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ABSTRACT Stereo matching plays an important role in 3D reconstruction in the context of digital museums.
At present, it has problems such as occlusion, weak texture, and discontinuous disparity, which restrict
the development of binocular vision. In response to this type of problem, Census transformed algorithms
based on mean discrimination and Sobel edge detection were introduced to calculate the cost function.
At the same time, the algorithm also incorporated the absolute value method of grayscale difference, making
it more adaptable to situations such as discontinuous disparity and weak textures. The results show that
the Census transform algorithm, which introduces edge gradients, has the lowest error matching rate on
different images, with a minimum value of 25.1%. The classical Census transformation method and the AD
Census classical transformation algorithm are 28.3% and 27.4%, respectively. Compared with the other two
algorithms, the Census transformation of edge gradient improves the matching performance of the algorithm
in the discontinuous area of edge disparity and improves the anti-interference ability of the algorithm. At the
same time, the algorithm has the lowest error matching rate in the disparity discontinuous regions of Teddy,
Cones, Venus, and Tsukuba images, and the lowest value is only 32.1%. Compared to the classic Census
transformation method and the AD Census classical transformation algorithm, the minimum error matching
rate has decreased by 13.2% and 4.5%, respectively. In addition, the algorithm has the lowest average
effective runtime on all four types of images, with an effective average of 4.6 seconds on Venus images
with rich texture features, which is 0.6 seconds lower than the classic Census transform algorithm. The
improved Census transform algorithm not only has high matching accuracy but also low time complexity,
providing a reliable method reference for modern 3D reconstruction fields.

INDEX TERMS Stereo matching, 3D reconstruction, cost function, edge gradient, Census transformation.

I. INTRODUCTION
Digital museum refers to a new form of museum that utilizes
modern information technology to digitize the cultural relics
and exhibits of physical museums on a network platform.
Through digital museums, people can browse, learn, and
study cultural relics online, providing a more convenient and
open way for cultural exchange for the general audience.
In the digital museum, Iterative reconstruction technology is
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an important technical means, which can transform the actual
3D objects into digital 3D models, so that the audience can
experience the reality through virtual reality technology and
other methods. In Iterative reconstruction, stereo matching is
a common method, which estimates the depth information of
object surface through pixel point matching between two or
more images, so as to realize 3D model reconstruction [1],
[2]. However, due to the existence of noise, occlusion and
illumination changes in the image, stereo matching methods
face great challenges. Therefore, designing an efficient and
accurate cost function algorithm is of great significance for

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 123705

https://orcid.org/0009-0000-9420-1484


P. Peng, J. Han: 3D Reconstruction Cost Function Algorithm Based on Stereo Matching

solving stereo matching problems [3]. Cost matching is a
crucial step in stereo matching algorithms, which belongs to
the process of finding homonymous points and reconstructing
scenes. However, in the process of scene reconstruction, there
are many uncontrollable factors, such as noise, low texture,
optical distortion, perspective distortion, etc., which affect the
accuracy of stereo matching. The Census cost function based
on non parametric transformation is currently widely used
in dealing with accuracy issues, but it has the drawback of
overly relying on central pixels in the calculation of disparity
maps [4]. The research mainly focuses on the problems of
stereo matching technology in 3D reconstruction, such as
image noise, textureless areas, and edge blur, and proposes
an optimized cost function calculation method. This method
combines mean discrimination, Census transform method
for Sobel edge detection, and absolute value method for
grayscale difference to better handle these problems and
improve the performance and accuracy of stereo matching.
The research content mainly includes four parts. The first part
mainly provides an overview of 3D reconstruction technology
and SM algorithms. The second part studied the cost function
algorithm for 3D reconstruction based on SM. The first
section provides a detailed description of the constraints and
methods required for 3D reconstruction by SM. The second
section focuses on the cost function calculation problem
in SM, introducing the Census transform method of mean
discrimination and Sobel edge detection, and combining
it with the absolute value method of grayscale difference
for optimization. The third part verifies the performance
and advantages of the improved cost function calculation.
The fourth part elaborates on the experimental data and
effectiveness of the proposed method, and proposes future
improvement directions. The contribution of this study is
mainly reflected in the following aspects. Firstly, by applying
the method of mean discrimination, the impact of image
noise on the matching process was successfully reduced,
significantly improving the accuracy of matching. This
innovative method provides new solutions for complex image
processing tasks. Secondly, the Sobel edge detection operator
was used in the study, which can effectively detect edge
information in the image and use these edge information as
key features for stereo matching. This step not only enhances
the robustness of matching, but also provides a more accurate
data foundation for subsequent processing. In addition,
by utilizing edge information to determine the position of
matching points, the method in this study further improves
the accuracy and robustness of stereo matching. This method
has advantages over region based stereo matching algorithms
when dealing with issues such as textureless regions and
edge blurring in images, and can better adapt to various
complex scenes [5]. Most importantly, the research provides
key technical support for iterative reconstruction of digital
museums. By applying this technology, the experience and
display effect of digital museums have been significantly
improved, providing viewers with a richer and more vivid
visiting experience. This contribution not only has important

value in the academic field, but also has profound impact in
practical applications.

II. RELATED WORKS
3D reconstruction refers to the establishment of appropriate
computer processing mathematical models for 3D objects.
Currently, 3D reconstruction technology is widely utilized
in various fields of society. Cui Y’s team believed that
3D modeling of indoor environments had crucial effect on
interactive visualization and building information modeling.
Therefore, the team proposed to use point clouds and
trajectories scanned by mobile lasers for 3D reconstruction of
indoor environments. This method mainly utilized multi label
graph cutting technology to solve the energy optimization
function. The results showed that the model reconstructed
by this method had better recall and precision than other
techniques [6]. Chen et al. designed a 3D gradient echo imag-
ing technique for faster and more efficient high-resolution
whole brain imaging. At the same time, this technology
utilized an iterative hard threshold algorithm to cut down
the cost function. The results indicated that this method
effectively improved the accuracy of 3D reconstruction
and could achieve fast 3D distortion free high-resolution
imaging [7]. Cai and other researchers introduced a stereo
network based on multi-level fusion perception feature
pyramid to solve the cost volume regularization of consuming
memory and dense matching in 3D reconstruction. This
method could narrow down the interval of deep search
through prior information from the previous level, and used
multi-level fusion to establish a feature pyramid. It was
validated that this method effectively alleviated the memory
consumption and obtained an effective cost representation
[8]. Li et al. team believed that the current 3D reconstruction
technology did not provide sufficient data accuracy in
laser scanning, so they have introduced a laser scanner
based on light detection to optimize it. The device needed
to first set up several control points to concatenate the
laser scanned images. The results indicated that it had
good application effects in geometric 3D reconstruction
of infrastructure [9]. To better utilize electrical impedance
tomography technology for 3D reconstruction of conduc-
tivity distribution, Liu et al. introduced a high-resolution
algorithm to solve it. This method utilized Bayesian learning
based on structural perception to improve the imaging
technology. The outcomes proved that this method could
effectively improve the accuracy of 3D reconstruction and
simplify the computational complexity [10]. Kench and
Cooper scholars proposed a SliceGAN architecture based
on generative adversarial networks for high-throughput
micro structure optimization problems. This network mainly
generated 3D imaging data through representative 2D images
to reconstruct 3D models. The results indicated that this
method had wide applicability and provided a reliable
method reference for future high-throughput microstructure
optimization [11].
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SM is an important branch of computer vision, whose
goal is to obtain matching corresponding points from
different viewpoint images. Currently, many scholars have
conducted extensive research on this topic. Zhang and
other researchers introduced a cross form pyramid stereo
matching network to solve the disparity regression problem
of corrected stereo images. The network regularizes the cost
volume through two parallel 3D deconvolution structures
with different receptive fields. The results show that this
method has achieved significant results on both scene streams
and KITTI datasets [12]. Wang H and other researchers
proposed a non parallel stereo matching algorithm based
on improved dynamic programming. This algorithm can
perform stereo matching on different disparity search paths,
and find the optimal solution throughDynamic programming.
The results indicate that high image processing results have
been achieved in various application scenarios and hardware
platforms [13]. Liang et al. proposed using serial computation
for stereo matching in response to stereo vision problems.
Non parallel stereo matching methods mainly obtain the
depth information of images through specific algorithms,
such as semi global matching or Dynamic programming.
The results indicate that this method is suitable for small-
scale image processing and offline applications, such as
computer vision research and image processing algorithm
development [14]. Yan et al. proposed to improve the
parallax plane through global and local optimization for
the parallax thinning problem in SM. Among them, global
optimization used Markov random field to estimate the
average parallax of super pixels, and local optimization used
Bayesian model to smooth the 3D neighborhood. The results
showed that this scheme could improve the accuracy of SM
and effectively reduce computational costs [15]. Wang et al.
found that there were some problems such as noise in image
acquisition when collecting the images of obstacles on the
moon surface, so they introduced an improved AD Sense
algorithm. This method introduces an improved average
window pixel calculation algorithm into the original census
algorithm. The results show that this method can effectively
detect obstacles in the image [16]. Joung et al. proposed
a stereo matching method based on global optimization in
order to further improve the accuracy of stereo matching
algorithm. This algorithm considers the consistency of each
pixel with all other pixels to obtain the best disparity map.
Compared to local stereo matching and semi global stereo
matching algorithms, global stereo matching algorithms have
higher accuracy and robustness, but higher computational
complexity [17]. Liu et al. proposed an improved AD Cenus
algorithm based on two-stage adaptive optimization and
gradient fusion to solve the problem of poor performance of
existing traditional local stereo matching methods in ill posed
regions. This method calculates the absolute difference cost
and census transformation cost of each pixel by weighting,
and obtains a disparity map through cost aggregation,
disparity selection, and disparity refinement. The results
show that this method performs well in textureless and

parallax discontinuous regions, and is sufficiently robust to
radiation changes and noise [18].
To sum up, researchers at home and abroad have carried

out a lot of research on Iterative reconstruction technology
and stereo matching methods. Among them, relevant analysis
was conducted on the application of parallel and non
parallel algorithms in stereo matching. At the same time, the
application of local, semi global, and global stereo matching
algorithms in different scenarios was introduced. However,
these algorithms have poor processing performance and high
computational complexity for scenes with weaker textures.
Therefore, the Census cost function of edge gradient is
introduced into the traditional stereo matching algorithm to
optimize the algorithm, so as to better improve the application
effect of Iterative reconstruction in modern digital museums.

III. 3D RECONSTRUCTION COST FUNCTION ALGORITHM
BASED ON STEREO MATCHING
In the context of digital museums, the application of computer
vision technology is becoming increasingly widespread.
This chapter first provides a detailed description of the
3D construction methods and conditions for SM. Next,
it needs to calculate the cost function in SM. The Census
transform of mean discrimination and Sobel edge detection
were introduced separately, and combined with the absolute
value method of grayscale difference to make the algorithm
more adaptable to situations such as discontinuous edge depth
information and weak edge images.

A. 3D RECONSTRUCTION BASED ON STEREO MATCHING
SM systems mainly include binocular, tri ocular, and multi
ocular SM systems, among which the most widely used is
the binocular SM system. Through this technology, museum
exhibits can be presented in virtual form on digital platforms,
and users can visit exhibitions through devices such as VR
glasses or computers. Users can freely choose viewing angles
and distances, and can interact with exhibits to provide amore
immersive experience. Binocular stereo vision refers to the
use of two cameras to simultaneously capture images of an
object, but due to differences in the positions captured by
the two cameras, there is also a certain degree of parallax
between the images they capture [19], [20]. Therefore, the
research adopts techniques such as stereo matching and
camera calibration to treat the surface of an object as a
series of points, and obtains three-dimensional coordinates
and constructs a three-dimensional model based on the
spatial position relationship between these points and spatial
points. The framework structure of binocular stereo vision 3D
reconstruction is shown in Figure 1.

The binocular stereo vision model mainly includes a
binocular parallel and a binocularnon parallelstructuremodel,
and its main division is based on the placement position of the
two cameras. Among them, the two cameras of the binocular
parallel structure model are located in the same height plane,
and their optical axes are completely parallel, with identical
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FIGURE 1. The framework structure of 3D reconstruction for binocular
stereoscopic vision.

FIGURE 2. Binocular parallel structure model.

parameters [21]. The binocular parallel structure model is
shown in Figure 2.

Assuming P(x,y,z) is any point in space, the mathematical
representation of its coordinates is shown in equation (1).

y
z

=
yl
f

x
z

=
xl
f

b
z

=
b− (xl − xr )

z− f

(1)

In equation (1), f represents the focal length of two
cameras; b represents the baseline, which is the optical
center line connecting two cameras; xl ND xr represent the
horizontal coordinate of the left and the rightcamera shooting
points. The calculation of parallax is shown in equation (2).

d = xl − xr (2)

After transformation, various coordinate values of point
P can be obtained, and their calculation is shown in
equation (3). 

x = xl ·
z
f

y = yl ·
z
f

z =
bf
d

(3)

From equation (3), the depth value of a spatial point
is inversely proportional to the parallax value, that is, the
nearer the spatial point is to the binocular camera, the bigger
the parallax value corresponding to that point. Therefore,
the distance between the spatial point and the camera can
be determined by calculating the parallax value, thereby
obtaining the 3D coordinates of the spatial point. In addition,
the baseline and focal length between cameras are mainly
obtained through camera calibration. However, in reality,

it is not easy to realize complete parallelism between the
optical axes of two cameras, making it difficult to construct a
binocular parallel structure model. The binocular non parallel
structure model solves this problem well, and it does not have
strict requirements for the position relationship of the camera
[22]. Therefore, the binocular parallel structure model is used
in the actual Iterative reconstruction of the digital museum.
The binocular optical axis non parallel model is shown in
Figure 3. From where, when one of the cameras observes the
spatial point P, the accurate position of P cannot be obtained.
But when two cameras are used to observe the P point, the
specific orientation of the P point can be obtained.

FIGURE 3. Schematic diagram of non parallel model of binocular optical
axis.

FIGURE 4. Schematic diagram of polar constraint structure.

When using SM algorithms for 3D reconstruction, the
SM algorithm plays a role in obtaining depth information.
It mainly uses the disparity values of two images to obtain
depth indicators, thereby constructing a 3D model. However,
during the collecting scene images, it is inevitable to be
affected by noise interference, which may result in errors
between the collected and the ideal images, leading to match-
ing errors. Therefore, when performing SM, it is necessary
to use constraints to reduce the search area to reduce error
rates and improve matching efficiency. The commonly used
constraints mainly include polar, continuity, disparity range,
similarity, uniqueness, and sequential consistency constraints
[23], [24]. The study selects polar constraints as the constraint
conditions for stereomatching, which can adjust thematching
pixel points of the camera to be level with the reference
pixel points, thereby effectively improving the accuracy and
efficiency of matching. The schematic diagram of polar
constraint is shown in Figure 4. Where, Pl and Pr stand
for the projection points of spatial points on the left and
right cameras; The intersection point between the camera
surface and the baseline represents the base point; elPl and
erPr represent the polar lines corresponding to two projection
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points. During the SM, to obtain points on elPl , there is no
need to search the entire image, but only search for matching
points in the direction of the polar erPr . This transforms the
search in the 2D direction into a search in the 1D direction,
greatly improving matching efficiency and accuracy.

In the process of Iterative reconstruction using stereo
matching algorithm, the cost function needs to be calculated
first. The cost function is mainly used to determine the degree
of similarity between matching pixels and reference pixels,
which is mainly represented by surrogate value. The greater
the similarity between matching pixels and reference pixels,
the smaller the corresponding cost value. Before performing
cost matching, a range of disparity values will be set and
the disparity value will be calculated within this range. The
study uses a three-dimensional matrix to store the generation
value of pixels within the parallax range, where each element
corresponds to a pixel in the image. In a three-dimensional
matrix, the first dimension represents the position of pixels,
the second dimension represents the parallax value, and
the third dimension represents the generation value. After
completing the calculation of the cost function, proceed with
cost aggregation. Cost aggregation mainly optimizes the cost
matching stage to enhance the similarity between reference
pixels and matching pixels. Cost aggregation overcomes the
limitations of cost matching from a local perspective, mainly
matching costs from a global perspective, thus reducing the
error rate of matching. The study chose Box Filtering to
achieve cost aggregation, which has the advantage of being
relatively simple in calculation and only needs to calculate
the average value around the pixels. At the same time, it can
effectively smooth the image, reduce high-frequency noise
in the image, and make the image clearer and more natural.
In addition, it does not introduce additional sharpening or
distortion effects, making it suitable for application scenarios
that maintain image details and edges. This method mainly
treats the disparity values of each spatial point as equal, and
the specific calculation is shown in equation (4).

Cq
d =

∑
qCd (q)
N

(4)

The cost aggregation optimization calculation of pixel
point q along a certain direction is shown in equation (5).

Cr (q, d) = min(Cr (q− r, d),Cr (q− r, d ± 1))

+ T1,min
k
Cr (q− r, k)

+ T2,min
k
Cr (q− r, k) + Cl(q, d) (5)

In equation (5), T1 and T2 represent penalty terms.
The total cost aggregation calculation of pixel points along
various directions is shown in equation (6).

Cagg(q, d) =

∑
rCr (q, d) (6)

After cost aggregation, the obtained cost values need to
be statistically analyzed through disparity calculation. Next,
it selects the matching pixel with the smallest replacement
value within the disparity range, and the disparity value

corresponding to this pixel is that calculated by the algorithm.
The disparity calculation method used in the study is the
Winner Takes All (WTA) algorithm, which mainly selects
the disparity value of the smallest matching pixel point as
the final result by counting the cost values within each
disparity range. This method is simple, efficient, easy to
implement, and suitable for most disparity calculation sce-
narios, including different types of images with rich textures,
sparse textures, and obvious edges. At the same time, this
method only needs to compare the surrogate values in the cost
volume, without relying on the neighborhood information
around the pixels. This makes the implementation of the
algorithm relatively simple and does not require additional
computational and storage overhead. Parallax optimization
is mainly to ensure that the proxy value of matching
pixels obtained by disparity calculation is minimized, and
it requires refinement of the obtained disparity value to
improve the accuracy of disparity value acquisition. The
research mainly uses methods such as sub pixel fitting,
left and right consistency detection, and disparity filling
to optimize disparity maps. This method mainly adjusts
the range dynamically when calculating the parallax value
based on the content and characteristics of the input image.
At the same time, the range of parallax can be adjusted
adaptively according to the depth distribution of objects in the
image [25]. Among them, subpixel fitting mainly records the
neighboringmodern values of theminimum generation value,
and fits them through a univariate quadratic curve, and then
calculates the extreme points of the curve. The abscissa of the
extremum point obtained is the sub pixel value of the parallax
value. The sub pixel fitting diagram is shown in Figure 5.
In Figure 5, if the minimum matching value is 16, the sub
pixel value of the visual difference is 16.

FIGURE 5. Schematic diagram of sub pixel fitting.

B. ANALYSIS OF ALGORITHMS OF ITERATIVE
RECONSTRUCTION COST FUNCTION BASED ON STEREO
MATCHING
The calculation of the cost function is the most crucial step in
SM algorithms. According to different constraint conditions,
SM algorithms is composed of global and local SM. Among
them, the global matching algorithm first needs to construct
a global energy function, then solve the function according to
the global optimization theory, and take its minimum value
as the optimal disparity value. The definition and calculation
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of this energy function are shown in equation (7).

E(d) = Edata(d) + δEsmooth(d)

=

∑
p,q∈R

T (dq, dp) +

∑
p∈R

S(p, d) (7)

In equation (7), Esmooth(d) represents the smoothing term,
which represents the degree of continuity between the
current pixel and adjacent pixels. The data item Edata(d)
represents the degree of matching between left and right
images, which is mainly utilized to record the similarity
between pixel points. S(p, d) refers to the matching proxy
value;R represents the penalty term, which mainly increases
with the difference between two pixels. If the disparity
values of two pixels are equal, the penalty term value is
0. Compared with global SM, local SM has higher real-
time performance and is suitable for real-time scenes with
general accuracy requirements. The local matching algorithm
requires the construction of a local cost function, which
does not involve smoothness between adjacent pixels and
therefore does not have a smoothing term. It also requires
constructing a support window and matching based on
the information carried by the pixels around the points
to be matched. The feature information of these pixels
is relatively similar, and the algorithm mainly measures
the similarity among pixels through similarity measurement
criteria, and the best matching point is the point with the
highest similarity. The study uses this method to calculate
the cost function. The common similarity measurement
functions in local matching algorithms include normalized
cross correlation method, sum of squares and absolute
valuesof grayscale differences. They mainly describe the
similarity between pixels through grayscale information [26].
The calculation of the sum of absolute values of grayscale
difference is expressed in equation (8).

SAD(x, y, d) =

∑
(i,j)∈m

|IL(x + i, y+ j)−IR(x + i+ d, y+ j)|

(8)

In equation (8),m is the size of the support window; IL and
IR represent the left and right images, respectively; and i and
j represent the offset of pixels. The calculation of the sum of
squares of grayscale differences is shown in equation (9).

SSD(x, y, d)=
∑

(i,j)∈m

[IL(x + i, y+ j)−IR(x + i+ d, y+ j)]2

(9)

The calculation of the normalized cross correlation method
is shown in equation (10).

NCC(x, y, d)

=

∑
(i,j)∈m

IL(x+i, y+j) · IR(x+ i+d, y+j)√ ∑
(i,j)∈m

IL(x+i, y+j)2 · IR(x+ i+d, y+j)2
(10)

Among them, the smaller the matching value obtained
by the sum of absolute values and squaresof grayscale
differences, the higher the similarity between the pixels to be
matched. The closer the calculation result of the normalized
cross correlation method is to 1, the higher the similarity
between the pixels to be matched. In addition, the Census
transform based on non parametric transformation can also
measure the similarity of pixels, which can detect local
features such as corner information and edge information.
The cost function expression is shown in equation (11).

Scensus(x, y, d) = ham [IL(x, y), IR(x + d, y)] (11)

In equation (11), ham [IL , IR] represents the Hamming
distance. The Census transform first constructs a support
window and sets the reference pixel as the center pixel of
the window. Next, it compares the grayscale values of each
pixel in the center reference pixel and the support window.
When the grayscale value of the reference pixel is lower, it is
recorded as 0, otherwise it is recorded as 1. Finally, it generate
a binary bitstream and use it as a Census sequence of
central reference pixels. Essentially, Census transformation
transforms the gray value of the reference pixel into a binary
code stream, and its replacement expression is shown in
equation (12).

ζ [I (p), I (q)] =

{
0, I (p) ≥ I (q)
1, I (p) < I (q)

(12)

In equation (12), I (p) and I (q) are the grayscale values
of the central reference pixel and the remaining pixels,
respectively. The conversion connection expression for
binary bitstream sequences is expressed in equation (13).

Scensus(x, y) = ⊗
l
i=−l ⊗

r
j=−r ζ [I (x, y)I (x + i, y+ j)] (13)

In equation (13), ⊗ represents bitwise connection, and
Scensus(x, y) refers to the Census sequence code of the
central reference pixel. I (x, y) means the grayscale value
of the reference pixel, and I (x + i, y + j) indicates the
grayscale value of other pixel points. After obtaining the
Census sequence codes of all pixels, the matching surrogate
value is calculated with the similarity metric of Hamming
distance. The calculation of Hamming distance is shown in
equation (14).

Scensus(p, d) = Hammin g [Sl(p)] Sr (p, d) (14)

In equation (14), Sl(p) and Sr (p, d) respectively represent
the Census sequence codes of the pixel p in the left and
right images, while Scensus(p, d) infers the matching value
of the pixel p. Among them, the smaller the Hamming
value, the greater the similarity between pixels. The specific
transformation of Census is shown in Figure 6.

The traditional Census transform can improve the match-
ing accuracy of images under the influence of noise, but it
has certain drawbacks. Firstly, the selection of the support
window has a significant impact on the matching effect.
When the window is too big, it can cause points with
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FIGURE 6. The specific transformation process of census.

significant disparity changes to be included, resulting in
a decrease in matching accuracy. Secondly, the Census
transform has an excessive dependence on the central
reference pixel, and sudden changes in the grayscale value
of the reference pixel can affect the entire matching effect
[27], [28]. In response to the dependency of the Census
transform on the central reference pixel, an improved Census
transform method with mean discrimination was studied.
This method first calculates the average grayscale values of
all pixels within the window and uses them as reference
values. Next, it needs to work out the absolute value of the
difference between the reference and the center pixel value,
and compare it with the set threshold. Finally, the grayscale
value of the reference pixel is decidedwith the comparison
results, and the definition calculation of the comparison is
shown in equation (15).

Iz(x, y) =

{
I (x, y),

∣∣I (x, y) − Ī (x, y)
∣∣ ≤ δ

Ī (x, y),
∣∣I (x, y) − Ī (x, y)

∣∣ > δ
(15)

In equation (15), δ represents the set threshold;I (x, y) is
the grayscale value of the center pixel in the window;Ī (x, y)
indicates the average grayscale value of pixels except for the
center point, and also represents the final reference grayscale
value. The calculation of Ī (x, y) is presented in equation (16).

Ī (x, y) =

∑
I (x, y)
N − 1

(16)

In equation (16), N denotes the number of pixels, and
after mean discrimination, the transformation relationship of
Census is represented as shown in equation (17).

ζ [IZ (p), I (q)] =

{
0, IZ (p) ≤ I (q)
1, IZ (p) > I (q)

(17)

In equation (17), IZ (p) means the grayscale value of
the center reference pixel after mean discrimination. The
comparison of the Census transformation results between
the center pixel without mean discrimination and the mean
discrimination is shown in Figure 7. From Figure 7, when
the central reference pixel changes due to interference,
the Census sequence code obtained by the traditional
Census transformation method also undergoes significant
changes. The Census transformation method after mean

FIGURE 7. Comparison of census transformation results.

discrimination is almost unaffected. This indicates that the
Census transformation method after mean discrimination has
strong adaptability to the environment.

An increase in the Census transform window can improve
the matching accuracy to a certain extent, but an excessive
window can lead to an increase in the mismatch rate at
the edge of the region. To address this issue, a Sobel edge
detection operator was proposed to constrain image edges.
The implementation step of this method is to first convert
the original image into a Grayscale and smooth it, so as to
reduce the impact of noise on the edge detection results. Then
apply horizontal and vertical Sobel operator templates to the
smoothed image, respectively. The horizontal Sobel operator
template is used to detect horizontal edges in the image, while
the vertical Sobel operator template is used to detect vertical
edges. The calculation results of these two templates obtained
gradient images in the horizontal and vertical directions of the
image, respectively. Then merge the horizontal and vertical
gradient images. This can be achieved by calculating the
amplitude of two gradient images, that is, calculating the
gradient size of each pixel point, as shown in the formula (18).

G = sqrt((g2x + g2y) (18)

In equation (18), gx , gy represents the gradient values of
the pixel in the horizontal and vertical directions, respectively.
Finally, perform threshold processing on the merged gradient
image. According to the set threshold, set the pixels below
the threshold in the gradient image to 0, and the pixels above
the threshold to 255 to obtain a binarized edge image. Among
them, the Sobel edge operator is a discrete difference operator
used for edge detection, which mainly marks a specific point
as an edge point based on the approximate value of the
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brightness of the pixels around the edge. This operator mainly
assigns weights to the distance between neighboring pixels
and the current pixel to highlight the edge contour of the
image. In addition, when selecting the scale of the support
window, the issue of disparity continuity should also be
considered. The study introduced the method of Absolute
value of grayscale difference (AD), which assigns more
weights to pixels with higher feature similarity to thematched
pixels, while assigning fewer weights to pixels with lower
similarity [29].

IV. ANALYSIS OF 3D RECONSTRUCTION COST FUNCTION
ALGORITHM BASED ON STEREO MATCHING
To verify the performance of the Census transform match-
ing algorithm that introduces edge gradients, the study
selected Census and AD Census classic transform methods
for comparison. The dataset used in the experiment was
Middlebury, and Teddy, Cones, Venus, and Tsukuba images
were selected as the research subjects. Among them, Teddy
images are characterized by a relatively large parallax range,
the presence of some textureless areas and tilted planes, and
a high degree of occlusion in the scene. Cones images are
characterized by the presence of repetitive texture regions
and some non planar objects in the scene. There are mainly
many object planes in the Venus image scene, and the
texture features of planar objects are very rich. The depth
information of the scene changes regularly, and there are also
slightly inclined planes with weaker textures. The disparity
range of Tsukuba images is relatively small, and the view
scene information is mainly the information of the front
image parallel to the imaging plane. Several objects in the
scene have different depth features, and the edge information
between objects is relatively complex, especially in the tripod
area of the black camera and the long lamp tube part of
the orange desk lamp. There are also areas in the image
where texture features are not obvious. These four typical
sets of images include most of the feature situations of real-
world scenes, making them suitable for testing and evaluating
the performance of matching algorithms. At the same time,
the development platform for the experiment was the Win
10 × 64 system, with Intel (R) Core (TM) i5-9500 as the
central processor, 8GB of running memory, and MATLAB
R2016a as the experimental environment. In addition, the
standard disparity maps among the four images are expressed
in Figure 8.

The disparity maps obtained by different algorithms are
shown in Figure 9. From Figure 9, the disparity map effect of
the Census transform algorithm introducing edge gradients
was significantly better than traditional algorithms. The
contours of each object in the disparity map of this algorithm
were relatively clear. Among them, the Census transform
algorithm that introduced edge gradients detects the best
sharpening effect of the book contour edge in theVenus image
and the desk lamp contour edge in the Tsukuba image, with
the highest edge clarity. At the same time, the amount of
mismatched points in this algorithm was significantly cut

FIGURE 8. Standard disparity maps in four types of images.

FIGURE 9. Parallax maps obtained by different algorithms.

down in contrast to the classic Census transformation method
and the ADCensus classical transformation. The main reason
was that the detection of edge points helps with image
resolution, while the Sobel operator can obtain approximate
grayscale differences in the horizontal and vertical directions
by obtaining gradient information, thereby improving the
resolution of image edges.

The research continued to validate the matching perfor-
mance of the Census transform algorithm that introduced
edge gradients. Experiments were conducted on non occluded
regions, all regions, and disparity discontinuous regions of
the image. At the same time, to ensure the effectiveness of
the validation results, the experiment was conducted twice
in different regions. Among them, the non occluded area
referred to the matching area after excluding the mismatched
points in the occluded area. The results of the twomismatched
rates obtained by different algorithms in the non occluded
area are shown in Figure 10. As shown in Figure 10, the
Census transform algorithm that introduces edge gradients
has the lowest error matching rate on different images, with
a minimum value of 25.1%. The minimum error matching
rates of the other two algorithms are 28.3% and 27.4%,
respectively.Meanwhile, its averagemismatch rate in the four
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FIGURE 10. Mismatching obtained by different algorithms in non
occlusive regions.

images is only 28.75%, while the classic Census transform
algorithm is as high as 35.37%. The Census transform
algorithm that introduced edge gradients had a high matching
accuracy in non occluded regions.

The results of the three algorithms tested in all regions
of the disparity map are shown in Figure 11. As shown in
Figure 11, the Census transform algorithm that introduces
edge gradients has the lowest error matching rate in all
regions, and the lowest value is only 26.4%. The minimum
values of the classic Census transformation method and the
AD Census classical transformation algorithm are 29.2%
and 28.3%, respectively, which are 2.8% and 1.9% higher
than the proposed algorithm in the research. Meanwhile, its
average error matching rate in the four images is only 32.5%,
while the AD-Census classical transformation algorithm is
as high as 37.32%. The Census transform algorithm, which
introduces edge gradients, ha the lowest mismatch rate in all
regions and the best performance.

The error matching rate results measured by different
algorithms in the discontinuous areas of the disparity map
are shown in Figure 12. From Figure 12, it can be seen
that the Census transform algorithm, which introduces edge
gradients, has the lowest error matching rate in the disparity
discontinuous regions of Teddy, Cones, Venus, and Tsukuba
images, and the lowest value is only 32.1%. The minimum

FIGURE 11. Mismatching obtained by different algorithms in all regions.

error matching rates of the classic Census transforma-
tion method and the AD Census classical transformation
algorithm are 45.3% and 36.6%, respectively. Meanwhile,
its average mismatch rate in the four images is only 37.9%,
while the other two algorithms are as high as 49.51%
and 41.47%, respectively. In addition, from the test data
of the three test areas, the Census transform algorithm
introducing edge gradients had a smaller fluctuation range of
mismatch rate, indicating better stability performance. The
results indicated that the Census transform algorithm, which
introduced edge gradients, had higher matching accuracy
and optimal performance in discontinuous areas of disparity
maps.

The study continued to validate the performance advan-
tages of the improved algorithm by calculating the absolute
difference of average pixels in different regions. The exper-
iments were conducted on the entire and the non occluded
region of the disparity map, and the average pixel absolute
difference results of different algorithms on the four images
are shown in Figure 13. From Figure 13, it can be seen
that the Census transform algorithm, which introduces edge
gradients, has the lowest average pixel absolute difference
between the entire region and the non occluded region in
all four images. Among them, the minimum value of this
algorithm in non occluded areas is only 1.62, while the
other two algorithms are 3.75 and 2.9, respectively. At the
same time, the algorithm has a minimum average pixel

VOLUME 11, 2023 123713



P. Peng, J. Han: 3D Reconstruction Cost Function Algorithm Based on Stereo Matching

FIGURE 12. Mismatching obtained in discontinuous regions of disparity
maps.

absolute difference of only 2.49 in the entire region of the
disparity map, while the minimum value of the classic Census
transform algorithm is as high as 8.83. The improved Census
transform algorithm had high matching accuracy.

To further validate the performance advantages of the
improved algorithm, the study conducted a calculation of the
running time. The study also selected Census transform, AD-
Census classical transform method, and improved Census
transform algorithm with edge gradient for comparison
of results. Meanwhile, the experimental images selected
were Teddy, Cones, Venus, and Tsukuba images from the
Middlebury dataset. To guarantee the experimental data was
valid, a total of ten tests were conducted. The runtime
results of different algorithms on four images are shown in
Figure 14. As shown in Figure 14, the improved Census
transform algorithm had the lowest runtime on all four
images. Among them, the Census transform algorithm that
introduced edge gradients had a minimum running time of
only 8.2s on Teddy images, which was 2s and 1.6s lower than
the other two algorithms. Meanwhile, the minimum running
time on Tsukuba images was only 2.1s. The improved Census
transformation algorithm had shorter runtime and better
performance.

The experiment continued to process the data from ten
measurements, selecting the average of the valid data as the
final test result, as shown in Table 1. FromTable 1, the Census
transform algorithm, which introduced edge gradients, had

FIGURE 13. Average pixel absolute difference results for different regions.

the lowest average effective runtime on all four images.
Among them, the effective average value of this algorithm on
Venus images was 4.6s, which was 0.6s lower than the classic
Census transform algorithm.Meanwhile, its effective average
value on the Cones image was only 7.1s, which was 0.5s
less than the AD-Census classical transformation method.
The improved Census transform algorithm could not only
guarantee the accuracy of matching, but also decreases the
complexity of time, with significant performance advantages.

TABLE 1. Average effective running time of different algorithms(s).

The research continues to verify the matching accuracy
of the Census transform algorithm that introduces edge
gradients. The selected digital museum image dataset is
the Metropolitan Museum of Art’s open access image
dataset. This dataset contains high-resolution images of over
40000 artworks collected by the museum, covering various
fields from ancient artifacts to modern art. Extract four rep-
resentative images as research objects, namely Ritterstrasse,
Flowers, Smokers, and Farrier. The experiment uses advanced
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FIGURE 14. Running time of different algorithms.

methods based on polar plane images, perspective translation,
and traditional depth estimation algorithms to compare their
performance. In themethod based on polar plane image, polar
plane image is taken as input directly, and Convolutional
neural network is used to estimate parallax information. The

method based on perspective translation mainly increases
the Receptive field of the network to better capture the
parallax information. The evaluation index is Root-mean-
square deviation (MSE), which is mainly used to evaluate
the matching accuracy of the matching algorithm. The MSE
values of different algorithms are shown in the table 2. As can
be seen from the table 2, the Census transform algorithm
that introduces edge gradients has the lowest MSE value in
all images. Among them, this method has the lowest MSE
value in Flowers images, only 0.003, which is 1.506 lower
than the method based on polar plane images. Meanwhile, its
MSE value in the Ritterstrasse image is 3.025, a decrease of
0.556 compared to the perspective shift based method. This
indicates that the proposed method has excellent matching
performance in various complex scenarios.

TABLE 2. MSE values for different algorithms.

V. CONCLUSION
SM, as a key link in binocular vision, has critical effect
on 3D reconstruction technology. To address the issue of
unclear texture features in SM algorithms, a Census transform
algorithm based on mean discrimination and Sobel edge
detection was introduced into the calculation of the cost
function. At the same time, the method of ADwas introduced
for optimization. The results showed that the sharpening
effect of the book contour edge in the Venus image detected
by the improved algorithm was the best compared to the
desk lamp contour edge in the Tsukuba image. Moreover,
the amount of mismatched points in this algorithm was
significantly cut down compared to the classical Census
transformation method [30] and the AD Census classical
transformation [31]. At the same time, the Census trans-
formation algorithm that introduced edge gradients had a
minimum error matching rate of only 26.4% in all regions,
which was reduced by 2.8% and 1.9% compared to the
classical Census transformation method and the AD Census
classical transformation algorithm, respectively. And the
minimum value of this algorithm in non occluded areas was
only 1.62, which was 2.13 and 1.28 lower than the other two
algorithms, respectively. In addition, the Census transform
algorithm that introduced edge gradients had a minimum
running time of only 8.2s on Teddy images, which was 2s
and 1.6s lower than the other two algorithms. This indicated
that the algorithm had significant performance advantages
and excellent practical application results. However, the test
subjects in the study were all taken from the Middlebury
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platform, where the datasets were all processed images
and did not have good representativeness. Therefore, future
research can consider using datasets from complex real-world
scenarios for testing to further confirm the performance of the
algorithm.
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