.

V. ADVANTAGES OF TRANSFORMER-BASED MODELS
FOR BCIS
Based on the earlier reviewed studies, the integration of
transformer-based models in BCIs is a remarkable achieve-
ment. This is due to their proven effectiveness in processing
sequential data. In the subsequent section, we will outline the

essential advantages of utilizing transformer architectures in
BCI research.

A. HANDLING OF TEMPORAL SEQUENCES IN EEG
EEG data, intrinsic to many BCI applications, is inherently
temporal. It captures the dynamic changes in the brain’s
electrical activity over time. Traditional models such as
RNNs and LSTMs were initially favored for such sequence
data. However, transformers, through their self-attention
mechanisms, offer a more adaptive way to weigh different
time points based on their importance, ensuring that recent
data points do not outweigh crucial temporal patterns.

B. ABILITY TO CAPTURE LONG-TERM DEPENDENCIES
Transformers excel at recognizing long-term dependencies in
data due to their parallel processing and dynamic weighting
through attention mechanisms. In the context of BCIs, brain
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TABLE 10. Overview of emerging applications using transformers across a spectrum of eeg-driven applications (Continued on next page).

signals often carry patterns where an earlier signal might
influence a much later one, and recognizing this relationship

can be important for accurate decoding. While LSTMs were
designed to mitigate the vanishing gradient problem of RNNs
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TABLE 11. (Continued from previous page) Overview of emerging applications using transformers across a spectrum of EEG-driven applications.
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and capture such dependencies, transformers excel in this
domain due to their parallel processing of sequences and the
dynamic weighting through attention mechanisms.

C. SCALABILITY AND PERFORMANCE BENEFITS
Transformer models offer numerous advantages for ana-
lyzing large EEG datasets. With sufficient computational
infrastructure, these models can be trained effectively on
extensive EEG recordings, leading to the extraction of
complex neural patterns that are often overlooked by less
capable models. Unlike sequential models such as RNNs,
transformer models can be trained faster due to their capacity
for parallel processing. Additionally, streamlined models
such as distilled transformers help mitigate computational
restrictions. Hence, transformer-based architectures can be
favored in BCIs, especially when EEG data exhibit high
variability and noise.

D. VERSATILITY ACROSS DIVERSE BCI TASKS
The architectural design of transformers makes them adapt-
able. Whether it is motor imagery tasks, emotion recognition,
or sleep stage classification, the underlying principles of
transformers remain consistent. This versatility ensures that
researchers do not have to reinvent the wheel for every
unique BCI challenge but can adapt and fine-tune established
transformer models.

Transformers are pivotal in BCI research for handling
temporal sequences and discerning long-term dependencies.
Their versatility spans numerous tasks. As these models
evolve and integrate, they further broaden the horizons for
BCI potential.

VI. CHALLENGES AND LIMITATIONS
While Transformer architectures undeniably augment the
performance of BCIs, their successful integration into the
BCIs is not without challenges. Key among these challenges
are computational efficiency, data variability, and model
interpretability. Addressing these concerns is essential to har-
nessing the full potential of Transformers in BCI development
and application.

A. NEED FOR LARGE DATASETS
Transformers, given their huge parameters, often require
vast datasets for effective training. In the domain of BCIs,
obtaining large and high-quality datasets is challenging due
to several reasons. Firstly, there is a trade-off between
invasive and non-invasive methods. Invasive methods, using
micro-electrode arrays, provide fine-grained neural data but
involve surgical procedures and are typically limited to
animal models or specific clinical cases. On the other hand,
non-invasive methods such as EEG are more common but
provide lower spatial resolution data. Collecting brain data
also requires adherence to strict ethical guidelines, adding
an additional challenge. Moreover, conducting experiments
to collect BCI data is time and cost-intensive, requir-
ing specialized equipment, trained personnel, and often

lengthy sessions with participants. Technical challenges
include ensuring consistent electrode placement, handling
equipment-related issues, and ensuring participant comfort
and safety. Finally, the complexity of brain signals adds to
the challenge. The brain’s activity is multidimensional and
complex, and capturing all relevant information, especially in
real-world scenarios outside controlled lab environments, is
difficult.
Potential Solutions: Addressing the challenges in acquir-

ing extensive, high-quality datasets for BCIs requires a
multifaceted approach. Adopting a hybrid approach, com-
bining non-invasive methods, e.g., EEG with fNIRS or
MEG, can enhance spatial and temporal resolutions [201].
Centralized, open-source repositories can facilitate data
sharing [145], [202], [203], [204], while advanced data
augmentation techniques, such as Generative Adversarial
Networks (GANs), can artificially enlarge datasets [205],
[206]. Another approach would be using crowdsourcing
to gather BCI data from a broader population. This
approach can help in obtaining diverse datasets, capturing
a wide range of neural activities and conditions [207].
Additionally, transfer learning allows models to adapt using
smaller, task-related datasets [208], [209]. Together, these
solutions can lead the BCI community towards better data
practices, setting the stage for advanced, reliable future
applications.

B. COMPUTATIONAL OVERHEAD
The complex architecture of Transformers, especially in
their advanced configurations, places substantial demands
on computational capabilities and memory allocation. When
these models are tasked with training or fine-tuning on
complex and high-dimensional EEG data, the computa-
tional burden becomes especially pronounced. This demand
can establish significant limitations for research groups
with limited resources from fully utilizing the capabilities
of these models. Such computational requirements could
potentially limit the democratization of transformer-based
BCIs.
Mitigating Strategies: Several strategies can be employed

to counteract these challenges. One such approach is model
distillation, where a smaller, more manageable model is
trained to mimic the behavior and performance of its larger
counterpart, allowing for efficient deployment without a
drastic decline in performance [210]. Additionally, there has
been a surge in research focusing on creating optimized
versions of transformer architectures that are specifically
designed to maintain performance while being more com-
putationally efficient [57], [211]. Techniques that focus on
effective training strategies, sparse activations, and model
pruning are also being explored to reduce the computational
overhead associated with these models [212]. By adopting
these methods, the broader research community can harness
the potential of transformers in BCIs without being burdened
by computational constraints.
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C. MODEL INTERPRETABILITY
The interpretability of transformer models is a crucial aspect
of deep learning that has been extensively researched [213].
Despite their ability to process vast amounts of data and
generate exceptional results across a range of tasks, these
models can be incredibly complex, making it difficult to
understand how they arrive at their predictions. This lack of
transparency in decision-making processes can have serious
consequences in fields such as healthcare, where EEG data
plays a significant role, and errors in interpretation can
result in incorrect medical interventions. Consequently, it is
imperative to improve the transparency and interpretability
of these models, ensuring that the rationale behind their
decisions is accessible and understandable.
Addressing the Challenge: As the deep learning commu-

nity acknowledges the importance of interpretability, several
methods are emerging to understand the inner workings of
transformers and other deep learning models: [57], [214],
[215], [216]:

• AttentionVisualization: Given that transformers utilize
attention mechanisms, visualizing attention weights can
offer insights into which parts of the input data themodel
deems significant during predictions.

• Saliency Maps: These graphical representations high-
light input features that are most influential for a given
prediction, providing a visual guide to a model’s focus
areas.

• Feature Attribution: By determining the contribution
of individual features to the final output, we can gain a
clearer understanding of what drives model decisions.

Collaborative efforts between neuroscientists and machine
learning researchers can also be beneficial in bridging the
interpretability gap.

D. TRANSFER LEARNING AND DOMAIN ADAPTATION
The consistent performance of transformer models across
various subjects and devices can be a significant challenge
in the BCI field. Training a model on data from a specific
group of subjects or a particular device may result in reduced
efficiency when applied to a different cohort or another
device. This inconsistency can be attributed to several factors.

• Inter-Subject Variability: Every individual’s brain
has unique characteristics and patterns. Differences in
anatomy, functional organization, and neural plasticity
can lead to distinct EEG signal patterns, even for similar
tasks.

• Inter-Trial Variablity: A single individual’s brain
signals can exhibit variations over different trials and
even sessions, due to factors such as fatigue, attention
levels, or even the time of day.

• Electrode Placement Inconsistencies: Minor discrep-
ancies in electrode placement across sessions or indi-
viduals can introduce variability. This can arise due to
human error, differences in head shape, or hair density.

• Device-Specific Biases: Different EEG devices might
have unique calibration settings, sampling rates,

or signal-to-noise ratios, which can introduce discrep-
ancies in the recorded data.

• Environmental Noise: External factors, such as ambi-
ent light, noise, or even the room’s temperature, can
influence an individual’s brain signals and further
complicate inter-subject comparisons.

Addressing the Challenge: Addressing this challenge
requires sophisticated techniques that can normalize and
adapt to the inherent variabilities present, ensuring that
BCI models are robust, generalizable, and not just narrowly
tailored to a specific dataset. Domain adaptation techniques,
which adjust a model trained on one domain to perform well
on a different but related domain, can be explored [217],
[218], [219]. Fine-tuning on smaller, target-specific datasets
or employing strategies such as meta-learning [220], where
models are trained to quickly adapt to new tasks, can also be
beneficial.

While Transformers show promise for BCI research, it is
important to be aware of their limitations and work to address
them. Collaboration among researchers is key to finding
innovative solutions and advancing BCIs to greater efficiency
and applicability as the field evolves. For researchers looking
to leverage the benefits provided by Transformer models for
BCIs, in Appendix IX, we provide a checklist that can serve
as a practical guide.

VII. FUTURE DIRECTIONS
The application of transformer architectures to BCIs remains
a developing domain with significant potential. With
advancements in technology and research methodologies,
there are several exploration avenues that promise enhanced
integration of transformers in BCIs.
Efficient Transformer Variants: Researchers are currently

focusing on enhancing the effectiveness of transformer
architectures while maintaining their performance. This area
of exploration is rapidly advancing, with new adaptations
seeking to minimize computational burdens. This is a
crucial stage in enabling their application in real-time
BCI situations. The emergence of these variants, primarily
targeted at natural language processing, opens up possibilities
for customizations tailored for BCI endeavors. Methods
such as pruning (purging redundant model parameters)
or quantization (reducing parameter precision) could be
recalibrated considering the nuances of BCI data.

A. FUSION WITH OTHER MODALITIES
The technological development in data acquisition has
sparked interest in combining EEG data with other modali-
ties, such as functional near-infrared spectroscopy (fNIRS),
magnetoencephalography (MEG), or even peripheral phys-
iological metrics such as heart rate or skin conductance.
Such integrative efforts can amplify the richness of data,
potentially catalyzing superior model outputs. Transformers,
with their inherent ability to handle sequential data from
diverse sources, can play a foundational role in processing
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multi-modal data. By synchronizing and processing features
from various modalities, transformers can offer a more
comprehensive perspective, enabling the discernment of
complex patterns in the synergized data.

B. REAL-TIME PROCESSING AND FEEDBACK
Instantaneous processing of brain signals is essential for
various applications, particularly those related to assistive
technologies or neurofeedback systems. Such processing
provides immediate feedback, making BCIs more interactive
and intuitive. Nevertheless, achieving real-time processing
requires precise, fast, and efficient models. However, com-
putational intensity makes it challenging to meet this level
of performance. To tackle this issue, efficient transformer
derivatives, combined with hardware optimizations, could
offer a way forward for real-time BCI applications. Fur-
thermore, exploring sparse transformers or those designed
explicitly for streaming data processing could prove invalu-
able in this regard.

In summary, the potential for transformers in BCIs is
promising, offering opportunities to redefine boundaries.
By navigating constraints and exploring new trajectories,
transformers have the potential to impact the BCI field.

VIII. DISCUSSION
BCI research has transitioned through various phases of
development. From its early reliance on basic signal process-
ing techniques for EEG analysis, it has evolved to embrace
advanced machine learning algorithms, particularly deep
learning models such as Transformers. The integration of
Transformer architectures into BCIs represents a significant
milestone. However, there are still challenges that need to be
addressed to fully leverage the potential of Transformers in
BCIs. These challenges include efficient training techniques,
reducing computational overhead, ensuring interpretability,
addressing the EEG data deficiency, and exploring transfer
learning.

The examined studies underscore the adaptability and
efficacy of Transformer architectures in diverse BCI appli-
cations. They have demonstrated enhanced performance in
capturing temporal dependencies in tasks as motor imagery
decoding. Notable models, such as VAT-TransEEGNet [132]
and Swin Transformer with ECA [149], have outperformed
traditional methods by implementing sophisticated tech-
niques such as VAT regularization and particle swarm
optimization. Different protocols and tests are also used to
evaluate the generalizability and robustness of these models
across various datasets and tasks.

The review extends to applications of transformers in
emotion recognition, showing high accuracies in clas-
sification tasks with models such as the Transformer
Neural Architecture Search model [61] and Multimodal
Neurophysiological Transformer [181]. It emphasizes the
capability of transformers to handle complex cognitive tasks,
capture spatial dependencies, and improve feature extraction
processes effectively.

Furthermore, Transformers have proven useful in medical
diagnostics and sleep stage classification, with models such
as EEG temporal-spatial transformer [128] and MultiChan-
nelSleepNet [56] paving the way for innovative applications
in EEG, ranging from refined speech differentiation to
comprehensive sleep analysis.

While promising, the incorporation of transformers in
BCI is not devoid of challenges, primarily due to their
extensive computational requirements and the complexity of
the models. These challenges are augmented by the necessity
for large datasets and the intricate balance needed to avoid
overfitting, especially crucial for real-time and cross-subject
applications.

As BCI research integrates more deeply into human-
machine interaction frameworks, the question is no longer
if Transformers can be used but rather how they should be
implemented to maximize their advantages while mitigating
their limitations. For researchers and practitioners contem-
plating the incorporation of Transformers into BCIs, several
key considerations come into play:

1) Is the computational trade-off justified by the enhanced
performance?

2) How can we efficiently collect and preprocess large,
high-quality BCI datasets that can feed into these
demanding models?

3) How can the model’s complexity be managed to suit
real-time and cross-subject applications?

4) What strategies can be employed to make these models
more interpretable, given that interpretability is often
crucial for clinical applications?

Answering these questions is crucial for determining the
feasibility, efficacy, and broader implications of integrating
complex Transformer architectures with the ever-advancing
BCI domain.

IX. CONCLUSION
This review has thoroughly examined the applications of
transformer models for EEG classification tasks. The unique
self-attention mechanism of transformers allows them to
handle long-term dependencies in EEG sequences, improving
the accuracy of BCIs in various applications such as motor
imagery decoding, emotional state recognition, sleep stage
classification, and epilepsy prediction.

While integrating transformers into BCIs has many
advantages, there are challenges to consider. These include
computational intensity, the need for large datasets, and the
complexity that may limit real-time applications or cross-
subject compatibility. However, ongoing research and devel-
opment offer reasons for optimism. More resource-efficient
transformer variants, opportunities for multi-modal data
fusion, and improvements in real-time processing algorithms
are emerging. The combination of Transformers with BCIs
has the potential to bring significant advancements in sectors
such as healthcare, entertainment, and assistive technolo-
gies. It demonstrates promising applications in emotion
recognition, sleep stage classification, epilepsy prediction,
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and other areas within the BCI field through detailed EEG
analysis.

APPENDIX
CHECKLIST FOR RESEARCHERS ADOPTING
TRANSFORMER MODELS IN BCIS
The incorporation of Transformer models into EEG-based
BCIs is not a straightforward task and requires careful
consideration of several key aspects to ensure effective
and reliable system performance. For researchers interested
in leveraging the benefits of Transformers for BCIs, the
following questions may serve as a critical checklist:

• Data Availability: How much EEG data is available for
training the Transformer model?

- Depending on the complexity of the task, you may
need hundreds to thousands of labeled EEG samples.
Insufficient data can lead to overfitting and poor
generalization to new, unseen data, making this a critical
first step.

• Feature Engineering: Will the Transformer model
handle feature extraction from raw EEG data, or will
some form of feature engineering be necessary?

- Transformers can handle raw EEG data, but prepro-
cessing steps such as filtering and normalization often
improve performance. Your choice between manual
feature engineering and automated extraction will sig-
nificantly impact model complexity and interpretability.

• Noise Handling: How well can the Transformer model
adapt to noisy EEG signals and artifacts?

- Transformers can be sensitive to noise; consider pre-
processing techniques or noise-reduction layers. Robust
handling of noise is essential for the model to be
applicable in real-world, noisy conditions typically
encountered in EEG data.

• Inter-Subject Variability: How does the model per-
form across different subjects, and is there a need for
domain adaptation or transfer learning?

- Transfer learning or domain adaptation techniques may
be necessary for better performance across subjects.
The ability to generalize across subjects is crucial for
building models that are more widely applicable and
cost-effective.

• Real-Time Processing: Can the Transformer model
process EEG data in real-time, considering its complex-
ity and computational requirements?

- Real-time processing is possible but may require
hardware acceleration due to the Transformer’s com-
putational complexity. Real-time processing is vital for
interactive applications such as neuroprosthetics or live
emotional feedback systems.

• Temporal Dynamics: How effectively can the Trans-
former model capture temporal dependencies in EEG
signals?

- Transformers excel in capturing long-term dependen-
cies, but attention mechanisms should be appropriately
configured. Temporal information is often key in

EEG-based tasks, such as sleep stage classification or
motor imagery tasks.

• Model Complexity: Given the Transformer architec-
ture’s complexity, how will it impact computational
efficiency and deployment feasibility?

- Deploying the model on low-resource devices might
require lightweight versions of the Transformer model.
Computational efficiency is paramount for real-world
applications where resources may be limited.

• Generalization: Can the model generalize well to new,
unseen data or different BCI tasks?

- Regularization techniques and data augmentation can
improve the model’s ability to generalize to new tasks
or data. The utility of a model increases significantly if
it can adapt to new, unseen conditions.

• Hyperparameter Tuning: What hyperparameters are
most crucial for this application, and how should they
be selected?

- Attention heads, the number of layers, and learning rates
are critical hyperparameters. Their optimal settings can
significantly impact the model’s performance, making
this an important aspect of model tuning.

• Evaluation Metrics: What metrics will be used to
evaluate the model’s performance, such as accuracy,
precision, recall, and computational time?

- Consider using a combination of accuracy, precision,
recall, and F1-score, but also explore domain-specific
measures when needed. The choice of metrics provides
a nuanced understanding of both the model’s strengths
and weaknesses.

• Comparison with Existing Models: How does the
Transformer-based approach compare with existing
methods such as CNNs, RNNs, or traditional machine
learning algorithms in terms of performance, inter-
pretability, and usability?

- Performance comparisons with state-of-the-art mod-
els in terms of accuracy, computational time, and
interpretability are essential. This ensures that the
Transformer model either outperforms or offers specific
advantages over existing methods.

• Interpretability: How do transformer models ensure
interpretability in EEG andBCIs, andwhy is it essential?

- To enhance the interpretability of transformer models,
researchers can employ attention visualization and
feature attribution methods, crucial for validating model
decisions in critical applications.

• User Experience: How user-friendly is the BCI system
with the Transformer model, and how much calibration
is required for a new user?

- The system should require minimal calibration and
provide intuitive feedback to users. A user-friendly
system is more likely to gain acceptance and be adopted
for practical applications.

• Scalability: How scalable is the model in terms of
adding more EEG channels or dealing with longer time
series data?
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- While Transformers scale well with more data, they may
require proportionally more computational resources.
The model’s scalability is vital when extending the
application to more complex tasks or larger datasets.

Considering these questions can provide valuable insights
into the applicability and limitations of using Transformer
models in BCIs.
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