
Received 6 September 2023, accepted 29 October 2023, date of publication 2 November 2023, date of current version 9 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3329717

Speed Up VVC Intra-Coding by Learned
Models and Feature Statistics
JIANN-JONE CHEN 1, (Member, IEEE), YEH-GUAN CHOU2, AND CHI-SHIUN JIANG3
1Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
2Sunplus Tech Company Ltd., Hsinchu 30076, Taiwan
3Telecommunication Laboratories, Chunghwa Telecom Company Ltd., Taoyuan 326402, Taiwan

Corresponding author: Jiann-Jone Chen (jjchen@mail.ntust.edu.tw)

This work was supported in part by the Taiwan National Science and Technology Council (NSTC) under Grant NSTC
112-2221-E-011-113.

ABSTRACT The newest video coding standard, Versatile Video Coding (VVC), adopts a QTMT, quad-
tree plus multi-type tree (MTT), block partition structure and improves the compression performance by
about 30%∼50%, compared with the previous High-Efficiency Video Coding (HEVC) one, at the cost of
higher time complexity. To make practical video communication applications feasible, we have to reduce
the high time complexity resulting from an exhaustive rate-distortion optimization (RDO) search procedure.
We proposed to predict CodingUnit (CU) split modes by a learnedmodel whose input comprises neighboring
line pixels and quantization parameters (QP). In addition, we set thresholds based on statistical image
features and coding behaviors to eliminate unnecessary coding operations in critical coding control modules.
Experiments showed that, compared with the default VVC intra-coding, the proposed method saves 46.73%
of encoding time, with Bjøntegaard Delta Bit Rate (BDBR) increment of 1.16%. After retraining the learned
model with a specified QP, the time reduction rate can achieve 51.79%, and the BDBR slightly increases
to 2.07%. The proposed speedup coding scheme effectively reduced the VVC time complexity to a large
extent.

INDEX TERMS Versatile video coding (H.266/VVC), coding unit split mode, convolutional neural
networks, intra-coding acceleration.

I. INTRODUCTION
A. 266/VVC
The H.266/VVC [1] outperforms the HEVC/H.265 [2]
30%∼50% in compression efficiency. It supports 8K video
coding and upgrades the service quality of applications like
augmented reality (AR), immersive virtual reality (VR),
and 360◦ video. However, the VVC encoding complexity
is 31 times HEVC [3]. It needs to reduce the VVC
coding complexity for practical applications. The VVC
intra-frame coding time is longer than the inter-frame but can
provide a high-quality reconstructed reference frame for all
others in one GOP. We focus on designing speedup coding
methods for the VVC intra-frame coder. VVC adopts a more
flexible QTMT coding mode to yield better compression
performances than the previous QTBT. In addition, several

The associate editor coordinating the review of this manuscript and
approving it for publication was Gangyi Jiang.

powerful coding tools are used in the intra prediction (IP)
process to improve further the coding performance, such that
the time complexity increases. The CCLM method assumes
that reconstructed luma pixel values can help predict chroma
ones through a linear model so that compressing chroma
samples can be more efficient. Previous research [4] shows
that different VVC test models (VTM) spend 80%∼90% of
time processing luma samples under all-intra (AI) coding
mode. We proposed to reduce the encoding time complexity
for luma pixels under acceptable quality degradation.

To utilize spatial correlation, the VVC refers to recon-
structed neighboring CUs to perform IP and encodes
the residual by entropy coding methods. For a CUW×H ,
the encoder will refer to W pixels from the upper and the
upper-right block, respectively, and the left H pixels are
obtained in a similar way, as shown in Fig. 1, in which
there are 2×(W+H)+1 reference pixels in total. The angle
intra-prediction (AIP) has been increased from 35 in HEVC

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 124609

https://orcid.org/0000-0002-3519-1594

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

FIGURE 1. 2×(W+H)+1 reference pixels from neighboring blocks.

to 67 in VVC to better fit image textures. Due to variable
CU shapes in the MTT mode, VVC provides 28 wide
AIP (WAIP) modes [5] for unsymmetric angle prediction.
With the enhanced AIP, the most probable mode (MPM) in
HEVC is increased to 6 in VVC to maintain good MPM
performance. In addition to the enhanced coding mode,
VVC adopts multiple reference lines (MRL) [6], [7], Matrix
weighted intra prediction (MIP) [8], [9], Intra Sub-Partitions
(ISP) [10], and 4-tap interpolation filter to improve coding
performance. Extending the line-based IP mode, an adaptive
intra-subpartitionmethod [11] improves the coding efficiency
based on fixed number subpartitions, which yields 0.95% of
bitrate savings.

FIGURE 2. Intra Prediction processing flow modified from [12].

The IP coding control is shown in Fig. 2, modified from
concurrent processing [12] to sequential. When reference
pixels are ready for a CU, the coder will find 2∼3 best,
depending on CU size, from the 35 prediction angles of
HEVC, and then test the left and right to the best ones to
refine the prediction. Whether to use MRL and MIP depends
on the CU size and its location. If MPM does not comprise
the selected prediction angle, the candidate list will include
this selected one together with the MPM, and the ISP mode if
available. The best mode can be determined by selecting the
one with the minimum rate-distortion cost, RDcost, among
modes in the candidate list can be obtained after performing
a multiple transform selection (MTS), a low-frequency non-
separable transform (LFNST) [13], and entropy coding.

The high time complexity to yield the best RDcost (RDC)
when encoding a CU can be reduced by only calculating
the RDC of the final candidate mode selected through a low

complex rough mode decision (RMD) process. The RMD
adds the bitrates with the summed–p absolute transform
difference (SATD) after applying a Hadamard transform to
the residual:

RMD = STAD+ λ × bitratemode, (1)

in which λ varies according to different QPs. The RDC is
calculated by adding the CU coding error, measured by sum
of square differences (SSD), with a specific mode, and the
bitrate scaled by the λ:

RDC = SSD+ λ × bitrate. (2)

B. NEURAL NETWORK MODEL
Convolutional neural network (CNN) has been proven
efficient in image processing/classification applications. For
specific applications, the deep learning process helps find the
optimal convolution kernels which act as sliding windows
to extract features from an input image yield an output
feature map [14]. Activation functions enable CNNs solving
non-linear problems, such as image pixels with non-linear
relationships. Different types of activation functions, such
as Sigmoid linear unit (SiLU), rectified linear unit (ReLU),
and leaky rectified linear unit (LReLU), are used by different
applications. We adopted ReLU and LogSoftmax defined as:

ReLU (xi) = max(0, xi) and (3)

ŷi = LogSoftmax(xi) = log

(
exp(xi)

6K
j exp(xj)

)
, (4)

where xi denotes the i-th element of a K-dimensional vector,
x, which is the output of a feedforward neural network, ŷi
denotes the LogSoftmax output for xi. The pooling layer
helps reduce feature map size to speed up processing without
losing important features. It can also eliminate CNN learning
models from over-fitting. Max-pooling, mean-pooling, and
stochastic pooling are commonly used methods. The stride of
pooling is usually fixed. To make input and output consistent
in size, the adaptive pooling layer in Pytorch [15] can learn
to find the best stride that is usually fixed.

C. RATE-DISTORTION OPTIMIZED MODE
Both HEVC and VVC adopt a tree-like block partition
structure for the encoder to search exhaustively for an
optimal coding mode for one CUi, denoted as M i

opt . VVC
adopts a 128 × 128 coding tree unit (CTU). Fig. 3 shows
the six block-split modes of the QTMT coding structure.
As shown, the MTT partition mode consists of a vertical
binary tree (VBT), horizontal binary tree (HBT), vertical
ternary tree (VTT), and horizontal ternary tree (HTT). Fig. 4
demonstrates a practical QTMT coding tree structure and the
corresponding CTU (128×128) partition example. As shown,
the QTMT enables very flexible block partition structures
to compress a CTU in a rate-distortion optimization (RDO)
way. However, it needs exhaustive searching for the RDO
procedure to find the best CU block split mode.

124610 VOLUME 11, 2023

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

FIGURE 3. The six CU split modes of QTMT [12].

FIGURE 4. Examples of VVC encoding tree (left) and QTMT partition on a
CU128×128 (right), modified from [12].

To serve variable bitrate (VBR) coding, the coder sets
different QP values to yield quality bitstreams. If one designs
a learned model to serve the CU mode prediction under
one QP it can help the coder provide fixed-quality streams
with fewer operations. However, as the coding performance
evaluation specifies four QPs, it generally needs to train four
models to achieve highly accurate prediction. Li et al. [16]
proposed to add a QP Mask layer in the model to distribute
the QP to all pixels. Experiments revealed that adopting one
learned model to predict CU modes under different QPs
is difficult, as the CU mode will change drastically under
different QPs. Fig. 9 shows that the CU mode becomes
complicated when setting a smaller QP compared to a larger
one. In this research, we study how to design a single model
to accurately predict CU mode under different QPs.

Reducing the VVC encoding time complexity while
keeping good coding quality is the primary topic discussed
in this paper. Based on literature studies and experimental
studies of the VVC coder, we proposed to design CNN
learning models to predict CU split modes to eliminate
possible trivial RDO operations, In addition, we set up
threshold values based on statistical features of CU samples
to terminate the exhaustively searching RDO procedure
early. In what follows, Section III discussed the design of
the QTMT mode prediction model. The proposed speedup
coding scheme is described in Section IV. Section V is the
experimental study. Section VI concludes this paper.

II. CU CODING MODE PREDICTION
A. CU SAMPLE UNIT
To train a CNN model, the system has to provide sam-
ples with uniformly distributed labels to avoid overfitting.
Five videos, A_PeopleOnStreet(ClassA PeopleOnStreet),

B_BasketballDrive, C_RaceHorses, D_BasketballPass, and
E_FourPeople are selected from the list of HEVC common
test conditions (CTC) [17] for training, part of which is
the same as the VVC CTC. To avoid adopting similar
datasets for training and testing, we selected from each video
10 frames which are 8 frames apart. In addition, to increase
database diversity, we additionally selected images from
a CPIV database (database for the CU Partition of Intra-
mode VVC) [16] to collect training samples from videos
with various resolutions and diverse scene contents. Videos
composed of independent still images can provide more
diversified and detailed image content, other than those
dependent ones that may lead to blurred regions. Fig. 5 shows
both fast-moving balls and black shoes marked by red squares
look vague.

FIGURE 5. Blurred regions of moving objects in video.

To solve the problems of data insufficiency and
non-uniformity in training sample collection, we can perform
data augmentation operations, such as rotation, noise
addition, or partial cutting on data samples. However, data
augmentation methods are not suitable to process intra-coded
CU samples [18] in that the coder references neighboring
block pixels for prediction. The coding mode of one CU
would be different after flipping and rotation operations,
i.e., one CU may comprise different labels. The model
learning process cannot converge under non-coherent label
data. For example, the CU64×64 enclosed by a red square
in Fig. 6(a) demonstrates totally different partition types
from the horizontally flipped counterpart shown in Fig. 6(b),
in which the blue-square encloses a CU32×32 whose partition
type has been changed from VBT to NO. It’s obvious that
the coder utilizes different neighboring blocks to perform
intra-coding for this CU and yields different coding modes.
The model training should comprise neighboring block
pixels to predict the intra-coded CU mode. To enable data
augmentation for intra-coded CU samples, we designed the
model input additionally comprising CU neighboring pixels
so that the same CU can provide different label data under
different neighboring pixels. Adopting this design, we can
construct a training database with uniformly distributed CU
labels. Rotating CU samples with 90◦, 180◦, and 270◦,
together with their reference pixels fetched from neighboring
blocks in rotated images, we obtained a 4 times larger
dataset.

VOLUME 11, 2023 124611

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

FIGURE 6. Non-coherent optimal coding modes before and after
horizontal flipping on a CU (blue box): (a) Original Mopt ; (b) The Mopt
after horizontal flipping.

B. CODING MODE HANDLING
The CPIV database program was designed to find only the
M i
opt , comprising all CU partition labels, RDcosts for all

existing CUs during the RDO process, and can provide as
much as 109 such training samples. In addition to collecting
just theMopts, we intend to acquire sub-optimal ones that had
been exploited during the RDO process. For example, if the
ground-truth optimal split mode of a CUi

32×32 is miopt=NO,
only the label ‘NO’ can be acquired for training. During
the RDO process, all block split modes and their sub-CUs
utilized their corresponding reference pixels, and these local
optimal coding modes can be included for training as the
learning model has to predict split modes of various CU
sizes. However, these collected label data are not uniformly
distributed because the encoder will not split smaller CUs and
only allow QT mode for square CUs. Under this condition,
more NO label samples will be acquired than QT. It needs
to preprocess the training samples after data augmentation to
yield a database with uniformly distributed split modes.

Previousworks utilized CU textures andQP to trainmodels
to predict the mopt for a CU [18]. However, VVC references
neighboring block pixels to perform IP and calculates all
RDCs to determine the optimal CU mode. The optimal mode
of a CUi, miopt = mopt (CU i), depends on neighboring pixels,
or multiple reference lines (MRL), and can be expressed
as miopt (CU

i,MRL i). The MRL should be included in a
training sample to comply with the VVC coding procedure.
By including neighboring block information [19] for model
training, the prediction outperforms that without [20].
However, it needs additional storage and computation loading
to train a model. VVC refers to MRLs for intra-prediction
and the CNN extracts features from the MRLs to yield better
prediction, as shown in Fig. 7(a). Note that the offset pixels
are not included for training because they are padded from
inner line segments, not from reconstructed images. The
referred MRL for model training is shown in Fig. 7(b).

C. DATA STATISTICS
Designing a single CNN model to learn the highly com-
plicated QTMT block split procedure under different QPs
is challenging. The CNN model learns general decision
rules from training samples with its capacity. As the RDO

FIGURE 7. Reference pixels: (a) Original MRL Samples; (b) MRL=TR ∪ LR
for model training.

procedure will test numerous block split modes for the
optimal one, it’s difficult for the model to yield precise
predictions. Although the model helps eliminate exhaustive
search, a predicted sub-optimal CU split mode would lead
to increased RDCs. To avoid relying only on the learning
CNN model, we proposed to find other decision rules in the
coding procedure from experiments to early terminate (ET)
the RDO process. Two features, standard deviation of pixel
values in a CUi, σi = σ (CU i), and the RDC to encode a CU,
are extracted in the coding procedure to determine whether to
ET the RDO process.

The σi measures the texture homogeneity of a CUi, based
on which trivial RDO operations can be eliminated if it
satisfies the condition, σi<Tσ , where Tσ is a pre-determined
threshold. As the encoder splits blocks recursively in the
QTMT mode, it has to set different Tσ s under different QPs
and CU split depths comprise those for QT, BT, MT, and
average depths. Experiments revealed that, according to the
InterQuartile Range (IQR), σi would be larger for larger or
square CUs under the same depth. When the CU size is larger
than 256 × 256, σi becomes un-sensitive. Experiments also
showed that when (W>H), σi is roughly 1.08 times larger.
Formulate the above observations as:

T̂σ =

√
scale(W × H) ·

(
QP
92

)
· log10(depth) · αdepth, (5)

and

Tσ =


T̂σ · 1.08, ifW > H
T̂σ /10, if CU is specific size
T̂σ , otherwise.

(6)

where scale(Num) = min(128,Num), depth = QTdepth +

MTdepth, and αdepth =1.5depth, all of which have been verified
from repetitively extensive experiments.

D. EARLY TERMINATION
For a CU64×64, only QT and NO modes are applicable.
When QP is small, it’s likely that QT would be applied on
a CU64×64. Under this condition, the coding controller can
utilize the RDC available in the normal coding procedure
to early terminate or skip the coding process through proper

124612 VOLUME 11, 2023

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

thresholds [21]. In comparisons, both CNN model inference
and σi calculation require extra computations, but the RDC
would be available at the corresponding processing stage.

The distributions of split and non-split modes along
different RDCs are shown in Fig. 8. As shown, the distribution
of NO resembles normal and the speedup control benefits
from correctly determining a non-split CU. Experiments
revealed that a good compromise can be reached if the
threshold is selected such that 60% of NOmode decisions can
be covered. Although setting this threshold to determine NO
modes would lead to false positive (FP) decision results, i.e.,
red plots inside the blue ones, the partition depth of optimal
modes should be small under this FP condition, i.e., RDC ≤

TRDC , and the resultant RDC will not deviate too much from
the optimal one. Instead of utilizing the Bayes rule to add up
a rectified σ . we set the threshold value as:

TRDC = µRDC + 0.3 · σRDC , (7)

which adds 0.3 times of σ to the mean RDC value,
In the formal VTM system, the encoder will calculate

the non-split mode RDC of a CU for the next module,
xCheckModeSplit, to find the optimal coding mode. Our
speedup coding scheme (SCS) utilized this ready RDC to
check whether RDC ≤ TRDC to decide early termination or
not, This decision for speedup is different from that using the
σi. VVC will first infer all possible split modes before the
RDO procedure. For example, six split modes are allowed for
a CU32×32, The decision condition by Tσ can help turn off
some split-mode tests to reduce RDO operations. Using the
TRDC can further eliminate some RDO operations after the
formal IP procedure. By utilizing the two decision conditions
for speedup coding, the probability of burst bitrate increase
due to false prediction can be reduced.

FIGURE 8. Distributions of split and non-split modes along different
RDCs.

III. CU MODE PREDICTION
Previous works [21] designed and trained a CNN to predict
CU partition modes for speedup coding. Although it achieves

good speedup performance under specific conditions, how
to design the model and its training strategy to deliver
cost-effective speedup performance is still challenging. In
this section, we will describe our proposed CNN-based
speedup control scheme, training strategy, and fast split-mode
decision method.

A. MODEL FRAMEWORK AND TRAINING
Developing an RDO procedure to be non-exhaustive helps
reduce the time complexity. However, QTMT is highly
complex and difficult to predict precisely. For example, when
one CU demonstrates horizontally splittable texture patterns,
such as flat edges, we may expect the coder to split the CU
by HBT or HTT structure for a lower RDC. However, the
optimal codingmodemay not be coherent with this subjective
evaluation in that the best QTMT mode would be determined
based on QP, reference pixels, the parent-block split mode,
and so on, whichwill lead to quite different split modes. Fig. 9
shows that: when VVC quantizes this 128 × 128 CTU with
different QPs, 22, 27, 32, and 37, corresponding final split
modes would be different. The CU32×32 block marked with
a red frame comprises primarily vertical edges. When QP =

22 and 27, the coder splits the subCU vertically. However,
it splits the subCU horizontally when QP = 32 and 37. This
example shows that the QTMT split mode is not determined
solely by image textures. In addition, the split CU/subCU is
not limited to square so it needs specific models for different
CU sizes and width/height (W/H) ratios to achieve precise
prediction.

This multi-prediction scheme is efficient but with high
space and time complexity. To reduce complexity, we can
normalize the size of a CU block to act as the input of one
learning model. However, preliminary experiments showed
that CU texture details would change under different aspect
ratios and lead to biased model learning. Li [16] proposed to
predict VVC CU modes based on this scheme and designed
19 different learning models for different CU sizes and ratios.
To simplify model training, we utilized adaptive pooling to
process CUs with different sizes/ratios and yield a fixed-size
feature map. As described in section I-B, when the pooling
layer resizes the feature map, it can reserve stable features
even if some pixel value deviation occurs to achieve the target
of utilizing one fixed-size output feature map for different-
size inputs.We call this proposed prediction schemeAdaptive
CU CNN (ACUCNN).

B. ADAPTIVE CNN
As the QTMT RDO procedure is an exhaustively searching
process, it will lead to many possible final CU split modes.
How to design aCNNmodel for accurate CUmode prediction
is challenging. In terms of model learning, resizing a CU
image block directly before being a CNN input will lead to a
biased feature map. For the QTMT structure, the maximum
CU size is 128 × 128, which would be split by QT. The
split mode decision process starts from a CU64×64, which
generally comprises not so many image details. Imposing

VOLUME 11, 2023 124613

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

FIGURE 9. Practical QTMT Mi
opt s under different QPs: (a) Original image;

(b)-(e) QTMT split results when QP = 22, 27, 32, and 37.

pixel interpolation or decimation on this CU64×64 will add
extra or lost critical image features and lead to inaccurate
model prediction. The adaptive pooling helps eliminate
inaccurate model prediction when processing different-
size CUs. Previous works [19], [20] showed that adaptive
pooling helps improve the prediction accuracy of determining
CU split or not. Investigating the adaptive pooling layer
reveals: (1) Direct CU resizing is a kind of low-dimensional
processing that is operated on one-channel gray pixels or
three-channel color pixels; (2) The adaptive pooling performs
feature resizing and acts as high-dimensional processing
based on multi-channel extracted feature maps, which can
pull and reserve original image features after the layer-
by-layer deep learning process. Their works justified that
feature-based resizing for a model to predict the CU coding
mode is better than pixel-based in handling different-size
CUs.

Although the MRL consists of three-pixel lines, the IP
procedure will reference only one. However, the learning
model requires enough image texture to learn the correlation
between one CUi and MRLi, and three-pixel lines meet the
minimum width requirement. Note that the MRL does not
include offset pixels because only particular IP directions
will reference them. For example, in the IP process, the
required reference pixels are not enclosed by a regular
rectangle, as shown in Fig. 7(a). Either omitting extra pixels
tomake reference pixels forming a rectangle block or padding
required offset pixels cannot help extract useful features.
Chang’s work [7] revealed that offset pixels are utilized in
the diagonal direction from the lower-left corner to the upper-
right, and the one in the reverse direction, i.e., intra-prediction
mode (IPM) mode2 and mode66, respectively. They affect
only a few IPM modes and can be obtained by extrapolation
from neighboring pixels. We proposed to omit these extra
pixels for efficient model learning, as shown in Fig. 7(b).
To reduce the CNN processing complexity, the upper-left and
upper pixel blocks are combined as the top reference (TR),

i.e., reference pixels comprise those in the TR and the left
reference lines (LR), as shown in Fig. 7(b). The reference
pixel samples are the same as in VVC. For the CU in the
upper-left corner of one image, the MRL comprises no valid
data, and the average value of the CU replaces them to make
the model works for all CUs.

Fig. 10 shows the framework of the proposed ACUCNN
whose input comprises six parameters, i.e., CU, TR, LR, QP,
and (W, H). The first three are image contents provided for
feature extraction, the QP Mask module distributes the QP to
all pixels, and (W, H) provides the corresponding CU/subCU
size information for the model. The Multi-Input Adaptive
CNN (MIA-CNN) takes pixels after the QP Mask module as
input, each of which will transform pixel values to different
scales of feature maps which concatenates the (W, H) as input
for the Fully Connected (FC) layers to learn to predict CU
split mode. The QP controls the video coding bitrate. As the
QP would affect the CU coding mode, it is considered as one
input to the FC layer in the prediction model [18], [20], [22].
Others proposed designing independent prediction models
for different QPs, increasing the full model size. The QP
Mask [16] can act as a miniature model to embed the QP
to every pixel before the standard model processing, such
that we can design one model to provide accurate CU mode
prediction under different QPs. This QP mask normalizes
an input QP such that the training process can converge
quickly [16].
In the ACUCNN framework, the MIA-CNN dominates

the prediction performance. Fig. 11 shows that the MIA-
CNN input comprises CU, TR, and LR pixels. Each MIA-
CNN can extract image features and resize feature maps
through adaptive pooling layers, such that CU, TR, and
LR feature map sizes are equal for concatenation. Denote
this concatenated feature map as Fconcate, following which
a CNN layer extracts inter-feature correlation inside. We
considered that the dominant image feature for the model
should be the CU, and the other two are assistants, so the CU
dimension is two times TR and LR. In addition to extracting
high dimensional features, the Fconcate helps reduce model
parameters for quick training convergence.

The two MIA-CNN modules provide two different size
feature maps, i.e., 32 × 32 and 16 × 16, which are
concatenated, together with the (W, H) parameters for the
FC layers to perform classification. Reasons why selecting
32 × 32 and 16 × 16 are: (1) VVC allows only NO and QT
modes for a CU64×64 and enables the QTMT from CU32×32,
so the maximum allowable QTMT CU size is reserved.
Other smaller square CUs will be upscaled to CU32×32s.
Although extra features may be generated/extracted from an
upscaled CU32×32, it will not miss important features at this
scale; (2) All possible QTMT split modes are allowed at a
CU32×32 whose scale comprises more critical features for
block partitions than others. It can avoid extracting wrong
features and improve the model prediction/classification
accuracy. Previous works [19], [20] proposed to scale all
smaller CUs with rectangle or square shapes to CU32×32 and

124614 VOLUME 11, 2023

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

FIGURE 10. The ACUCNN system framework.

FIGURE 11. The MIA-CNN framework.

then to CU16×16 before passing to the CNN and the FC layers.
Both works designed prediction models to determine whether
to split a CU to bypass the RDO procedure for the NO mode.
Regarding network architecture, we adopted a broad neural
network model based on the Inception V1 [23] instead of
the deeper [19], [20]. Adopting a broad network framework
for the MIA-CNN, features with different orientations can
be extracted at each layer. It allows the network to extract
different scale/sparsity features for model adaptability, and a
feature concatenation module provides non-linear attributes.
As one CU32×32 represents only a tiny part of an image, it will
not comprise very complicated image textures. Experiments
showed that when adopting only one MIA-CNN for CU32×32
in the ACUCNN, the model training process yields only 50%
of accuracy. The training can convergewell by adding another
MIA-CNN for CU16×16.

C. MODEL TRAINING
In section II-B, we discussed how to collect and preprocess
the dataset for the training model. We selected five videos
from theHEVCCTC list. To avoid selecting duplicate videos,
we chose eighty frames with ten frames apart from each

video. For database augmentation, we rotate frames of these
five videos by 90◦, 180◦, and 270◦, respectively, to obtain
a four times larger database. Allowing data augmentation in
this manner is the most crucial feature of the proposed model
because its input consists of CU neighboring pixels, which
validates data augmentation. In addition, the CPIV database,
composed of individual images, is also included for training,
and the training database comprises no duplicated videos
and can be fully utilized. From this database, we can obtain
several hundred million CUs, from which we can re-select
and categorize to provide more uniformly distributed training
samples in terms of tags for efficient model training.
We randomly pick/discard CUs in this dataset so each
category/split-mode contains 200,000 samples. The QTMT
mode specifies six split modes for a CU32×32, and the VTM
specifies four QPs in general. Under this setup, the training
dataset comprises 4.8 million CU samples. During model
training, the prediction accuracy will reach nearly 70%,
and the loss goes stable after 100∼200 epochs, nomatter what
the optimizer is, i.e., SGD, RMSprop, or Adam. We selected
the Adam optimizer because it helps the training process
converge quickly. In addition, we set both learning rate (lr)
and regularization (l2) to 10−4.
In addition to adopting the Negative log-likelihood Loss

(LNLL) for multi-classification applications, the loss function
also comprises a modified RDC loss function [16], denoted
as LRDC . When the CCS performs RDO operations on the
CPIV database, the RDC of a split mode not yet tested is
set to be MAX_DOUBLE. For example, it will skip the QT
test if it had performed MT for speedup. This skip operation
will set the default RDC for QT to MAX_DOUBLE, which
means the encoded bitrate of this CU by QT would be very
large. However, this setting will lead to exploding gradients
during the backpropagation (BP) process and prevent the
model training from convergence. In model training, the
MAX_DOUBLE is set to ten times the maximum RDC of a
CU so that the BP process works efficiently.When combining

VOLUME 11, 2023 124615

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

both loss functions, the LRDC is scaled by a β to match the
range of LNLL . The LNLL is calculated by:

LNLL = −
1
N

N∑
n=1

yk(n) · log(ŷk(n)), (8)

where N is the batch size, y = (y1, y2, · · · , yK)T is the
one-hot encoding ground-truth label vector, k(n) is the index
of correct label of the n-th sample and yk(n)=1, ŷk(n) denotes
the corresponding output value of LogSoftMax(xk(n)), i.e., the
confidence score of the inferred coding mode k(n).
Our experiments indicated that the LNLL is far less than the

RDC found to be larger than 105. It needs to scale the LRDC to
be comparable with the LNLL to prevent the latter from being
trivial. The scaling operation is achieved by dividing all the
RDC loss values, lns, with the maximum one in that batch,
i.e., max{ln}n=1,2,··· ,N , and then multiplying each one with
the LNLL , as shown in eq. 9:

ln =

(
rn
rmin

− 1
)

, and

LRDC =
1
N

N∑
n=1

(
ln

lN ,max + ε

)
· LNLL , (9)

where rn denotes the practical RDC corresponding to the
inferred coding mode for the n-th sample, rmin is the smallest
one among all RDCs when encoding a CUn, ln is the loss
corresponding to an RDC for the n-th sample, lN ,max is
the maximum one among all lns in a batch. When the
model prediction accuracy increases, it is possible that all the
inferred coding modes are true optimal, and the lN ,max will
be 0 under this condition. We add a small value, ε = 10−20,
to avoid dividing by zero. Combine LNLL and the LRDC with
a weight β set to be 0.8 for balance.
For most classification applications, model prediction

accuracy is a rule of thumb when designing and training
a learning model, and the system can do nothing for a
wrong classification result. However, things are different
when utilizing a multi-classification model to perform video
coding mode prediction. If the predicted coding mode for
one CUi happens to be the worst, it will enlarge the RDC
vastly. Nevertheless, the RDO procedure will optimally split
the entire CU based on the predicted split mode to yield the
smallest RDC, i.e., a constrained optimal CU mode. This
observation suggests that when the model cannot guarantee
the inference is mopti for one CUi, it should try to yield sub-
optimal. It is essential to include the loss, LRDC , for the
learning model to yield a sub-optimal coding mode when it
fails to yield the optimal one. The loss function is:

L = LNLL + β · LRDC . (10)

During the QTMT speedup coding process, the single
model has to determine split modes for CUs with different
sizes under different QPs. Denote the set of different CU sizes
as Z = {zj} and different quantization parameters asQ = {qi}
for easy description. To train such a unified model, we design

the learning process to repeat selecting one qi randomly and
selecting one zj randomly and sequentially under a fixed
qi. When it finishes retrieving all CU samples with size zj
quantized with qi for training, i.e., repeats randomly selecting
one CU with size zj under a fixed qi in one Batch, the
learning process moves on to the next Batch, i.e., randomly
select one qi again. Although we designed the unified model
to predict split modes of different-size CUs, we keep the
size of CU samples unchanged in each batch, under which
random selection helps avoid overfitting. We describe the
model training process by a program-like algorithm below,
in which the outermost while loop acts as an epoch and the
innermost as a batch:

Algorithm Control Steps of Model Training in One Epoch

Input:
CU(zj, qi): the set of CU samples with size zj and quantized with qi
DBCU={CU (zj, qi)}: the entire training dataset

Result: A learned model trained by DBCU

Model training steps:
while Q ̸= ∅ do

randomly select one qi ∈ Q;
Q = Q \ qi.
Zt = Z ;
while Zt ̸= ∅ do

randomly select one zi ∈ Zt ;
Zt = Zt \ zi;
while CU (zj, qi) ̸= ∅ do

randomly select one CUk ∈ CU (zj, qi);
CU (zj, qi) = CU (zj, qi) \ CUk ;
train the model with CUk ;

end while
end while

end while

IV. SPEEDUP CODING SCHEME
In the VVC coding framework, processing blocks are func-
tionally connected and dependent. We can design decision
functions at suitable processing points and utilize prediction
models to achieve good speedup performances. The overall
speedup coding scheme, abbreviated as ACUCNN_SCS,
is first introduced. The decision function and the thresholding
policy are then presented. The ACUCNN model is discussed
at last.

A. ACUCNN_SCS CONTROL FLOW
In VVC, a xCompressCU function performs a coding mode
decision that decides whether the CU is to be Intra- or
Inter-coded. In AI coding, the coder must determine whether
to split the CU. If it determines NO split, it will perform
the IP procedure with this CU size to yield the RDC.
Otherwise, it will execute the xCheckModeSplit function to
split the CU into subCUs with allowable modes and complete
the xCompressCU function for each subCU to check its
RDC. When no allowable splitting mode exists, the encoder
traces back all subCU RDCs to select the optimal one. The
QTMT codingmode is executed through this time-consuming
exhaustive search process to determine themiopt , in which the

124616 VOLUME 11, 2023

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

xCompressCU and the xCheckModeSplit functions call each
other iteratively.

Fig. 12 shows the control flow of the proposed
ACUCNN_SCS. In default VVC configuration, encoder_
intra_vtm, the maximum CU size that can perform QTMT
coding is |CU32×32| = 32 × 32. The system calculates the
σi and compares it with the predefined threshold, Tσ . If a
CUi demonstrates simple or smooth image texture, it needs
no further splitting, and the default VTM IP coding procedure
would process the CU. Otherwise, if the CUi is square, i.e.,
W==H, the coder will utilize the ACUCNN to predict the
split mode such that the VTM system only needs to perform
RDO operations for fewer candidate modes. Following
the coding control track, when the CUi is determined to
NoSplit, the VTM uses the xCheckRDCostIntra to perform
IP coding to yield the RDC. If (RDC<TRDC), it needs
no further splitting. Otherwise, the VTM executes the
xCheckModeSplit procedure before determining the best
mode.

FIGURE 12. The control flow of the proposed ACUCNN_SCS.

B. THRESHOLDING POLICY
In the proposed fast encoding method, we set up two
threshold values, i.e., Tσ for σi and TRDC for RDC, to skip
unnecessary RDO operations. In addition, the ACUCNN
helps reduce the candidate modes. In designing these speedup
modules, we have to consider their efficiencies and limita-
tions at the same time. For example, when we emphasize
too much speedup coding efficiency, the BDBR will increase
badly, i.e., severe quality degradation. In addition, we still
have to handle the tradeoff between speedup efficiency and
the extra time complexity of executing these modules. Not

all modules constantly contribute appreciable time-savings.
For example, when one module determines to split the CU,
it must perform RDO operations for all possible split modes,
including those operations for all corresponding subCUs.
Although the encoder may save the IP operation time for
this CU size, the speedup efficiency may be degraded due
to the extra module execution time. This example tells us
that we must carefully justify the tradeoff between speedup
efficiency and performance degradation and select proper
threshold values from experiments.

The Tσ can only be applied to CUs with sizes smaller
than 32 × 32. In VVC, the QTMT mode can apply on CUs
with sizes smaller than 32 × 32 under which all split modes
are allowed. We design this thresholding module starting
from this CU scale for efficient time-saving. For a CU64×64,
it needs more calculation time to compute the σ (CU64×64)
and may not contribute to good enough speedup efficiency.
In addition, onlyQT andNOmodes are allowed for a CU64×64
and the probability of selecting the NO mode becomes
smaller for smaller QPs. Under this condition, although the
model can correctly predict the CU to be NO split, this
extra prediction time becomes trivial and leads to lower time-
saving rates. The threshold, TRDC , is set to determine whether
to split a CU64×64. We can set up matching thresholds for
CUs with different sizes to speed up the coding process.
Unlike model prediction or other parameters, such as σi and
edge histograms, that require extra computation increasing
the cost for speedup control, the RDC for a CU of any
size is available in the default coding control flow. It costs
only one neglectable comparison operation to achieve the
speedup control. However, using RDC alone is not efficient
enough to help determine splitting or not, which contributes
little to speeding up performance. Experiments revealed that
adopting this threshold-based split decision method for larger
CU64×64s yields a compromised speedup performance.

C. ACUCNN MODEL
The ACUCNN model is invoked when σi ≥ Tσ . It extracts
higher dimensional features to predict the CU mode in a
deeper sense. Experiments showed that it could accurately
predict square CUs’s mode, though the model can work well
for different CU shapes.Whenwe set theACUCNN to predict
split modes of all CU shapes, take theD_BasketballPass as an
example, the time-saving rate is as high as 50.92% but with
10.47% of BDBD increment. This result tells that utilizing
the ACUCNN without proper constraints will conflict with
the design target of the speedup codingmethod. The degraded
video quality and slightly degraded prediction accuracy other
than square CUs/subCUs lead to BDBR increment, which
conflicts with the design target of the speedup codingmethod.
For one thing, we will not appreciate the high speedup
coding with severe quality degradation; for another, all split
modes are allowed for a square CU, and model prediction
can yield the most cost-effective time-saving performance.
In addition to adopting model prediction, we proposed to
set a confidence threshold, Tconf , and a tolerance factor,

VOLUME 11, 2023 124617

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

τ , modified from a multi-thresholding method [16] to
accommodate proper candidate modes to improve the quality
under speedup coding. In the multi-thresholdingmethod [16],
it sets different threshold values under different block split
depths to eliminate severe quality degradation of false
prediction. We proposed to design one model to predict
split modes for CUs with different sizes and under different
QPs, based on which only one tolerance factor, τ , has to be
specified. The system adjusts Tconf and τ concerning σi to
prevent possible burst-increasing BDBR.

In a classification model, the softmax layer generates a
confidence score, ŷi, for each output candidate. The system
selects the candidate with the highest confidence score, ŷk in
eq. 11, as the final output. The role of confidence scores in
a classification model resembles the accuracy during model
training. When the accuracy is around 50%, the output
acts as a random guess, and we can reverse the outcome
when the accuracy is less than 50%. The above rules for a
two-class model are not applicable to multi-classification.
We set a threshold for confidence scores, Tconf , for the
speedup scheme and the coding system to adapt to practical
coding applications. Setting a higher Tconf will control the
model to select candidates strictly and result in a lower
encoding bitrate but lower speedup performances. On the
contrary, it can achieve better speedup performances but
a higher bitrate. Similarly, we can correctly set the τ to
make a good compromisation between quality and speedup
performances [16]. In a multi-classification application, the
prediction result is the candidate mode k whose ŷk is
maximum, i.e.,

k = argmax
i

{ŷi}i=1,2,··· ,K , (11)

and there’s un-correlated between ŷk and other candidates.
This uncorrelation assumption is not applicable to video
coding mode prediction, in that the trueMopt may come from
the candidate with the second or the third highest confidence
score. We proposed to utilize the τ to enable fault tolerance
for the model. Besides the candidate mode k , others with
ŷm > τ · ŷk are also included in the final candidate set, i.e.,

Sopt = {m|ŷm ≥ τ · ŷk}. (12)

In practical coding, adopting fault tolerance for inferred
results may conflict with the purpose of setting Tconf , which
controls the fidelity of mode prediction accuracy. Setting
τ ≤ 1 helps increase the probability that the model output
can hit the true optimal one. We expect the ŷk to be much
larger than the others. If not, we should consider candidate
modes Sopt in the final RDO procedure.

Fig. 13 shows the bitrate and encoding time under different
τs. The encoding time and bitrate are 1615.882 secs. and
115.034 KB, respectively, when encoding the
D_BasketballPass with the default VTM-14 at QP = 37.
As shown, setting different τs becomes trivial for larger
Tconf s. By setting a larger Tconf , the model will select fewer
candidate modes for the final RDO procedure, regardless of

FIGURE 13. The model speedup efficiency analysis: (a) Confidence
threshold (Tconf) vs. bitrate; (b) Tconf vs. time.

the τ value. We selected from experiments the Tconf range
as [0.6, 0.7], whose actual value depends on σi as shown in
eq. 13,

Tconf = min
{
0.7,

(60 + σi − Tσ)
100

}
, (13)

under which τ ∈ [0.1, 0.5] can help speed up coding with
tolerable errors. Eq. 13 shows that a high complex CUi will
yield a high Tconf , under which a smaller τ lets the coder
include more split modes in the RDO procedure to avoid
severe quality degradation. On the contrary, low complex
CUs require fewer splitting operations, and the τ should be
larger to prevent over-splitting for time-saving. Experiments
demonstrated that τ can be determined based on the following
equation:

τ = −4 · Tconf + 2.9. (14)

V. EXPERIMENTAL STUDY
Table 1 is the experimental setup in which the VTM 14.0 is
configured by default, excluding the QP value. The CTC [24]
to verify the VVC encoding efficiency differs from HEVC.
ClassesA1 andA2 (3840×2160) replaced the original Class
A (2500 × 1600) and some new videos were added in Class
B. Test videos comprise 22 videos from ClassesA1 toE. BD-
PSNR [25] and BDBR are used to measure the video coding
performance in the rate-distortion sense. In this research,
we proposed to reduce the VVC time complexity under

TABLE 1. System setup.

124618 VOLUME 11, 2023

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

negligible quality degradation. Time reduction rate, RT , for
the ACUCNN_SCS is calculated to evaluate its performance:

RT =
1
4

|Q|∑
i=1

(
tqiorig − tqispeedup

tqiorig

)
· 100%, (15)

where qi ∈ Q = {22, 27, 32, 37}, tqiorig and tqispeedup
are encoding times by the VTM and the speedup method
quantized with qi, respectively, and RT is the average of
time-reduction rates for all qis. Higher RT s mean higher
speedup coding performances.

A. SPEEDUP PERFORMANCE
As we select part of training videos from HEVC CTC [17]
and some of which appear in the VVC CTC [24], we mark
videos with the same name in both CTCs by ’*’ to evaluate
possible over-fitting artifacts. Table 2 shows that RT is
46.73% with quite a small BDBR increment of 1.16%.
Note that the RT performances are not especially high
for training and testing videos, such as B_BasketballDrive,
C_RaceHorsesC, D_BasketballPass, and E_FourPeople,
which justified the generalization capability of the learned
model.

TABLE 2. Speedup performance compared with default VTM-14.

Regarding the ACUCNN model, as compared to previous
research [18], it yields 20% higher prediction accuracy.
This improved prediction accuracy helps eliminate more
unnecessary RDO operations. In addition to using model
prediction, the speedup coding scheme utilizes RDC and σi to
determine early stop or skip of the CU coding. In the normal
video coding process, the coder calculates the RDC to make
decisions to yield the best CU coding mode, i.e., it needs
no extra computations to get RDC. Besides, the calculation

FIGURE 14. Percentage of model prediction time, tmodel , w.r.t. system
encoding time, tsys, when encoding one frame.

time of σ (CU32×32) is less than 1ms but it helps much in
reducing the time complexity. In contrast, the ACUCNN
model needs significantly few numerical operations to predict
the coding mode of a CU. Experiments revealed that the
model prediction time is less than 2% of the total encoding
time. Fig. 14 shows that the percentage of model prediction
time is smaller than 2% of an entire one frame’s encoding
time for all class videos. Aiming to design a lightweight
predictionmodel, we increase the width and shorten the depth
of the CNNmodel and adopt only half of the total channels for
convolution layers to essentially reduce the model prediction
time. Note that the ACUCNNmodel assists the VVC coder to
speed up coding instead of dominates the coding process. The
speedup performance would be better if we can reduce the
model prediction frequency, as the model prediction process
requires extra computations. In our design, only when the
CU/SubCU is square and σi is larger than a threshold can
it invoke the model prediction. It reduces the coder time
complexity with the fewest operations.

B. VBR CODING
The most prominent feature of the proposed speedup coding
scheme is one model can predict CU mode under different
QPs. In comparison, previous works designed individual
models for different QPs to provide VBR coding. To justify
our speedup coding scheme applicable in a VBR coder, we set
the QP range from 20 to 40 to verify the generalization capa-
bility of our ACUCNN model. Take the D_BasketBallPass,
as an example, the rate-distortion hit-curve and time-saving
performance for all QPs are shown in Fig. 15. Fig. 15 (a)
shows that the rate-distortion performances of the default
VTM and the VTM under speedup control are nearly the
same under 28.6% of time reduction rate. Fig. 15 (b) shows
the encoding time of the VTM and the speedup VTM
under different QPs, which demonstrates the generalization
capability of the proposed speedup scheme.

However, the model’s robustness to a changing QP implies
generalization capability, which can not yield exact mode

VOLUME 11, 2023 124619

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

FIGURE 15. Generalization capability of the proposed speedup coding in
VBR coding: (a) rate-distortion plot of original and speedup VTM;
(b) Generalization performance of the speedup coding method.

predictions for a specific QP. To speed up the video coding
process under a specific QP, we proposed a small-scale
model retraining process so that the generalized model can
adequately adapt to this QP. As shown in Table 3, the
retraining process improves the speedup-coding performance
under the same system setup. The RT is as high as
51.79% with BDBR increment 2.07%, which is acceptable
in terms of the highly efficient VVC coding performance.
Investigation into the mode prediction process revealed that
the ACUCNN-fast scheme could yield more highly confident
prediction outcomes, such that the coding controller can
perform fewer RDO operations to find the optimal CU
splitting mode. As the speedup coding scheme helps reduce
the set of candidate CU splitting modes, it can yield a higher
time-reduction rate, while it also leads to quality degradation,
i.e., higher BDBR. How the speedup control operations affect
the coding quality is elaborated with practical CU examples
in appendix B. In addition, why adopting the tolerance factor
τ in the proposed speedup method and its impact on video
quality is explained by practical CU mode in section C.

C. COMPARISONS WITH OTHER SPEEDUP METHODS
In addition to evaluating the performance of the proposed
speedup coding scheme we also compare performances with

TABLE 3. Re-trained model speedup performance.

previous researches. Li [16] proposed to design 19 models
that require 2.9 MB space to perform speedup coding and
the proposed ACUCNN model needs only 1.2 MB, 41%
of Li’s model size. As one robust prediction model cannot
perform better than 19 smaller ones located in proper control
flow locations in any case, we exploited statistically-based
decision rules to help bridge this accurate prediction gap.
Experiments justified that the proposed small ACUCNN
model yields comparable speedup performance with that of
the Li [16]. In Li’s fast mode, it achieves RT=63.79% while
BDBR is as high as 3.19%. In comparison, our ACUCNN
scheme can save 46.73% of encoding time with the smallest
increase of BDBR=1.16% among all methods. In addi-
tion, among methods that yield RT≥50%, the proposed
ACUCNN-fast scheme also demonstrates the best BDBR
performance, which is 2.07(51.79%) as compared to that of
Li’s fast method 2.14(56.72%) and Yang’s 2.66(54.30%).

VI. CONCLUSION
We proposed a VVC speedup encoding scheme based on a
learnedmodel to predict CU codingmode and a compromised
thresholding policy to early terminate/skip in the QTMT
coding procedure: (1) We designed an ACUCNN model
comprising six inputs: a CU and its neighboring pixels TR
and LR, CU size (W, H), and QP, to accurately predict
the QTMT coding mode under different CU sizes and
QPs, so that the video coding controller can essentially
eliminate unnecessary RDO operations. The TR and LR
enable the model to learn the intra-prediction algorithm in
a deeper sense to improve prediction accuracy. In addition,
the model adopts adaptive pooling to predict coding modes of
different-size CUs accurately. Themost prominent is that data

124620 VOLUME 11, 2023

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

TABLE 4. Performance comparisons with previous works, Li [16] and Yang [26].

augmentation is applicable to the original CU dataset with
highly non-uniform label distribution to improve the model
training and prediction efficiency. Experiments showed that
this design helps increase 20% of prediction accuracy; (2)
Though possessing generalization capability, the model may
lead to severe quality degradation of reconstructed CU
resulting from very few mode prediction errors for outlier
CU samples. We proposed a compromised thresholding
policy to determine early termination/skip in the QTMT
coding procedure to bridge the gap between generalization
and specialization of model prediction. Experiments showed
that the model prediction spends 1.28% while contributing
to 46.73% time saving of the total encoding time and
yields only a 1.16% BDBR increment, If we retrain the
model for a specific QP, the time saving can be up to
51.79% with a 2.07% BDBR increment. Future research
comprises adapting these threshold values for robustness and
performing the VVC intra-prediction direction prediction to
improve speedup performances. In addition, how to reduce
the VVC inter-frame coding complexity is also ongoing.

APPENDIX A
ACRYONYM AND SYMBOL LIST
See Table 5.

APPENDIX B
QUALITY VS. SPEEDUP ANALYSIS
Table 2 shows that C_BasketballDrill| yields a higher BDBR
under acceptable speedup rates. This video was captured
with a fixed camera and objects inside followed a regular
moving pattern. In comparison, both B_BasketballDrive

and C_BQMall were captured by moving cameras, and
objects inside move in irregular ways, yet they exhibit good
speedup rates. Additionally, their visual complexity is not
as high as A1_FoodMarket4 which has a bustling market
atmosphere and smoke-filled scenes, orC_PartyScenewhich
features children playing and bubbles floating around.
These visual observations help little in explaining the poor
BDBR performance. We turn to examine the split mode
which can be analyzed from mode prediction and the σi
measure. As the RDC involves complex calculations and has
corresponding associations at different levels, it is difficult
to analyze it based on the final split mode and excluded
for analysis. Fig. 16(a) shows part of a C_BasketballDrill
frame, representing the wooden floor inside the gymnasium.
As shown, the four purple-box-marked CU32×32s demon-
strate no complex texture. However, Fig. 16(b) shows that
only one CU kept unsplit in the ground truth split mode.
In the proposed method, the four CUs kept unsplit, as shown
in Fig. 16(c). Upon closer inspection, we observe that fine
textures exist in these wooden floor areas. This example
tells us the feature σi is not that efficient in measuring
block textures. In addition, it does not comprise features of
reference pixels. However, in most cases, these kinds of CUs
are not deeply split, which helps reduce the exhaustive search
time significantly.

APPENDIX C
SUB-OPTIMALITY AND SELF ADJUSTMENT
Although the system performs model inference on square
CUs only, inference errors can affect other CU modes on

VOLUME 11, 2023 124621

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

TABLE 5. Acryonym and symbol.

FIGURE 16. Split mode analysis: purple CUs denote σ < Tσ .

subsequent processes. In Fig. 17(a), green squares label
blocks whose split modes are correctly inferred, reds show
partially incorrect inference with a minor impact on the
block split mode, and blue CUs are correctly inferred but
subsequent coding procedures yield different outcomes. The
image textures of green blocks are not overly complex,
similar to others with simple textures, but a clear white
line crosses the block and allows salient feature extraction.
The top-right green box, if the model does not include

FIGURE 17. Splitmode analysis: Green box represents correct model
inference; red box represents slight error; blue box represents automatic
compensation by the system.

other reference information, would likely yield a BT split
resulting in the line falling on one side of the CU. However,
by incorporating reference pixels as input, it is possible to
determine that the line is an extension from the left box and
thus avoid the split. The red-boxed regions, although yielding
different results, yield similar inference outcomes with the
ground truth. The blue-boxed examples demonstrate how the
model yields varying inferences in subsequent operations.
Both the ground truth and proposed methods perform VBT
on this CU. However, the ground truth does not perform HTT
again on the left CU, while the proposed method does not
performmode inference on this elongated CU. Therefore, this
difference arises internally in the coding system and explains
why the speedup method yields different model inferences.
For example, in Fig. 17(b), the top-left CU32×32 undergoes
three HBTs, resulting in an additional segmentation line in
the middle CU. As a consequence, based on this sub-optimal
CU mode, it will lead to completely different CU split modes
for subsequent CUs. By introducing the tolerance factor τ, the
system can try different split modes. When there have been
errors in the past, even if the model infers the best solution,
the system may choose other CU split modes to compensate
for the previous judgment errors and their associated
RDC.

REFERENCES
[1] B. Bross, J. Chen, S. Liu, andY.-K.Wang.Versatile Video Coding Editorial

Refinements on Draft 10, document JVET-T2001, Oct. 2020.
[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, ‘‘Overview

of the high efficiency video coding (HEVC) standard,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668,
Dec. 2012.

[3] F. Pakdaman, M. A. Adelimanesh, M. Gabbouj, and M. R. Hashemi,
‘‘Complexity analysis of next-generation VVC encoding and decod-
ing,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2020,
pp. 3134–3138.

[4] M. Saldanha, G. Sanchez, C. Marcon, and L. Agostini, ‘‘Complexity
analysis of VVC intra coding,’’ in Proc. IEEE Int. Conf. Image Process.
(ICIP), Oct. 2020, pp. 3119–3123.

[5] L. Zhao, X. Zhao, S. Liu, X. Li, J. Lainema, G. Rath, F. Urban, and
F. Racapé, ‘‘Wide angular intra prediction for versatile video coding,’’ in
Proc. Data Compress. Conf. (DCC), Mar. 2019, pp. 53–62.

124622 VOLUME 11, 2023

J.-J. Chen et al.: Speed Up VVC Intra-Coding by Learned Models and Feature Statistics

[6] Y.-J. Chang, H.-J. Jhu, H.-Y. Jiang, L. Zhao, X. Zhao, X. Li, S. Liu,
B. Bross, P. Keydel, H. Schwarz, D. Marpe, and T. Wiegand, ‘‘Multiple
reference line coding for most probable modes in intra prediction,’’ inProc.
Data Compress. Conf. (DCC), Mar. 2019, p. 559.

[7] Y.-J. Chang, ‘‘Intra prediction using multiple reference lines for the
versatile video coding standard,’’ Proc. SPIE, vol. 11137, Sep. 2019,
Art. no. 1113716.

[8] M. Schäfer, B. Stallenberger, J. Pfaff, P. Helle, H. Schwarz, D. Marpe,
and T. Wiegand, ‘‘An affine-linear intra prediction with complexity
constraints,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2019,
pp. 1089–1093.

[9] J. Pfaff, ‘‘Data-driven intra-prediction modes in the development of the
versatile video coding standard,’’ ITU J. ICT Discoveries, vol. 3, no. 1,
pp. 25–32, 2020.

[10] S. De-Luxán-Hernández, V. George, J. Ma, T. Nguyen, H. Schwarz,
D. Marpe, and T. Wiegand, ‘‘An intra subpartition coding mode for
VVC,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2019,
pp. 1203–1207.

[11] O. Akbulut and M. Z. Konyar, ‘‘Improved intra-subpartition coding mode
for versatile video coding,’’ Signal, Image Video Process., vol. 16, no. 5,
pp. 1363–1368, Jul. 2022.

[12] M. Saldanha, G. Sanchez, C. Marcon, and L. Agostini, ‘‘Performance
analysis of VVC intra coding,’’ J. Vis. Commun. Image Represent., vol. 79,
Aug. 2021, Art. no. 103202.

[13] M. Koo, M. Salehifar, J. Lim, and S.-H. Kim, ‘‘Low frequency non-
separable transform (LFNST),’’ in Proc. Picture Coding Symp. (PCS),
Nov. 2019, pp. 1–5.

[14] S. Du, ‘‘Understanding deep self-attention mechanism in convolution
neural networks,’’ AI. Accessed: Nov. 2, 2023. [Online]. Available:
https://medium.com/ai-salon/understanding-deep-self-attention-
mechanism-in-convolution-neural-networks-e8f9c01cb251

[15] A. Paszke, ‘‘PyTorch: An imperative style, high-performance deep learning
library,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32. Red Hook, NY,
USA: Curran Associates, 2019, pp. 1–12.

[16] T. Li, M. Xu, R. Tang, Y. Chen, and Q. Xing, ‘‘DeepQTMT: A deep
learning approach for fast QTMT-based CU partition of intra-mode VVC,’’
IEEE Trans. Image Process., vol. 30, pp. 5377–5390, 2021.

[17] F. Bossen. Common Test Conditions and Software Reference Configura-
tions, document JCTVC-L1100, JCTVC, Geneva, Switzerland, Jan. 2013.

[18] Y.-H. Huang, J.-J. Chen, and Y.-H. Tsai, ‘‘Speed up H.266/QTMT
intra-coding based on predictions of ResNet and random forest classi-
fier,’’ in Proc. IEEE Int. Conf. Consum. Electron. (ICCE), Jan. 2021,
pp. 1–6.

[19] J. Zhao, Y. Wang, and Q. Zhang, ‘‘Adaptive CU split decision based on
deep learning and multifeature fusion for H.266/VVC,’’ Sci. Program.,
vol. 2020, pp. 1–11, Aug. 2020.

[20] G. Tang, M. Jing, X. Zeng, and Y. Fan, ‘‘Adaptive CU split decision
with pooling-variable CNN for VVC intra encoding,’’ in Proc. IEEE Vis.
Commun. Image Process. (VCIP), Dec. 2019, pp. 1–4.

[21] Q. Zhang, Y. Zhao, B. Jiang, and Q. Wu, ‘‘Fast CU partition decision
method based on Bayes and improved de-blocking filter for H.266/VVC,’’
IEEE Access, vol. 9, pp. 70382–70391, 2021.

[22] Z. Jin, P. An, C. Yang, and L. Shen, ‘‘Fast QTBT partition algorithm for
intra frame coding through convolutional neural network,’’ IEEE Access,
vol. 6, pp. 54660–54673, 2018.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[24] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin. VTM Common
Test Condition and Software Reference Configurations for SDR Video,
document JVET-T2010, Teleconference, Oct. 2020.

[25] G. Bjøntegaard, ‘‘Improvements of the BD-PSNR model,’’ Berlin,
Germany, Tech. Rep. VCEG-AI11, ITU-T SG16/Q6, 2008.

[26] H. Yang, L. Shen, X. Dong, Q. Ding, P. An, andG. Jiang, ‘‘Low-complexity
CTU partition structure decision and fast intra mode decision for versatile
video coding,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 6,
pp. 1668–1682, Jun. 2020.

JIANN-JONE CHEN (Member, IEEE) received
the B.S.E.E. and M.S.E.E. degrees from National
Cheng-KungUniversity, Tainan, in 1989 and 1991,
respectively, and the Ph.D. degree in electronic
engineering from National Chiao Tung University,
Hsinchu, in 1997. He was a Researcher with the
Information and Communications Research Labo-
ratories, Advanced Technology Center, Industrial
Technology Research Institute (ITRI), Hsinchu,
from 1999 to 2002. He was a Visiting Scientist

with the MIT AI Laboratories, from September 2000 to November 2000.
Since 2002, he has been with the Department of Electrical Engineering,
National Taiwan University of Science and Technology (NTUST), where
he is currently an Associate Professor. His research interests include
image/video processing, deep image/video compression, image retrieval, and
several topics in multimedia communications. His research team won the
First Prize in the National College Microcomputer Design, in 2011 and
2012, with a live video streaming system and a real-time cloud video
transcoding system. In 2021, he received the IEEE ICCE Excellent Paper
Award. He also won the 2022 Best Journal Paper Award from the Taiwan
Association of Cloud Computation. His research team won the First Prize in
EE-Section in the 2021 National Technical College Thematic Competition.
From 2018 to 2023, he conducted several industrial research projects on
developing artificial intelligence (AI) assisted application systems, such
as lightweight AI module design. He designed AI teaching plans for
high-school students for the TaiwanMinistry of Education, in 2020 and 2022.

YEH-GUAN CHOU received the B.S.E.E. and
M.S.E.E. degrees from the National Taiwan Uni-
versity of Science and Technology, Taipei, Taiwan,
in 2020 and 2022, respectively. His experience
in designing deep-learning systems for enhancing
image compression performances and accelerating
video coding helps provide solutions for practical
industrial function systems. He is currently a
System Engineer with Sunplus Inc., develop-
ing software/firmware for automobile electronic

devices supporting Carplay and AndriodAuto. His research interests include
image/video compression and several deep-learning system designs.

CHI-SHIUN JIANG received the B.S.E.E. and
M.S.E.E. degrees from the National Taiwan Uni-
versity of Science and Technology, Taipei, Taiwan,
in 2020 and 2023, respectively. He interned with
HIWIN Inc., from September 2019 to June 2020.
He was a Visiting Student with the Kyushu
Institute of Technology, from September 2020 to
January 2021. He helped design AI-enabled
software systems for the 2022 AI education
and implementation of the high school student

camp. He assisted in an industrial research project on how to build a
cloud-based web communication (WebRTC) service platform primarily
based on the selective forwarding unit (SFU) architecture. He helped
dockerize the original open-source video software and deploy it in the
Minikube environment to verify this system’s feasibility of Kubernetes (K8S)
integration. His research interests include image/video compression and
lightweight deep-learning system designs.

VOLUME 11, 2023 124623

