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ABSTRACT Landfill mining (LFM) offers a potential solution to the environmental issues associated
with landfilling. The current work aims to develop an efficient optimization framework for LEM that is
sustainable, profit-yielding, and time minimizing at the same instance. The proposed framework involves
a multi-objective multi-level solid transportation model (MOMLSTM). This model can be adapted by the
organization across various geographies as it incorporates uncertainty of all the parameters of time, cost,
and emission through pentagonal fuzzy numbers (PFN). The other crucial contribution of this work is
the development of a genetic algorithm for offspring refinement (GAOR) that contributes in optimizing
multi-objective optimization (MOQO) problems. The GAOR’s performance has been verified using the
Congress on evolutionary computation (CEC) 2020 multi-objective benchmark test functions. GAOR is
assessed against six robust MOO algorithms, including the multi-objective equilibrium optimizer slime
mould algorithm (MOEOSMA), enhanced multi-objective particle swarm optimization (EMOPSO), multi-
objective gorilla troops optimizer (MOGTO), adaptive crossover strategy enhanced NSGA-II (ASDMSGA-
II), multi-objective slime mould algorithm (MOSMA), and multi-objective equilibrium optimizer algorithm
(MEOA). GAOR delivered outstanding results across three crucial performance indicators. To rank these
algorithms, a Friedman test was conducted, and GAOR achieved the highest ranking among the tested MOO
algorithms. A case study is considered for real-life application of the model and solution technique GAOR.
The outcomes of MOMLSTM from GAOR are compared to the epsilon-constraint method. The comparison
revealed noteworthy improvements: a 0.14% increase in profits, a 1.29% reduction in carbon emissions, and
a 3.81% decrease in the time required.

INDEX TERMS Epsilon-constraint method, genetic algorithm, multi-objective solid transportation problem,

pentagonal fuzzy number, sustainable landfill mining.

I. INTRODUCTION

Landfills are among the most prevalent techniques for dump-
ing solid waste because of their unique benefits that are
hardly ever encountered elsewhere. These benefits embrace
the simplicity with which landfills can be installed and
the modest expenses accompanying both their establishment
and running. Numerous landfills have been built worldwide,
where garbage is stockpiled. Some of the biggest landfills
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of the world include Apex Regional in Las Vegas (Nevada),
Laogang in Shanghai (China), Bordo Poniente, Mexico City
(Mexico); they cover an area of around 22,200 acres, 1000+
acres, and 927 acres respectively [1].

Two main causes can be identified for the engrossment
in conventional landfill facilities. First and foremost, impor-
tant components involve plastics, metals, and rare substances
like combustibles. However, these disposal facilities addi-
tionally trigger environmental problems since they discharge
greenhouse gases (GHGs), which comprise methane (CH4)
and carbon dioxide (CO2), experience leachate intrusion
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into the soil, and take up territory that may obstruct city
extension. Mostly two kinds of waste are found in any land-
fill that is in operation municipal solid waste (MSW) and
legacy waste (LW). There is a peculiar interlinkage among
the living (biotic) and non-living (abiotic) materials at a
landfill, which can be thought of as a self-contained ecosys-
tem. This interlinkage distinguishes between new municipal
garbage and legacy trash that has experienced transfor-
mations throughout time. Significant monetary losses are
brought on by landfills. The cost of negative ecological
impacts related to the Bhandwari dumpsite located in Guru-
gram in India, including contamination of the environment,
water, soil, carbon emissions, and visually appealing com-
plications, were estimated to be around Rs 148.46 crore
[2]. A separate investigation demonstrated that three dif-
ferent landfills in Delhi at Bhalswa, Ghazipur, and Okhla
have, throughout the years, resulted in roughly Rs 450 crore
environmental harm [3]. Thus, clearing these landfills sus-
tainability is the need of the hour. The most recent technique
being used for clearing these landfills is LFM. Recover-
ing resources that were formerly abandoned or thrown in
garbage dumps, especially in the context of open landfills,
is a practice referred to as LFM. In order to retrieve valu-
able resources from landfills, such as plastics, metals, glass,
ignited materials, and other materials, it is deployed. The
current trash is separated throughout this method, and the
organic fraction is then transformed into compost that gen-
erates a gas called methane or bio-diesel. Following segrega-
tion, the non-reusable plastic is converted into fuels called
refused-derived fuels (RFD) that can be utilized as a sub-
stitute for fossil fuels by various sectors. Additionally, the
compost fraction of the trash is sieved out and marketed for
use as fertilizer and soil enrichment in gardening or other
applications [4]. However, LFM is still a developing field.
Many researchers have worked in this field. Some recent
studies around this topic involve the research on identify-
ing the primary reasons for improved LFM strategies, LFM
functioning in the United States, Europe, India, and China
[5], step-wise functioning of LFM in detail incorporating
excavation-shredding-screening-refurbishing, importance of
landfill site-specific feasibility study and advanced separation
techniques [6], employment of customized geological pierc-
ing and extraction technologies for LFM [7], despite pro-
ducing highly precious elements, mining waste rehabilitation
has severe environmental effects [8], impact of LFM towards
global warming [9] and job options arising due to LFM
[10]. The entire steps of landfill mining, along with some
bi-products, are shown in Figure 1. Few of the researchers
have addressed crucial considerations like the economic via-
bility of landfill mining. Some literature around this involves
methodology for evaluating the investment costs and operat-
ing expenses of waste mining activities as well as the possible
financial advantages, study on the use of an organized method
that combines cost-benefit evaluation and multi-criteria anal-
ysis to identify landfill mining initiatives exhibiting the
greatest commercial potential [10], simulation tool evaluating
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cost of mining steps like excavation-segregation-feasibility-
reclamation [11], measuring commercial viability of landfill
mining through land repossession and restoring energy [12],
provision of new job offers due to LFM [10], environmen-
tal assessment followed by financial evaluation of enhanced
LFM in Tehran was studied [10], review of the financial
sustainability of LFM [13]. LFM encounters multiple uncer-
tainties during its entire course; some of the literature that
discusses uncertainty in LFM is the uncertainty of cost and
benefits of LFM [14], uncertainty awakening due to the usage
of modelling techniques and various social perspectives [15],
the uncertainty of market [10], technology [16], and society
[17], uncertainty across the exploration phase of LFM [18].

After traversing across the literature of LFM, it is observed
that there is a huge need for landfill redemption plans
that are highly sustainable and cost-effective and less time-
consuming. There is an explicit and acute requirement of
fraternizing industry and government with the intention of
a sustainable model for LFM that targets maximizing profit
which is in turn directly analogous to the cost of LFM,
and price of value-added products received post-LFM from
waste. The plan should incorporate the time consumption
during the entire course of LFM due to the adverse impact
of waste lying in landfills on air, water, and land within the
vicinity of the landfills. Another important component that
should be accompanied is the reduction of carbon emissions
in the entire process, and the plan should be sustainable in
the long run. Thus, in this research work a landfill mining
framework is proposed that uses MOMLSTM and aims to
provide a sustainable profit maximizing model for landfill
mining. The model was developed using the base of the solid
transportation problem proposed by Haley [19].

In the MOMLSTM introduced in this context, the three
objectives engage in competition with each other, leading
to the absence of singular perfect or global optimum solu-
tion. Instead, the solution method yields a collection of
pareto optimal alternatives within the same search region.
Metaheuristic algorithms (MAs) are the foundation of the
optimization operation. To solve a variety of optimization
problems, MAs work with a set of randomly chosen solu-
tions and refine them using predetermined methods [20].
Lately, there has been a proliferation of MOQO approaches
in the literature. Numerous evolutionary methods that have
been presented in the literature to solve multimodal and
multi-objective functions have difficulty generating numer-
ous related Pareto sets (PS) and a well-distributed Pareto front
(PF). Achieving convergence and diversity in the decision
and objective spaces naturally trade off with one another. It is
common for one feature to suffer when another is improved.
Therefore, our study is motivated by the complicated task
of maintaining both convergence and diversification at the
identical time in the decision and objective spaces. To men-
tion some of these recently proposed algorithms that either
lack in convergence or diversity; consider the ring topol-
ogy based multi-objective PSO (RING_PSO_SCD) [21]. The
algorithm struggles to achieve satisfactory performance in

122793



IEEE Access

P. Bhakuni, A. Das: Innovative Algorithm-Driven Optimization Framework for LFM

the objective space. While it does exhibit strong diversity
in the decision space, the coverage of Pareto-optimal solu-
tions is compromised, as their results have demonstrated.
Another multimodal multi-objective algorithm based on dif-
ferential evolution (MMODE_ICD) attained enhanced diver-
sity in the objective space, yet sustaining diversity and
convergence simultaneously in the decision space remains
a persistent challenge for the algorithm [22]. The multi-
objective slime mould algorithm (MOSMA) [23] demon-
strates notable drawbacks, such as poor distinguishing within
slime mould algorithm (SMA), a less-than-ideal combination
of non-dominated arranging and fitness dimensions that low-
ers convergence precision on complex problems, a crowding
distance mechanism that fails to adequately maintain solution
variance in the archives, resulting in a Pareto front that is not
sufficiently distributed, and the inability to improve SMA’s
global search capability, which leaves MOSMA incompletely
explored in the decision space. Multi-objective gorilla troops
optimizer (MOGTO) is and updated version of GTO [24],
it attains the best results and exhibits effective convergence
toward real Pareto-optimal groups. Nevertheless, there are
certain constraints associated with it i.e. When optimizing
multi-objective (MO) problems with only three or four objec-
tives, MOGTO is appropriate. Like other Pareto dominance-
based techniques, MOGTO becomes less efficient as the
number of targets rises. This is the case since for problems
with over four objectives, a large fraction of alternatives falls
into the non-dominated category, which causes the archive
to fill up quickly. The MOGTO method is therefore best
suited for solving problems with none more than three to four
objectives.

A novel MA called GAOR has been presented to overcome
the issues with the current MAs intended for MOO. The
genetic algorithm (GA) and the local search (LS) algorithm
are combined to create the hybrid algorithm known as GAOR.
To strike the ideal equilibrium among attempts at intensifica-
tion and diversification, the LS component is incorporated.
Following mutation, LS is performed by using a random
function to generate indices and switching between inter-
mediate values. This LS integration greatly improves the
global search performance of the MA. In GAOR, numerous
swaps are iteratively tested using a systematic approach.
The procedure comes to an end when the best improvement
identified through each swap is kept, and if no improvement
is found, the original solution is left unchanged. Addition-
ally, GAOR has an adaptable search area that allows it to
strike a balance between local and global search tactics while
adapting to the solution space’s topology. To assess the effec-
tiveness and efficiency of GAOR, the research utilized the
CEC 2020 test suite for evolutionary computation. Upon
evaluating various performance indicators, it was evident that
GAOR surpassed other established metaheuristic algorithms
designed for MOO.

The proposed model encompassed most uncertainties
stumbled during LFM, including uncertainty of waste
composition (impacting pre-feasibility cost, bio-inoculation
cost, waste processing cost, sorting cost), uncertainty in
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transportation due to weather and natural calamity (impacting
cost of transportation, carbon emission, and time), uncer-
tainty in market (impacting demand, supply, and price of
value-added products). In the past many researchers have
used fuzzy to capture uncertainties in transportation environ-
ments using fuzzy like [25] and [26]. All these uncertainties
are captured in the proposed MOMLSTM using a PFN. PFN
has been used in the past for solving solid transportation
problem (STP) by various authors [27] and [28]. STP is
used in past to develop profit maximizing model [29]. As
the proposed model is MOMLSTM thus, a non-deterministic
compromise solution technique is proposed in this paper by
the name of GAOR. Genetic algorithm is used by many
researchers for solving multi-objective, solid transportation
problems to mention some [30] and [31]. There are many
authors who tried developing multiple models to handle dif-
ferent objectives of landfill mining cost assessment, carbon
emission, and time. Some of these works that capture the
objectives of these model along with the environment they
captured, be it uncertain or not, and the solution techniques
availed along with sensitivity analysis are summarized in
Table 1. Some of these works that capture the objectives of
these model along with the environment they captured, be it
uncertain or not, and the solution techniques availed along
with sensitivity analysis are summarized in Table 1.

Landfill Waste processing

= +

Refuse-derived fuel

Value added products from waste

Spraying of bio

inoculum

FIGURE 1. Landfill mining design with relevant steps and bi- products.

While there exists a substantial body of literature con-
cerning landfill mining, there remains a limited amount of
research that specifically addresses and resolves the fiscal
and environmental challenges associated with landfill min-
ing through the application of efficient mathematical models
solved by MAs. The main motivation of this research paper
involves:

o The strong incentives for maximizing profits within
the landfill mining sector that provide a compelling
rationale for the creation of an extensive mathematical
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model. The need of such model is highlighted in past by
various researchers [15], [32].

o Lack of models that has the potential to offer invalu-
able insights into the optimization of resource recov-
ery, reduction of operational expenses, and the pursuit
of environmental sustainability objectives. Scarcity of
endeavor yielding benefits that extend to both the indus-
try and the ecological landscape.

o The research paper that handled uncertainty in landfill
mining in past mentioned that there are certain aspects
of landfill mining under which uncertainty is not tackled
yet [33], [34]. This includes temporal variability in waste
lying in landfills due varying time period deposition,
spatial variability of waste that contributes to uncertainty
in time and cost of waste management. Discrepancies
in decomposition process often create uncertainty in
the overall time, cost, and carbon emission of landfill
mining.

o In the context of the MOO algorithm proposed in this
paper, the primary driving force stems from the fact
that despite numerous research efforts aimed at mit-
igating the inherent trade-offs between coverage and
convergence in both the decision space and objective
space of MOO algorithms, a significant research gap
remains concerning the diversity and distribution of the
PS. Furthermore, it is worth noting that only a limited
number of MOO algorithms are capable of effectively
handling more than three to four objectives, which is
inadequate for addressing the complexity of objectives
encountered in many real-world case studies. Hence,
there is a pressing need for an advanced algorithm capa-
ble of accommodating a higher number of objectives.

The major contribution of this research paper can be listed as
follows:

o The research article develops a mathematical MOML-
STM for landfill mining that aims to maximize over-
all profit and minimize carbon emissions and time.
This model can be used by any government or
non-government organization that takes tender of clear-
ing landfills as they attribute to being a major hazard to
the environment.

o Uncertainty in LFM associated with cost, time, carbon
emission, demand, and carbon cap arising due to compo-
sition of waste, range of contamination, heterogeneous
waste type, instability in landfill, weather, and regula-
tory compliance is captured using PFN, latest defuzzifi-
cation technique is employed for accurate results.

e As the MOMLSTM has multiple objectives, thus a
non-deterministic approach named GAOR is proposed
in the research article for solving it and other similar
models. Verification of the proposed technique with pre-
vious work is also performed.

o The organization engaged in landfill mining will benefit
from the thorough sensitivity analysis that is completed
at the conclusion. It helps establishments to take deci-
sions about the economic and environmental stability
of landfill mining. Each portion of this research article
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plays a vital role in delivering the above-mentioned
contribution. In order to elucidate, Section II deep dives
into the background information for developing opti-
mization framework for landfill mining using mathe-
matical model and impart information on how different
objectives in MOMLSTM are built. Section III includes
details of model formulation. It imparts details of all
the indices, decision variables, parameters, objectives,
and constraints developed. Under this section, all three
objectives, along with the corresponding constraints,
are presented for a complete knowledge of the model,
and each of these details is discussed. The crucial prin-
ciples for understanding uncertainty captured by PFN
are covered in section IV. Following the definition of
PFN, the process of defuzzification is illustrated with
the proper graphic representation in this section. The
proposed algorithm for solving MOMLSTM i.e., GAOR
is thoroughly explained in Section V, accompanied by
the methodology and relevant parameter selection tech-
nique for the algorithm. A numerical experiment utiliz-
ing a case study is presented in Section VI, along with
the solution to the MOMLSTM problem using GAOR.
Two distinct types of validation are then presented, and
the section concludes with managerial reflections. The
conclusion and anticipated scope are summarized in
Section VIIL.

Il. BACKGROUND FOR DEVELOPING OPTIMIZATION
FRAMEWORK FOR LANDFILL MINING USING
MATHEMATICAL MODEL

The technique of LFM assists in reclaiming resources
and lessening the environmental risks roped with dumping
grounds and landfills throughout the world. However, a major
obstacle towards systematized LFM is efficiently handling
the garbage created amid the rehabilitation of exposed and
ancient dumpsites. LFM is a useful strategy for reclaiming
land and reducing the ecological threats associated with waste
disposal facilities across the world. It is crucial to determine
the possible impact of pollutants, including leftovers in the
extracted component. Fresh items generated post appropriate
assessment and treatment of landfill waste can be sent back to
the market, which is a profitable procedure. While systematic
mining activities are performed on old garbage sites, a viable
business model is produced.

Bio capping along with biomining are two widely used
methods for restoring landfills. The bio-capping technique
entails lining the landfill with high-density polyethene, clay
liner, and cover from vegetation. The underlying idea is to
prevent precipitation from seeping into the trash. The systems
for gathering and processing waste water, also called leachate
and landfill waste gas, have been implemented. Yet it simply
is not physically possible to collect all these gases coming
from landfill and leachate from a non-scientific dump.

Although capping seems like an instantaneous means to
remediate a dumpsite, it fails to revitalize the soil or guarantee
that residual garbage is treated scientifically. Thus, it leaves
behind persistent risks to human health and the environment.
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TABLE 1. Summary of literature related to mathematical models for landfill mining.

Research Geographical Objective function Mathematical | Consideration Solution technique Sensitivity
article location programming of analysis
Economic | Environmental | Time type Uncertainty Deterministic | Non-
deterministic
[33] Mexico v x x MILP x v x v
[34] Abu Dhabi v v x MINLP x v x x
[35] Hong Kong v x x LP & MILP v v x v
[36] Iran v v x MILP x v x x
[37] Iran v v x MOMIP x v x x
[38] Malaysia v x x MINLP x v x x
[39] India v x x MILP x v x P
[40] Vietnam v v x MINLP x 4 x x
[41] Malaysia v x x MILP x v x v
[42] Malaysia v v x MILP x v x v
[43] UAE v v x MOMILPM v v x v
[44] Malaysia v v x MOLP x v x v
[45] Tehran v v x MOOP x x v x
[46] Tehran v v v MOOP v v x v
[47] China v v x MOMLP v v x x
(48] NA v x x MOOP v x v x
[49] NA v v x MOOP x x v x
Current India v v v MOMLSTM v v v v
work
MINLP: Mixed integer non-linear programming, MILP: Mixed integer linear programming, LP: Linear programming, MOOP: Multi-objective
optimization problem, MOMLP: Multi-objective multi-level problem, MOMILPM: Multi-objective multi-integer linear programming problem,
MOMLSTM: Multi-objective multi-level solid transportation problem, NA: Not available

The ineffectiveness of bio capping in landfill rehabilitation

can be attributed to several factors:

o Time-consuming procedure: For post-closure upkeep to
track contaminants in the soil, surface-water avenues,
and the atmosphere, a minimum of fifteen years of mon-
itoring is necessary.

« Frequent assessment: Frequent assessment of settling of
landfill due to leachate production, sedimentation, and
organic encroachment by plants.

o Contrarily, biomining-based landfill cleanup guaran-
tees long-lasting and ecologically appropriate han-
dling of accumulated waste. Additionally, profitable
revenue-yielding potential is provided by biomining
enterprises. Biomining is majorly a six-step process as
described below:

o Pre-feasibility analysis, which includes comprehen-
sive examinations of the location, research, and
trash characterization
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o Meticulous removal of old waste
o Decreasing the overall weight and scale of the trash
by consolidation using bio inoculum;
o Treatment of the dug-up portion
o Employing recovered waste components in a vari-
ety of profitable scenarios
o Tidying up and preparing reclaimed land
The multiple-step biomining process must be profit inclined
in order to achieve higher adaptability across various dump-
site biomining projects. The formulation of an optimization
framework for biomining, which is sustainable and profit-
yielding, is developed in this paper.

The proposed mathematical model is highly efficacious
and sustainable as it incorporates three crucial objectives of
any successful business framework, i.e., profit, sustainabil-
ity, and time. The functioning and outcomes of the model
provided in this study are affected by several uncertainties
and unanticipated events. The magnitude of the pollution
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generated by landfills on the ground, air, and water bodies
is very ambiguous, which has an influence on the different
costs connected with redemption. These are only a few of
the potential uncertainties that may be encountered by this
model. Technology restrictions raise uncertainty even further.
Excavation of landfills is subject to complicated legal require-
ments and norms, which might result in delays and increased
costs. Societal acceptability is another significant factor in
uncertainty since, in many places of the world, landfill exca-
vation uproots the livelihood of nearby residents. Finally, the
market’s need for land that had been repurposed increased
uncertainty. The parameters are assumed to be pentagonal
neutrosophic numbers in order to account for this ambiguity.

ill. MATHEMATICAL MODEL FORMULATION

The elaboration of the mathematical model explaining the
various sets and indices, as well as the many notations that
were utilized to build the model, is provided in this part.
Additionally, it defines each component associated with three
objective functions and every constraint that was created in
order to optimize the model’s objectives, model interpretation
is a crucial part of this section.

A. ASSUMPTIONS FOR THE MODEL

e Waste separation and segregation takes place at the
processing site itself.

e Landfill holds both legacy and fresh municipal waste.

e The potential location of processing plants is known
beforehand.

e Biomining procedure is implemented for landfill
redemption.

e Cost of rehabilitation of landfill post clearing is not
included.

e The MOMLSTM represents unbalanced transportation
problem.

B. INDICES

e [: set of landfill sites indexed by i

e J: set of waste processing plants indexed by j.

e K: set of conveyances used to transport waste from
landfill to processing plant indexed by k.

e K’ : set of conveyances used to transport waste from
processing plant to demand point indexed by k'.

e M: set of prospective demand locations of new-value
added products attained post-processing indexed by m.

e L: setof various type of new-value added products pro-
duced from landfill waste post biomining procedure.

C. PARAMETERS
e PFS: Fuzzy cost of pre-feasibility study of waste lying
at landfill per volume unit
e DCC: Fuzzy data collection cost from landfill per vol-
ume unit
e LT: Fuzzy laboratory testing cost of landfill waste per
unit volume
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BIP: Bio inoculum procurement cost in fuzzy involving
the purchasing cost of bio inoculum required for each
unit of waste

LCB: Labor cost of spraying bio inoculum over per unit
volume waste in fuzzy number.

SED: Fuzzy cost of systematic excavation of dumpsite
per volume unit

SPC: Site preparation cost for excavation over per unit
volume waste as fuzzy number

EQC: Equipment cost for excavation over per unit vol-
ume waste as fuzzy number

LAO: Labor and administrative overhead cost during
excavation over per unit volume waste as fuzzy number
SBI: Fuzzy cost of spraying of bio inoculum in order
to reduce mass of waste per volume unit

TCjjx: Fuzzy cost of transporting per unit volume
waste from landfill (i) to processing plant (j) using
vehicle (k) .

CCij: Fuzzy cost of process of waste collection at land-
fill (i) being sent to processing plant (j) using vehicle
(k) per unit volume

SS;j: Fuzzy cost of sorting and segregation of per unit
volume of waste at processing plant (j) arriving from
landfill (7)

PRF: Average price of new value-added products
generated from unit volume waste from landfill in
fuzzy

PP;;: Fuzzy cost of processing waste to attain new
value-added product at processing plant (j) arriving
from landfill (i) per unit volume

I;: Fuzzy inventory cost of per unit volume product
arriving from processing plant (j) to demand point (/)
TCTj: Fuzzy cost of transporting per unit volume
of value-added product from processing plant (j) to
demand point (m) using vehicle (k/ )

CL Fuzzy amount of carbon emitted from per unit
volume waste lying at landfill

CAD: Fuzzy quantity of methane resulting from the
anaerobic breakdown of organic waste per unit volume
of waste present at the landfill

CAM: The imprecise quantity of carbon dioxide result-
ing from waste combustion or microbial respiration per
unit volume of waste deposited in a landfill

CAV: The imprecise quantity of volatile organic com-
pounds originating from specific waste types or micro-
bial respiration within each unit volume of waste
deposited in a landfill

CAN: The fuzzy quantity of nitrous oxide produced
from the incineration of waste containing nitrogen
within each unit volume of waste present in the landfill
CE Fuzzy amount of carbon emitted by vehicles
responsible for excavation of waste at landfills per unit
volume

CTjjx: Fuzzy amount of carbon emitted in transporting
per unit volume waste from landfill (i) to processing
plant (j) using vehicle (k)
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° (’“:131-: Fuzzy amount of carbon emitted by machinery
while processing per unit volume of waste at processing
plant (j)

e CS ;: Fuzzy amount of carbon emitted per unit volume
of waste by sorting and segregation plant at processing
plant (j)

° 61]1: Fuzzy amount of carbon emission due to usage
of electricity at inventory situated in processing plant
(j) for storage of value-added product (/)

e CTT imk: Fuzzy amount of carbon emission per unit
volume of value-added product from processing plant
(j) to demand point (m) using vehicle (k')

e TPF: Time taken in fuzzy pre-feasibility study of waste
lying at landfill per volume unit

e TED Time taken in fuzzy for systematic excavation of
dumpsite per volume unit

e TSB Time taken in fuzzy for spraying of bio inoculum
in order to reduce mass of waste per volume unit

° "F§§j: Time taken as fuzzy in sorting and segregation of
per unit volume of waste at processing plant (j)

. fﬁ’ij: Time taken as fuzzy for processing waste to
attain new value-added product at processing plant ()
arriving from landfill (i)

° ﬁ,-jk: Time taken as fuzzy during of transportation
waste from landfill (i) to processing plant (j) using
vehicle (k)

) ’fﬁjmkm Time taken as fuzzy during of transportation
of value-added product from processing plant (j) using
vehicle (k) to demand point (m) using vehicle (k')

e 4;: Maximum waste holding capacity of landfill (i) in
fuzzy

° Ej: Maximum waste holding capacity of processing
plant (j) in fuzzy

e Cr: Waste holding capacity in fuzzy of vehicle trans-
porting from landfill to processing plant

° Xﬂ: value-added product (i) holding capacity in fuzzy
of inventory at processing plant (5)

° I’)\l”j: Minimum waste assigning limit for processing
plant (j) in fuzzy

° Eml: Requirement of value-added product (/) at
demand point (m) in fuzzy

o Vi Capacity of vehicle transporting from processing
plant to demand point

e CCL;: Carbon cap at landfill (i) in fuzzy

e CCT: Carbon cap across the entire transportation in
fuzzy

. C’a’j: Carbon cap at processing site (j) in fuzzy

e TB: Time bound for the entire landfill clearing process

D. DECISION VARIABLES
o Xx;jj: Volume of waste transported from landfill (i) to
processing plant (j) using vehicle (k)
® Xj,i;: Volume of value-added product (/) transported
from processing plant (j) using vehicle (k) to demand
point (m) using vehicle (k')
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F. INTERPRETATION OF MODEL

A viable model regarding landfill restoration is demonstrated
by the mathematical model discussed in sub-section E of
section III. Since landfill restoration is expensive, time-
consuming, and generates carbon during operation, the main
goal of any company that engages in this sector is to max-
imize profit while minimizing both carbon emissions and
time as formulated in objectives (1), (2), and (3) respectively.
Pre-feasibility analysis is the initial phase in the biomining
technology employed for landfill rehabilitation. This assess-
ment’s objective is to analyze every pertinent dependency,
including time-sensitive, fiscal, and technological ones. The
cost of this assessment is captured by parameter (PFS) The
expenses associated with conducting a prefeasibility analy-
sis can be divided into two main components: the cost of
data collection (DCC), which encompasses site surveys, field
measurements, and data logging; and the cost incurred within
laboratories (LT). The laboratory costs include expenditures
related to equipment, data analysis, quality control, and report
generation, all of which are incurred after the collection
of waste samples. Thus, PFS = DCC + LT. The tedious
and expensive process of excavating garbage from landfills
includes the cost of creating an operation plan, purchasing
safety gear, controlling fires, hiring trained staff, purchas-
ing effective equipment, and managing odors resulting from
leachates. The entire cost of excavation is denoted by (SED).
The total excavation cost can be categorized into three pri-
mary components: site preparation cost (SPC), which covers
activities like site clearing, permit acquisition, and erosion
control; equipment expenses (EQC), encompassing fuel and
maintenance costs; and labor and administrative expenses
incurred throughout the excavation process (LAO). Conse-
quently, the deconstructed excavation cost can be represented
as (S?ZB) = (SPC) + (E’Q/C) +(LAO). The compostable por-
tion of legacy trash in microbe-mediated stabilization breaks
down, lowering its bulk and dimension. For the purpose
of reducing insects, eradicating infectious activity, reducing
moisture, and completing the procedure of biodegradation,
the waste site is stabilized by converting it into rows of similar
size in a systematic way. Bio inoculum is used for this pur-
pose. The cost of spraying bio inoculum is denoted by (§T3JI)
It is possible to divide the main expenses related to applying
bio-inoculum into two main parts. First, there is the cost
of obtaining the bio-inoculum itself (BIP), which includes
the expenses incurred in obtaining it from outside sources
or creating it internally. The second factor is the labor cost
involved in spraying the bio-inoculum (LCB). Wages for the
labor force in charge of the application are included in these
labor costs, together with charges for maintaining their safety
and adherence to applicable laws. Therefore, mathematically
SBI = BIP + LCB. At the processing facility, the material
is separated using a variety of techniques, including ferrous
separation, screening, shredding, and air classification, and it
is screened mostly according to its size. Cost of this is denoted
by (SS,-J-). Following segregation, processing is performed
to produce new products with additional value which can
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potentially be deployed for a variety of purposes, including
soil enrichment, RDF and road building, clay replacement
in the construction sector, and road-building. Cost of this is
denoted by (PP;;). Apart from this the other important con-
sidered while maximizing profit in equation (1) are inventory
cost G; waste collection cost (CC,]k) , and transportation
cost (TCy, TCT]mk/).

Objective 2 deals with minimizing carbon emission. It
takes into consideration the carbon emission from waste lying
in landfill (CL) as this waste generates methane, and other
highly potent GHGs. A vast variety of trash coexist in land-
fills, creating intricate ecological systems that encourage the
production of different GHGs. To go into more detail, a sig-
nificant supplier of methane gas (CH4), a powerful green-
house gas, is the breakdown of organic waste in anaerobic
environments (CAD) Additionally, carbon dioxide (CO2),
another important GHG, is released during the process of
waste combustion (CAM) or microbial respiration. Moreover,
certain waste kinds may release volatile organic chemicals
(CAV), which may have a variety of negative effects on the
environment. Additionally, burning nitrogen-containing trash
produces nitrous oxide (CAN) which increases greenhouse
gas emissions. Thus, the overall emission from waste lying
in landfill can be broken down as CL = CAD + CAM +
CAV + CAN. This range of greenhouse gases produced by
garbage highlights how crucial it is to comprehend and con-
trol landfill emissions in order to lessen their negative effects
on the environment and support environmentally friendly
waste management techniques. Emission from equipment
and vehicles CE) used for excavation is also captured. Waste
segregation (CSJ-) and processing (6?,) is an intricate pro-
cess that requires complicated machinery which further adds
to carbon emission. The value-added products attained post
processing plant are stored in inventory and the carbon emis-
sion from inventory is captured with (C~Iﬂ). Vehicle carrying
waste from landfill to processing plant and from there to
demand points contribute to carbon emission and are captured
using (ET ,;/k) and ((?ﬁ jmk’)- Landfill redemption projects
comes with strict timelines, thus minimizing time is one of
the most crucial targets for this process. Objective (3) deals
with this issue, the predominant time-consuming process like
prefeasibility study (TP/L systematic excavation (TED)
bio-inoculum spraying (TSB), sorting of waste (TSS;), pro-
cessing of sorted waste (TPP;), and transportation of waste
(TT,]k) and new value aaded products (TTTj, ) are covered
in this objective.

Constrain (4) is responsible for putting a check on the
quantity of waste being transported from landfill (i) to pro-
cessing plant (j) using the vehicle (k); it makes sure that the
quantity of waste transported cannot be more than the waste
available at the landfill (i). Constraint (5) makes sure that pro-
cessing plant (j) capacity is not exploited. No compromise is
made in transportation by misusing the weight holding capac-
ity of vehicles is made sure by constraints (6) and (10). For
proper utilization of resources, there is a minimum limit of
waste that must be assigned to each processing center which
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is made sure by constraint (7). Inventory capacity is checked
by constraint (8). The requirement of each demand point is
fulfilled is made sure by constraint (9). Constraint (11) is
responsible for putting a carbon cap at the processing site.
Carbon cap for the entire transportation procedure is imple-
mented by constraint (14). Constraint (15) is responsible for
putting a time bound on the landfill redemption process.

IV. PRELIMINARY CONCEPTS OF FUZZY USED IN
FORMULATION OF MATHEMATICAL MODEL

The following subsections contain details on the fuzzy con-
cepts that are employed to represent uncertainty in the landfill
redemption model outlined in section III. Considering that
numerous external variables play a significant role in the
landfill reclamation procedure, the parameters associated
with the mathematical model cannot be taken as exact values.
The use of pentagonal fuzzy numbers as parameters allows
for the resolution of this issue. Following are definitions of
pentagonal fuzzy numbers and a description of the defuzzifi-
cation procedure:

A. PENTAGONAL FUZZY NUMBER
A pentagonal fuzzy number represented by p =
(1, P2, P3, P4, Ps, g) and the corresponding membership
function up (z) need to satisfy following conditions [50]:
o In the interval [0, 1] the membership function up (2)
should be continuous
o The function up (z) should be non-decreasing in the

interval [p1, p2] and [p2, p3]
o The function up (z) should be non-increasing in the

interval [p3, p4] and [pq4, ps]
Definition of membership function for PEN is as follows:

[0 if z < piorz>ps
i—P1
P2—Pq
g+ -9

fpi<z<p
i—Pq
P2—D1
1L if z=p;3
pa—2z .
g+(d—g if p3 <z7<pa
P4—D3
pPs —2
P5s — P4

8

ifpp <z<p3
up (2) =

g if pa <z <ps

B. DEFUZZIFICATION TECHNIQUE FOR PENTAGONAL
FUZZY NUMBER

Fuzzy parameters are incapable of being employed directly
for a multitude of causes, including decision-making, human
comprehension, integration into conventional control mech-
anisms, streamlining of results, and comparative evalua-
tion. Thus, the defuzzification approach, also known as the
crisp conversion method, is required. For defuzzification
of PEN (p) it is disintegrated into one rectangular region
and three triangular regions as shown in Figure 2. The
crisp form is evaluated as the value of centroid of PFN (p)
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as shown below [51]:
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FIGURE 2. Disintegrated pentagonal fuzzy number.

V. PROPOSED ALGORITHM FOR SOLVING THE
MOMLSTM: GENETIC ALGORITHM WITH

OFFSPRING REFINEMENT (GAOR)

The current problem examined in this paper encompasses
three contradictory objectives to be optimized during land-
fill excavation and management. It is an NP-hard problem.
Achieving the optimal solution of an NP-hard problem is
challenging as it has high time and space complexity. That is
where GA come to the rescue. It is a method that is inspired
by natural genetics in charge of the dynamics of biological
evolution and is a stochastic and heuristic search method.
It has already proven its performance in solving STP in the
past. Utilization of GA in attaining optimal results for STP
was first niched by [52]. However, GA proposed here is
an upgraded version of the traditional GA; it involves aug-
mentation of offspring refinement step post mutation. This
section holds all relevant information on various methods
and parameters involved during crossover and mutation steps,
along with other steps of GA like chromosome representa-
tion, population initialization, fitness function etc., as shown
below:
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o Chromosome representation: Chromosome is one of the
candidates for solution. Here, it is representation of
transportation scheme. It comprises of several genes
which are nothing but decision variables. The model
considered in this work engages two kind of decision
variables. Thus, for the sake of detailed representation of
chromosome it is bifurcated into two sub-chromosomes.
The first kind of sub-chromosomes for decision variable
from landfill to processing site (SC-LP); it holds infor-
mation of the decision variables responsible in trans-
portation from landfill to processing plant. Second kind
of sub-chromosomes i.e., sub-chromosomes for decision
variable from processing site to demand point (SC-PD).
The two types of sub-chromosomes are shown in fig. 3.
Sub-chromosome SC-LP and SC-PD clasps all the genes
of form Xjjx and Xjmi/ respectively.

o Population initialization and size: Population initializa-
tion and size are two important parameters that play an
indispensable role in GA. The goal of the initialization
step is to impart a diversified and representative begin-
ning population that will be utilized in the next stages of
evolution. Random initialization technique is a widely
used technique for initialization [53]. It is a strategy that
is frequently used and involves initializing the popula-
tion with completely random solutions. By presenting
a wide variety of starting solutions, this strategy seeks
to increase solution heterogeneity. Algorithm 1 demon-
strates the utilization of this approach in the current
context. Population size is responsible for the explo-
ration and exploitation of solution space; the quality of
the solution depends on it. There is always a trade-off
in computational resources and diversity while choosing
population size. The final pick of population size for this
work was done using from Taguchi experiment.

o Parent selection: Parent selection is a crucial step in
GA. The principal outcome of this step leads to the
election of parents from the population to create better
offspring. Identifying parents that possess “‘excellent”
genes enables those traits to be carried down through
the subsequent generations. The overall convergence
pace of a GA depends heavily on choosing parents
since effective parents encourage individuals to find
more appropriate and superior solutions. Here, five
parent selection operators are considered that are as
follows [54]:

o Stochastic Universal Sampling

o Tournament Selection

o The truncation selection

o Roulette Wheel Selection

o Rank selection method
By removing any prejudice in favor of individuals who
have elevated fitness levels and raising the selection stress,
stochastic universal sampling outperforms the conventional
fitness proportional selection. The following is accomplished
by uniformly distributing the points across the roulette
wheel, which increases the likelihood that those with greater
levels of fitness will be picked more than once. In the
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tournament selection method, the most outstanding individ-
uals are picked to serve as the parents of the following
generation after holding “‘tournaments” amongst arbitrarily
selected members of the population. The selection process
used in tournaments strikes a compromise between selection
stress and variety conservation. Whereas the next selection
technique i.e., truncation selection technique, entails choos-
ing a specified percentage of the population’s top individuals
in accordance with their fitness ratings as parents. Next is
the roulette wheel selection approach. It involves creating a
roulette wheel featuring parts that are proportionate to the
likelihood of every individual being chosen. The dimension
of the various parts on the wheel, which has been split into
sections, reflects how likely an individual is to be chosen. In
the rank selection technique, tanks are assigned to the individ-
uals base on their output from fitness function. Later selection
probability comes into the picture which is calculated using
the normalizing factor and rank of an individual.

Algorithm 1 Algorithm for Random Initialization

Input: a;, b, ck, Aji, By, vir
Output:

Or = {x111, ..., Xk}, O2 = {xqqq1s -
s count =1 +J K xM %K' %L

: While (count # @) do

Select arbitrary number V from set count;

s Xjmk'1

1

2

3

4 Computing indices of decision variables;

5: i = (count — 1)mod (I +1);

6 j = [(count — 1) /Ilmod (J + 1) ;

7 k = [(count — 1) /(I = J)lmod (J + 1) ;

8 m = [(count — 1) /(I *J x K)|mod (J + 1);

9: k' = [(count — 1) /(I *J xK x«M)lmod (J + 1) ;
10: I = [(count — 1) /IxJxK+«M*K'lmod (J + 1) ;
11: Data assignment;

12: | X = {mina;, bj, ck};
13: Ximk'l = {minAjl’ Bt vir};
14: Data updating;
15: aj= Xjjk — a;;
16: | b= xjx — bj;
17: Ck= Xjjk — Ck;
18: Ajl = Xjmi1 — ais
19: Bt = Xjmir1 — bj;
20: ViK'= Xjmk'l — VK,
21:
end

22:  Return O and O3;

o Fitness function: A particular solution’s fitness”
amongst an overall population is assessed using a fit-
ness function in a GA. How effectively an individual
accomplishes the targeted assignment or achieves, the
goals of the problem being addressed is determined by
their fitness function. The population’s growth through
generations that follow is subsequently guided by the
algorithm using this evaluation. The various alternatives
for fitness function selection are established on scenarios
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like objective-based fitness, optimizing resource fitness,
classification accuracy, simulation-based matrices, and
constraint satisfaction. Here, the objective of the model
being solved is clear; thus objective-based fitness func-
tion is implemented. This fitness function takes care of
the following traits of the solution measure of quality,
criteria of optimization, fitness scaling, fitness evalua-
tion, and fitness proportion. To attain a fitness function
dealing with all three objectives of the model, the com-
promise programming technique game theory approach
is availed [55].

Crossover: In order to produce superior offspring,
recombination of genetic information between two chro-
mosomes is accomplished through crossover, an essen-
tial stage in GA. It oversees producing numerous
combinations of children from two selected parents.
Based on their operational mechanism, crossover come
in a variety of forms. Some of the frequently used
crossovers involve one-point crossover under this variant
of crossover, random selection of a point is initiated,
which is later referred as crossover point. At this desig-
nated point, the genetic information located beyond it is
exchanged between the parents, resulting in the creation
of offspring individuals. This crossover provides genetic
variety and may result in novel trait combinations in

GA, the crossover probability aids in striking the right
equilibrium between exploration and extraction. Former
is encouraged by a larger crossover probability, which
raises the likelihood of reassembling genetic informa-
tion. This may aid the algorithm’s search for fresh,
possibly superior solutions. The latter is favored by
lower crossover probability by conserving more genetic
information. However, the determination of the appro-
priate crossover type and crossover probability depends
largely on the problem being solved. Thus, the Taguchi
method is employed to calculate the best-fit parameter
setting for the GA being used here. The S/N ratio table
implies that a two-point crossover is the best fit for
the current GA, as shown in Figure 9 and Table 10
and 11. The working of two-pint crossover is shown in
Figure 4 and 5.

the progeny [56]. Next is two-point crossover it is an Sub-chromosome 1: SC-LP ~ Sub-chromosome 2: SC-PD

upgraded version of a one-point crossover. It identifies L .
. FIGURE 3. Pictorial representation of the two sub-chromosomes of
two crossover spots within each parent chromosome MOMLSTM.

and switches the genetic information across the par-
ents with these two points as the frame of reference.
Comparatively, this crossover approach tends to have
higher diversity, it promotes greater variation and makes
it easier to experiment with different genetic arrange-
ments by allowing genetic material to move between two
designated sites [56]. Uniform crossover facilitates an
additional random and distinct transmission of genetic
data. It facilitates the blending of genetic data at the
distinct levels of genes, opening the possibility of explor-
ing numerous combinations. Under cycle crossover, the
underlying cycle of chromosome is first identified. The
underlying chromosome cycles are first identified via
the cycle crossover operator. The initial location in
the first parent is chosen arbitrarily, while the cycle
is subsequently traced through locating the matching
components of the subsequent parent and noting visited
elements. Up till all constituents are a member of a
cycle, that procedure is recurred. Using the recognized
cycles, the genetic code from the parent chromosomes is
alternately copied to form the next generation of individ-
uals. It permits the retention of certain patterns present
in the parent’s chromosomes, encouraging the inves-
tigation of related approaches during the subsequent
generation process [56]. Apart from crossover opera-
tion, the other important factor responsible for crossover
is the probability of crossover. This parameter controls
the possibility or probability of implementing crossover
onto an assortment of parent individuals in GA. In a
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Apart from crossover operation, the other important
factor responsible for crossover is the probability of
crossover. This parameter controls the possibility or
probability of implementing crossover onto an assort-
ment of parent individuals in GA. In a GA, the crossover
probability aids in striking the right equilibrium between
exploration and extraction. Former is encouraged by a
larger crossover probability, which raises the likelihood
of reassembling genetic information. This may aid the
algorithm’s search for fresh, possibly superior solutions.
The latter is favored by lower crossover probability
by conserving more genetic information. However, the
determination of the appropriate crossover type and
crossover probability depends largely on the problem
being solved. Thus, the Taguchi method is employed to
calculate the best-fit parameter setting for the GA being
used here. The S/N ratio table implies that a two-point
crossover is the best fit for the current GA, as shown in
Figure 9 and Table 10 and 11. The working of two-pint
crossover is shown in Figure 4 and 5.

o Mutation: A key component of GA is mutation. After

crossover, the GA process advances with this step. With
this technique, chromosomal alterations are performed
at the gene level. In addition to allowing the procedure
to investigate novel areas of the solution space, mutation
contributes to preserving genetic variety. It serves as an
exploration technique that enables the GA to leave its
immediate vicinity of local optima and discover fresh
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Post crossover operation

First offspring Second offspring

FIGURE 4. Two-point crossover mechanism in sub-chromosome SC-LP.

areas of the solution space. The individuals chosen for
mutation are entirely based on the probability of muta-
tion. Based on the likelihood of mutation, participants
are selected for mutation. It regulates how frequently
or quickly a population’s members experience mutation.
It shows the possibility that a gene or chromosomal
segment will change throughout the algorithm’s repro-
duction phase. The right mutation chance relies on the
issue, the structure of the population at large, and how
additional GA operators, such as the crossover phe-
nomenon, interact with it. There are many different
mutation processes, and the one selected depends on
the issue. Based on the Taguchi experiment’s calculation
performed in Figure 8 and Table 10 and 11, the best-fit
mutation is an Inversion mutation for the current prob-
lem; it is working, is shown in Figure 6. Some frequent
mutations in GA include the following,under inversion
mutation a subset of the chromosomes, or a handful
of genes, are picked arbitrarily after chromosomes are
picked depending on what score they achieve in the fit-
ness function. The chosen subpart’s sequence is inverted
in order to find the mutated individual, who is then care-
fully reintroduced into the population. Parameter tuning
of parameters like the subset size can further enhance
the functionality of this operator [54]. By assisting GA
in overcoming stasis and pursuing alternate routes in
the hunt for better answers, it serves as a means of
escaping local optima. Next is swap mutation, GA fre-
quently employ the mutation operator known as swap
mutation. It entails picking a pair of genes arbitrarily
from the chromosome and switching their locations to
produce a new individual. Random selection determines
which two different genes on a chromosome will be
switched. The genes can be selected according to any
chromosomal location. The chromosome locations of
the chosen genes are switched [57]. It suggests that
the features or characteristics that those genes stand
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for have been flipped around. The picked genes are
replaced with those in reversed locations to produce a
transformed individual. This can prompt the investiga-
tion of related solutions and prospective upgrades in the
pursuit of superior ones. Another important mutation is
insertion mutation, by arbitrarily picking a gene from a
chromosome and moving it to a fresh site, an insertion
mutation results in a mutant individual possessing a
changed genetic profile. In this experiment, a gene is
picked at independently for the incision following indi-
viduals have been chosen according to fitness function.
The chosen gene is taken out of its initial spot, leaving
a space there. Already present genes are then moved to
create space to accommodate the inserted gene in a sepa-
rate randomly chosen location on the chromosome. The
inserting gene must not contravene any problem-focused
restrictions or guidelines when employing the insertion
mutation. In order to preserve significant and viable
solutions, an updated position must be true and prac-
ticable in the problem domain [57]. Bit flip mutation
adds randomization to GA by switching the positions
of GA. This randomization aids the procedure’s explo-
ration of various areas within the exploration area that
can yield more advantageous solutions. It enables an
expanded investigation outside the current population.
It is essential for preserving genetic variation in popula-
tions. Providing arbitrary modifications that may bypass
local optimum regions and encouraging the investigation
of other gene arrangements, it aids in preventing preterm
convergence. One gene or chromosomal piece is picked
at random. The numerical representation of the chosen
gene has been reversed or reversed. The reversed gene
is substituted for the initial gene located on the chro-
mosome to produce the mutant individual [57]. Last one
discussed here is gaussian mutation, GA supports both
explorations as well as utilization through this mutation.
The exploration component is accomplished by applying
arbitrary modifications to the inputs or genes, thereby
helping the procedure search a wider area of the pro-
posed solution domain. By gradually bringing solutions
closer to ideal or nearly optimal outcomes, the exploita-
tion element is accomplished. The standard deviation
component of the Gaussian distribution regulates the
size of the variations in this mutation. Greater varia-
tions are produced by bigger standard deviations [57],
allowing for deeper study. Lower variations are caused
by lower standard deviations, making finer changes and
the use of the current solutions possible.

A. WORKING OF GENETIC ALGORITHM WITH OFFSPRING
REFINEMENT (GAOR)

The proposed GA is responsible for the augmentation of
offspring refinement for enhancement in GA. After crossover
and mutation operation, there is still scope for improvement
in offspring attained. The offspring refinement method pro-
posed below repeatedly improves results by first looking in
the nearby area and then migrating towards more promising
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Post crossover operation

First offspring

Second offspring

FIGURE 5. Two-point crossover mechanism in sub-chromosome SC-PD.

areas of the solution space. The proposed technique can
effectively locate locally optimum or optimal alternatives by
focusing their exploration on a specific solution. The aug-
mentation of this technique in GA can be visualized by the
procedure mentioned in the following steps:

o Step 1: Initialize the population as shown in Algorithm 1
and opt for the best population size parameter using the
Taguchi experiment

o Step 2: Select a parent based on the most appropriate
technique from all five techniques mentioned above.
Technique selection is made based on the Taguchi
experiment.

o Step 3: Avail the fitness function generated from game
theory approach stated in portion dealing with fitness
function under section V.

« Step 4: Post-parent selection crossover is performed and
the type of crossover is chosen from the five differ-
ent crossovers described in above text using Taguchi
experiment.

o Step 5: After crossover, advancement of the population
is necessary and for that, mutation is performed.

o Step 6: Offspring refinement is applied in order to
improve the quality of offspring attained after mutation.
The detailed application of this technique in GA is
shown in Algorithm 2.

o Step 7: The offspring refinement terminates after wit-
nessing any one of the two conditions firstly if there is
no improvement in the population, and secondly, if a
predefined number of generations has been reached.

« Step 8: Evaluate population.

o Step 9: Print the optimal result.

B. COMPUTATIONAL COMPLEXITY OF PROPOSED GAOR
ALGORITHM

The assessment of the computational complexity of GAOR
is a multifaceted and intricate subject like GA. Unlike
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FIGURE 6. Inversion mutation functioning.

deterministic algorithms, where one can offer a clear and
exact analysis of computational complexity, GAOR presents
a greater challenge in this regard due to their stochastic and
heuristic nature, involving the exploration of a population
of potential solutions. There is no general analysis that can
apply to all GAs. Nonetheless, rough approximation of the
computational complexity for the GAOR can be offered.
The complexity of GAOR is influenced by several variables,
such as the population size (X1), chromosome length (L),
and the number of generations (G). An approximate assess-
ment of both time and space complexity using the big O
notation is provided, the time complexity of GAOR is O
(G x (X1xL 4+ T_OR + L)). Here, T_OR is time com-
plexity of the offspring refinement step post mutation which
is an amplification of the local search algorithm and its
time complexity is O(RxN). Where, R is the run count for
offspring refinement and N size of neighborhood explored.
Similar approximate assessment of space complexity pro-
vides O(X1xL+S_OR) and S_OR is space complexity of
offspring refinement and it is constant like LS algorithm as
it stores only current solution.

VI. VERIFICATION OF PROPOSED GAOR ON CEC 2020
MULTI-OBJECTIVE BENCHMARK FUNCTIONS

The optimization performance of the proposed GAOR
algorithm is evaluated using CEC 2020 [58], that comprises
of twenty-four multimodal multi-objective (MMO) bench-
mark functions. The diverse methodical and standardized
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FIGURE 7. Box plot for PSP values of GAOR and other competitor MOO algorithms on CEC 2020 functions.

functions under CEC 2020 show several local or global Pareto
optima, and these functions can have different forms for PF
and PS. The form of the PS might be linear or non-linear,
whereas the shape of the PF can be either convex or concave.
The efficacy of GAOR is assessed using three performance
indicators inverted generational distance in decision space
(IGDX), Pareto set proximity (PSP), hyper volume (HV).
The IGDX parameter calculates the mean difference between
the solutions produced by the algorithm and the reference
or actual solutions by utilizing the decision space [59]. It is
defined as the mean Euclidean distance amidst attained PS
(A) and true PS (T*). The mathematical formula for IGDX is
provided in equation (15). Smaller value of IGDX is favorable
as it signifies high convergence and diversity.

_ ZIET* dlst(t, A)

IGDX (A, T*) = T ]

5)

The other vital performance indicator is PSP, it evaluates
the similarity between the algorithm generated solutions and
reference solutions [59]. Thus, high PSP value aligns with
better algorithm. PSP evaluation as shown in equation (18)
requires two vital metrices IGDX and cover rate (CR). CR
is the ratio by which A and T* overlaps. To calculate CR,
minimum (mgi") and maximum (m}**) value for d — th vari-
able for A and minimum (M ";”") and maximum (M'*") value
for d — th variable for T* should be calculated beforehand
as shown in equation (16). The formula to calculate CR is
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max __ min
0 Mg =M, _
min max max min
Ovy = 1 my" > M) || mg* <M}
min (m} M) — max (!} M7 .
- otherwise
( Ménax _ M';nm
(16)
" hs
2
CR = (H 0vd) " 17)
d=1
Here, n stands for the decision spaces dimension.
CR (18)
IGDX

HYV, the third performance indicator gauges the volume of
the objective space controlled by the generated solutions and
the restriction to create this volume is provide by a point
called as reference points Re f = (Refi, ..., Re f,)T whichis
overpowered by all solution from PF. HV is calculated with
Lebesgue metric as shown in equation (19). The higher the
HYV the better algorithm is considered [60].

HV (4) = L (UaeA [fi (@), Re fi] x ... [fu (@) ,Refu])
(19)

The proposed GAOR is verified on twenty-four CEC
2020 functions and the corresponding three performance
indicator matrices are calculated as shown in Table (3)-(5)
using equations (15)-(18). In order to assess the performance
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Algorithm 2 Algorithm for Offspring Refinement

Input: Post mutation
P={PiUPy}: Py = {xi11. ..., X},
Py ={x1111s - - - » Xjmk1}, and Max Run count
Output: Post refinement
P ={PIUP}P; = {x111. ... Xjjk }»
P2 = {xllll’ LI 7x]mk/l}
1: Run Count begins at 0
2: Optimum Obj value is attained from the fitness

function
3: Set ﬁ =P
4: Initialize Run Count =0
5: Set Optimum Obj = fitness function(P)
6: while Run Count < Max Run count, do the
following
7: Generate a random index i using
RandomNumber () modulo(a+1)
8: Generate a random index jusing
RandomNumber () modulo (b1+1)
9: Generate a random index jousing
RandomNumber () modulo (by+1)
10: Generate a random index k using
RandomNumber () modulo(c+1)
11: Generate a random index mj using
RandomNumber () modulo (d\+1)
12: Generate a random index mpusing
RandomNumber () modulo (dy+1)
13: Generate a random index k'using
RandomNumber () modulo(f+1)
14: Generate a random index [ using
RandomNumber () modulo(e+1)
15: Create a temporary copy of P called Interim P
16: Swap the values of xl’j’i’,fr M \with xg;’,f”'m, and
x]fsl’f]:f;" with x]”’:f;,:;’/’; where xl?]f}{’” " and x]fr’:f,f,’l”"
belong to Interim P
17: If fitness function (Interim P) < Optimum Obj,
then:
18: Set P = Interim P
19:

Increment RunCount by 1
20: Output P as the result

of the proposed GAOR in relation to other competitors,
we conduct a comparative analysis by pitting GAOR against
six robust MOO algorithms, which encompass MOEOSMA
[61], EMOPSO [62], MOGTO [24], ASDMSGA-II [63],
MOSMA [23], and MEOA [64].

The parameter settings listed in Table 2 is used in the
testing process for every algorithm. The population dimen-
sions, the number of fitness function evaluations, and the
number of independent runs for every function was kept at
constant numbers to guarantee an equitable comparison. The
additional specifications were followed as suggested by the
original research publications for each of them.
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TABLE 2. Parameter setting of the proposed algorithm and other
competitor algorithms compared.

Algorithms Parameters

GAOR Population size (X1) = 125
Crossover probability (X2) = 0.9
Mutation probability (X3) = 0.13
Parent selection method (X4) =The
truncation selection
Crossover type (X5) =Two-point

MEOA Population size (X1) = 125
Crossover probability (X2) = 0.2
Mutation probability (X3) = 0.4

MOSMA Population size (X1) = 125
Constant (z) = 0.03

ASDNSGA-II | Population size (X1) = 125
Crossover probability (X2) = 0.9
Mutation probability (X3) = 0.01

MOGTO Population size (X1) = 125
Generation method parameter (p) =0.03
Intensification phase parameter (w) =0.8
Optimization state parameter () = 3

MOEOSMA Hybrid parameter (z) = 0.6
Generation probability (Gp) = 0.5

EMOPSO Population size (X1) = 125
Learning parameter C1 and C2 = 2.05
Number of independent runs = 30

A. COMPARISON ANALYSIS BETWEEN PROPOSED GAOR
AND COMPETING MOO ALGORITHMS

Various matrices including PSP, IGDX, and HV are used in
this section to compare the efficiency of GAOR over other
algorithms. The PSP, IGDX, and HV value for GAOR and
other six MOO algorithms to be compared are provided in
Table 3, Table 4, and Table 5 respectively. A specific rank
is provided to each algorithm under all three parameters
using Friedman test. The Friedman test is a nonparamet-
ric technique that regulates the family-wise inaccuracy and
assesses the importance of variations across several methods
by calculation Friedman mean rank (FMR) [62]. To study
the data distribution the boxplot for all seven algorithms is
plotted as shown in Figure 7. Moreover, the statistical analysis
is clarified and the significance of the results is confirmed
by using the Wilcoxon rank-sum test. Given the stochastic
nature of MAs and their intrinsic randomness, the Wilcoxon
test is used to verify that the observed performance is not
random. Table 6 presents the results of the Wilcoxon test
for each of the competing algorithms for PSP IGDX, and
HV. The test’s significance threshold is set at 5%, and all
p-values, including those obtained from the PSP, IGDX, and
HV metrics in the Wilcoxon validation, must be < 0.05
(at a five percent level of significance). Wilcoxon test and
Friedman tests are performed using IBM SPSSS software.
The summary of comparison analysis of all seven algorithms
is as follows:
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TABLE 3. The PSP values attained by all comparison algorithms.

Functions GAOR MOEOSMA | EMOPSO MOGTO ASDNSGA- | MOSMA MEOA

II
MMF1 9.13+0.81 7.67+0.95 4.61+1.94 7.72+0.61 3.65+0.97 5.90+0.98 | 1.81+0.84
MMF2 15.33+6.88 4.92+1.40 2.76+1.13 6.84+2.01 7.66+2.67 2.77+1.15 | 1.39+0.82
MMF4 15.13+1.94 9.40+1.70 4.56+2.62 10.66+1.44 3.27+0.62 5.77+1.22 | 1.07+0.76
MMF5 7.66+0.67 4.48+0.93 3.02+1.23 5.04+0.60 2.59+0.56 3.92+0.68 | 1.33+0.57
MMF7 23.03+1.81 5.43+1.27 1.00+0.78 10.46+1.42 4.16+1.06 7.37+1.30 | 2.00+0.86
MMF§ 10.11+0.93 1.30+0.80 0.72+0.77 3.53+1.00 0.69+0.25 1.31+0.68 | 0.66+0.24
MMF10 71.13+42.45 | 19.98+9.34 15.56+20.68 | 13.26+6.53 10.794+6.93 | 10.31+4.59 | 2.90+0.54
MMF11 160.53+11.05 | 80.58+6.03 60.46+13.28 | 73.26+4.22 32.29+8.66 | 37.93+8.50 | 36.26+12.31
MMF12 221.53+31.95 | 152.18+18.35 | 143.46+28.28 | 134.36+24.97 | 16.49+28.13 | 39.43+8.29 | 32.56+35.01
MMF13 18.23+1.02 16.88+1.71 4.40+2.19 14.66+1.59 4.714+0.93 10.73+1.93 | 3.27+2.24
MMF14 9.06+0.56 8.11+0.94 4.36+1.50 7.67+0.80 7.55+0.75 7.52+0.67 | 7.69+0.73
MMF15 13.03+0.57 10.68+0.89 5.49+1.33 10.01+0.75 6.42+1.22 9.71+1.75 | 8.96+1.31
MMF1 e 0.76+0.43 0.56+0.66 0.60+0.67 1.22+1.03 0.57+0.18 2.35+0.54 | 0.41+0.15
MMF14 e 4.77+0.87 6.85+0.84 3.74+1.31 10.13+0.98 2.41+1.13 4.72+0.90 | 3.66+0.59
MMFI15 a 13.53+0.72 8.81+0.94 5.35+1.08 9.36+0.67 4.18+1.11 7.01+1.26 | 5.91+1.27
MMF10 I 10.24+1.50 7.45+2.38 0.58+0.60 8.12+2.64 4.15+3.56 3.51+1.82 | 2.72+1.47
MMF11 1 16.23+2.49 5.30+0.64 1.72+2.15 4.77+1.89 4.25+3.42 0.92+0.40 | 2.38+2.92
MMF12 1 8.47+0.72 2.21+2.47 1.15+0.65 4.47+2.89 0.67+0.27 0.89+0.44 | 1.72+1.80
MMF13 1 2.77+1.03 2.37+0.85 0.89+0.70 3.44+0.90 1.02+0.71 3.05+2.04 | 0.90+0.56
MMFI15 1 5.61+0.76 4.51+1.41 0.90+0.77 1.51+0.51 1.99+0.63 5.13+0.90 | 1.10+0.58
MMF15 a 1| 6.23+0.84 4.63+0.82 2.42+0.99 5.30+0.51 3.01+0.73 3.54+042 | 2.97+0.42
MMF16_11 | 7.85+0.51 5.73+0.80 2.43+1.45 6.00+0.38 3.38+0.74 4.94+1.04 | 2.43+1.11
MMF16 12 | 5.44+0.76 3.85+0.84 0.97+0.75 4.71+0.63 2.03+0.77 4.20+0.98 | 1.16+0.27
MMF16 13 | 6.27+0.71 4.52+0.65 2.16+1.25 5.26+0.46 3.00+1.00 3.99+1.10 | 1.94+0.78
FMR 6.75 5.00 231 5.50 2.63 3.88 1.94
Rank 1 3 6 2 5 4 7

o The Statistical outcomes of the PSP values in terms of

mean and standard deviation (SD) on 25 runs of every
algorithm are reported under Table 3. Availing the Fried-
man test, FMR is calculated for all seven algorithms
and it is found that the overall performance order for
the tested algorithms GAOR, MOEOSMA, EMOPSO,
MOGTO, ASDMSGA-II, MOSMA, and MEOA based
on FMR is 1, 3, 6, 2, 5, 4, and 7 respectively. However,
there are some instances where GAOR is outperformed
by other algorithms say for MMFI1_e and MMF13_],
MOGTO and MOSMA outperforms GAOR. For func-
tion MMF14_e MOESMA outperforms GAOR.

The box plots of developed in Figure 7 shows that GAOR
have the highest and tightly packed PSP values for most
CEC 2020 functions except for MMF1_e, MMF13_1I,
and MMF14_e functions.

Table 4 holding the IGDX metric statistical results in
context of mean and SD for 25 runs for each algorithm.
The rank for GAOR, MOEOSMA, EMOPSO, MOGTO,
ASDMSGA-II, MOSMA, and MEOA for IGDXis 1, 2,
5,3, 7,4, and 6. Whereas, in some cases GAOR is out-
performed by other algorithms say for CEC 2020 func-
tions MMFI1_e, MMF14_e algorithms MOEOSMA,
MOGTO, MOSMA yields less IGDX value as compared
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to GAOR. For MMF13_I IGDX value of MOEOSMA is
less than GAOR.

The statistical values of HV in context of mean and SD
are accommodated under Table 5. For HV, the higher the
FMR of algorithm better the algorithm.

The rank of GAOR, MOEOSMA, EMOPSO, MOGTO,
ASDMSGA-II, MOSMA, and MEOA based on FMR
is1,3,5,2,6,4, and 7. For functions MMF4 and MMF7
GAOR is outperformed by MOEOSMA, MOGTO, and
MOSMA. For MMF8 MOGTO gives higher value of
HV as compared to GAOR. Under MMF12 MOGTO
and MEOA yields higher HV values in contrast to
GAOR. EMOPSO and MOSMA perform better for
MMF14 e in terms of HV values.

The Wilcoxon test has been conducted on all three
algorithm matrices to demonstrate that the performance
of GAOR is not random. The Wilcoxon rank-sum test,
anonparametric statistical test, is utilized to compare the
outcomes achieved by each pair of algorithms. This test
is rooted in two hypotheses: the null hypothesis posits
that there is no disparity in the ranks of results obtained
by a pair of algorithms, while the alternative hypothe-
sis suggests that there exists a divergence in the ranks
of these results [65], [66]. In this case, the Wilcoxon
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TABLE 4. The IGDX values attained by all comparison algorithms.

Functions GAOR MOEOSMA | EMOPSO MOGTO ASDNSGA- | MOSMA MEOA

11
MMF1 0.173+0.024 | 0.212+0.026 | 0.330+0.086 | 0.241+0.032 | 0.623+0.130 | 0.318+0.047 | 0.410+0.079
MME?2 0.127+0.041 | 0.223+0.057 | 0.504+0.066 | 0.277+0.045 | 0.580+0.156 | 0.543+0.105 | 0.270+0.059
MMF4 0.128+0.027 | 0.175+0.030 | 0.356+0.130 | 0.216+0.042 | 0.545+0.111 | 0.326+0.058 | 0.428+0.059
MMF5 0.199+0.025 | 0.288+0.035 | 0.459+0.091 | 0.336+0.053 | 0.979+0.499 | 0.427+0.062 | 0.523+0.077
MMF7 0.104+0.020 | 0.175+0.027 | 0.419+0.050 | 0.232+0.033 | 0.435+0.089 | 0.278+0.045 | 0.316+0.069
MMEF8 0.163+0.023 | 0.406+0.122 | 2.180+0.790 | 0.996+0.339 | 2.310+0.680 | 1.430+0.430 | 2.760+0.594
MMF10 0.122+0.115 | 0.181+0.082 | 0.257+0.159 | 0.178+0.075 | 0.513+0.088 | 0.249+0.066 | 0.247+0.078
MMF11 0.066+0.017 | 0.094+0.019 | 0.107+0.023 | 0.122+0.021 | 0.180+0.039 | 0.158+0.030 | 0.153+0.029
MMF12 0.065+0.018 | 0.088+0.019 | 0.097+0.020 | 0.117+0.021 | 0.245+0.150 | 0.157+0.031 | 0.303+0.115
MMF13 0.116+0.020 | 0.149+0.026 | 0.234+0.055 | 0.168+0.026 | 0.366+0.121 | 0.231+0.040 | 0.841-+0.132
MMF14 0.177+0.021 | 0.217+0.030 | 0.336+0.074 | 0.235+0.033 | 0.287+0.038 | 0.276+0.031 | 0.263+0.034
MMF15 0.140+0.019 | 0.184+0.024 | 0.256+0.036 | 0.205+0.026 | 0.267+0.044 | 0.242+0.039 | 0.274+0.044
MMFI1 e 2.600+0.915 | 1.120+0.511 | 3.340+1.359 | 2.390+1.040 | 4.060+0.968 | 0.705+0.105 | 3.400+0.550
MMF14 ¢ 0.300+0.053 | 0.182+0.026 | 0.360+0.052 | 0.259+0.033 | 0.431+0.059 | 0.378+0.058 | 0.503+0.122
MMF15 a 0.137+0.020 | 0.191+0.024 | 0.269+0.031 | 0.225+0.029 | 0.321+0.048 | 0.288+0.046 | 0.339+0.047
MMF10 I 0.162+0.029 | 0.200+0.046 | 0.299+0.021 | 0.238+0.044 | 0.368+0.054 | 0.323+0.044 | 0.432+0.239
MMF11 1 0.141+0.053 | 0.260+0.053 | 0.329+0.064 | 0.318+0.070 | 0.425+0.078 | 0.388+0.027 | 0.368+0.082
MMF12 1 0.186+0.025 | 0.269+0.065 | 0.335+0.020 | 0.334+0.056 | 0.409+0.045 | 0.379+0.024 | 0.491+0.119
MMF13 1 0.365+0.061 | 0.321+0.037 | 0.466+0.039 | 0.381+0.033 | 0.548+0.052 | 0.389+0.071 | 0.500+0.042
MMF15 1 0.258+0.039 | 0.386+0.024 | 0.514+0.043 | 0.331+0.053 | 0.472+0.035 | 0.354+0.052 | 0.456+0.041
MMF15 a 1| 0.234+0.034 | 0.281+0.033 | 0.414+0.041 | 0.326+0.044 | 0.452+0.068 | 0.409+0.035 | 0.408+0.044
MMF16 11 | 0.197+0.022 | 0.258+0.025 | 0.400+0.069 | 0.289+0.036 | 0.434+0.065 | 0.345+0.038 | 0.406+0.055
MMF16 12 | 0.265+0.038 | 0.311+0.043 | 0.549+0.040 | 0.374+0.049 | 0.516+0.068 | 0.392+0.055 | 0.495+0.055
MMF16 13 | 0.234+0.029 | 0.283+0.029 | 0.431+0.062 | 0.3314+0.035 | 0.459+0.054 | 0.380+0.050 | 0.420+0.059
FMR 1.24 2.04 5.04 3.00 6.56 4.40 5.72
Rank 1 2 5 3 7 4 6

rank-sum test employs a 5% significance level with all
p-values < 0.05 (at a five percent level of significance)
for all outcomes, including the analytical results derived
from the PSP, IGDX, and HV metrics. Nevertheless,
the results of the Wilcoxon assessment for each paired
algorithm in the comparison test for problem sets (PSs)
are presented in Table 6, and it is evident from the data
of Table 6 that proposed GAOR is not subject to random
fluctuations.

VIl. NUMERICAL EXPERIMENT WITH REAL LIFE CASE
STUDY

Here, data from real-world situations are used to illustrate
the research. In mountainous areas with difficult topography,
handling solid waste has not received enough attention in
past decades. Numerous Indian cities use a linear strategy to
garbage management, which entails collecting trash, transit,
and dumping in landfills. Bizarrely, 80-90% of the garbage is
carelessly deposited at landfills in these locations, exposing
a sizable amount of created waste that is not picked up
by municipal authorities. Due to the complex environment,
topography, and temperature, LFM ancient dumpsites in
mountainous areas are fraught with difficulties [67]. Legacy
waste management calls for meticulous care and competence,
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from assessment through disposal. Due to several operational
and technological challenges, the management and elimina-
tion of residual waste components in such places are expected
to be costly. To tackle this kind of situation in hilly regions,
the research work has considered a case study from the state
of Uttarakhand in India.

In the northern, mountainous area of India, Uttarakhand,
there is a sizable inflow of tourists. The Municipal Solid
Waste (Management and Handling) Rules were enacted by
the governing body in 2000 to protect the area’s scenic
splendor. The state is jointly responsible for carrying out
the 2016 solid waste management (SWM) regulations, which
are monitored by ninety-one urban local governments and
nine cantonment boards. As per the data from the official
website of the Uttarakhand pollution control board [68],
the major landfill sites in the state are situated in Roorkee,
Pithoragarh, Sitarganj, and Kashipur. However, as per the
data from SWM annual report for the year 2020-21 [69], the
waste processing plant lies in Haridwar and Dehradun. Con-
sumers and prospective customers of the new value-added
product generated post-processing from the landfill waste
that includes scrap combustive material refuse-derived fuel,
recycled aggregate concrete, and concrete are in Rudrapur,
Shivalik Nagar, and Kotdwar [70]. The data for the numerical
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TABLE 5. The HV values attained by all comparison algorithms.

Functions GAOR MOEOSM | EMOPSO | MOGTO ASDNSGA- | MOSMA MEOA
A 11
MMF1 0.96+0.02 0.93+0.02 | 0.90+0.02 | 0.91+0.17 | 0.91+0.03 0.94+0.05 | 0.80+0.18
MMF2 0.84+0.03 0.79+0.06 | 0.82+0.04 | 0.82+0.20 | 0.67+0.13 0.66+0.07 | 0.84+0.06
MMF4 0.57+0.02 0.59+0.02 | 0.57+0.02 | 0.64+0.12 | 0.58+0.03 0.64+0.04 | 0.28+0.77
MMF5 0.91+0.01 0.92+0.02 | 0.90+0.02 | 0.88+0.18 | 0.92+0.02 0.90+0.10 | 0.92+0.05
MMF7 0.91+0.01 0.92+0.02 | 0.90+0.02 | 0.94+0.14 | 0.90+0.02 0.94+0.06 | 0.82+0.13
MMFS§ 0.46+0.01 0.35+0.14 | 0.42+0.04 | 0.50+0.13 | 0.43+0.04 0.36+0.19 | 2.27+0.15
MMF10 12.64+0.38 12.27+0.21 | 12.05+0.27 | 11.72+0.27 | 12.27+0.45 10.1+0.85 11.69+0.17
MMF11 14.54+0.02 14.47+0.05 | 14.45+0.04 | 14.12+0.32 | 14.47+0.04 13.45+0.67 | 13.99+0.23
MMF12 1.61+0.01 1.62+0.04 1.59+0.03 | 0.75+0.41 1.60+0.07 1.43+0.21 2.56+0.85
MMF13 18.44+0.04 18.37+0.05 | 18.15+0.09 | 17.82+0.33 | 18.27+0.06 16.75+0.78 | 16.89+180.02
MMF14 3.13+0.15 2.80+0.31 2.53+0.31 3.19+0.44 | 2.48+0.25 3.21+0.42 | 3.09+0.28
MMF15 4.30+0.19 4.05+0.43 | 3.71+0.38 | 4.30+0.35 | 3.60+0.31 4.21+0.35 | 3.66+0.86
MMFI1 e 0.87+0.06 0.87+0.10 | 0.84+0.06 | 1.00+32.52 | 0.73+0.38 0.69+3.53 | 0.87+0.08
MMF14 e 2.92+0.30 2.63+0.23 | 3.24+0.24 | 2.90+0.45 | 2.47+0.65 3.17+0.42 | 2.41+0.40
MMFI5 a 4.64+0.38 3.88+0.28 | 3.73+3.70 | 4.31+0.38 | 3.86+0.39 4.22+0.35 | 3.16+0.49
MMF10 I 17.84+0.04 11.67+0.19 | 11.75+0.17 | 11.42+0.25 | 11.47+0.06 10.35+0.78 | 16.09+0.32
MMFI11 1 74.04+1.01 14.27+0.09 | 14.15+0.13 | 14.52+0.16 | 14.37+0.08 11.75+1.76 | 13.49+0.34
MMF12 1 2.36+0.02 1.62+0.02 1.55+0.06 1.20+0.33 1.62+0.05 1.32+0.20 1.66+0.62
MMF13 1 17.54+0.30 18.37+0.05 | 18.95+0.02 | 18.42+0.29 | 18.27+0.05 17.05+0.98 | 18.19+0.14
MMF15 1 4.17+0.17 4.08+0.61 | 3.82+0.38 | 3.90+0.43 | 2.81+0.32 4.08+0.34 | 3.97+0.96
MMF15 a 1 | 4.70+1.01 4.07+0.35 | 3.95+0.21 | 4.51+0.51 | 3.33+0.43 4.45+0.40 | 3.36+0.41
MMF16 11 4.60+0.61 4.16+0.32 | 3.81+0.47 | 4.33+0.26 | 3.53+0.54 4.32+0.25 | 3.39+0.57
MMF16 12 4.45+0.47 4.07+0.58 | 4.13+0.38 | 4.32+0.23 | 2.97+0.36 4.22+0.35 | 3.62+0.66
MMF16 13 4.26+0.22 4.08+0.43 | 3.64+0.21 4.29+0.21 3.87+0.27 4.23+0.31 3.23+0.79
FMR 548 4.3 3.46 4.58 3.34 3.56 3.26
Rank 1 3 5 2 6 4 7
TABLE 6. The Wilcoxon values attained between GAOR other comparison algorithms.
Test metric GAOR vs GAOR vs GAOR vs GAOR vs GAOR vs GAOR vs
MOEOSMA EMOPSO MOGTO ASDNSGA-II | MOSMA MEOA
PSP 4.57E-05 1.229E-05 1.40E-04 1.229E-05 3.624E-05 1.229E-05
IGDX 5.11E-03 1.82E-05 3.55E-04 1.82E-05 3.18E-04 1.82E-05
HV 1.91E-03 1.63E-03 2.53E-02 3.50E-04 7.45E-04 8.54E-03

experiment was compiled from numerous databases since one
stakeholder did not have access to all the information requi-
site. For the location of dumping/ landfill sites, processing
sites, demand points, and waste holding capacity, [68] and
[69] are considered. The costs are considered based on the
data attained from Annexure 17.1 of Chapter 17 of the Central
Public Health and Environmental Engineering Organization
(CPHEEO) and Nagar Nigam reports [71]. Inputs regarding
carbon emission were derived from the following resources
[72] and [73], as these work gives estimation of emission in
landfills mining. All the data considered in the model is taken
as fuzzy to accommodate discrepancies caused by geograph-
ical location and time. The inputs for model parameters are
provided in Table 7, 8, and 9.
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A. RESULTS ATTAINED USING GAOR ALGORITHM

The MOMLSTM present in subsection E of section III is
implemented in a case study from Uttarakhand, as stated
earlier in this section. For capturing uncertainty, the model is
developed, availing fuzzy parameters. The first step toward a
solution is to convert the fuzzy values into crisp values using
the methodology shown in subsection B of section IV. Post
attaining a crisp model, the multi-objective model is solved
using the non-deterministic approach proposed GAOR.
However, this technique requires parameter tuning of the
algorithm. GAOR’s accomplishment and efficacy are greatly
influenced by parameter configuration. A GAOR’s converg-
ing pace, solution excellence, exploration-exploitation equi-
librium and ultimate optimization ability may all be greatly

122809



IEEE Access

P. Bhakuni, A. Das: Innovative Algorithm-Driven Optimization Framework for LFM

TABLE 7. Inputs for parameters of MOMLSTM in PFN format in case study.

TCT jpi
jlm k'=1 k'=2 k'=3
1]1 (7.9,8.5,9.6,11.7,12.5,0.6) (7.9,8.9,9.6,11.7,12.5,0.6) (8,8.9,10.9,11.7,12.5,0.7)
2 (8,8.9,10.9,11.7,12.5,0.8) (7.5,8.2,9.5,10.8,12.7,0.8) (7.5,8.2,9.5,9.9,11.9,0.8)
3 (8,8.9,10.9,11.7,12.5,0.7) (7.5,8.2,9.6,10.8,11.9,0.8) (8.4,9.8,11,11.9,13.5,0.5)
2|1 (7.5,7.8,8.1,8.2,10.2,0.7) (7.5,8.2,9.6,10.8,11.5,0.5) (7.5,7.8,8.1,11.5,0.6)
2 (8,8.9,10.7,11.7,12.1,0.7) (8,9.5,10.4,13.2,14.2,0.9) (9.5,10.4,13.2,14.2,0.9)
3 (7.5,8.2,9.5,10.8,12.7,0.8) (8,9.4,10,13.4,13.8,0.7) (7.9,9.4,11.1,11.7,12.5,0.7)
TTT i’
jlm k'=1 k'=2 k'=3
1]1 (11.4,13.5,15.6,17.7,22.4,0.8) (12.4,14.5,16.8,18.9,22.9,0.8) (12.4,14.8,18.8,20.1,25.6)
2 (13.2,14.9,16.8,18.9,22.9,0.8) (13.2,14.9,16.9,18.9,22.5,0.8) (12.9,16.3,18.8,22.5,25.6,0.8)
3 (14.1,16.3,18.8,22.6,25.5,0.8) (12.4,14.8,18.8,20.1,25.6,0.8) (13.2,14.9,16.8,18.9,22.9,0.8)
2|1 (11.5,15.2,15.6,17.7,26.3,0.8) (12.3,14.7,16.9,18.9,23.2,0.8) (12.4,14.8,18.8,20.1,26.3,0.8)
2 (12.4,14.8,18.8,20.1,27.7,0.8) (13.2,15.5,19.1,22.5,25.6,0.8) (11.5,15.2,16.2,17.8,25.9,0.8)
3 (14.1,16.3,17.3,22.3,25.5,0.8) (11.9,14.9,19.1,20.1,26.3,0.8) (12.8,15.5,19.1,22.5,25.6,0.8)
CTijkl
jlm k'=1 k'=2 k'=3
1]1 (16.5,19.5,21.6,24.5,35.5,0.4) (16.5,19.5,21.6,26.5,38.5,0.5) (16.5,19.5,21.6,24.5,31.5,0.6)
2 (12.5,19.5,21.6,24.5,31.5,0.6) (10.9,19.5,21.6,23.5,30.5,0.6) (12.5,19.5,21.6,24.5,31.5,0.6)
3 (19.5,20.5,22.5,26.5,38.5,0.5) (16.5,19.5,21.6,24.5,31.5,0.6) (19.5,20.5,22.5,26.5,38.5,0.5)
2|1 (19.5,20.5,22.5,29.6,40.5,0.5) (19.5,20.5,22.5,33.6,39.1,0.8) (16.5,19.5,21.6,24.5,35.5,0.5)
2 (19.5,20.5,22.5,3.6,39.1,0.8) (16.5,19.5,21.6,24.5,35.5,0.5) (16.5,19.5,21.6,24.5,31.5,0.6)
3 (16.5,19.5,21.6,24.5,31.5,0.6) (16.5,19.5,21.6,24.5,35.5,0.8) (12.5,19.5,21.6,24.5,31.5,0.6)
I
j =1 =2 =3
1 (5.8,6.3,7.8,8.1,8.9,0.6) (5.4,6.3,7.6,8.1,8.9,0.6) (5.4,6.3,7.2,8.1,8.5,0.6)
2 (5.6,6.4,7.2,8.1,10.2,0.8) (2.5,4.8,7.5,8.3,11.8,0.9) (5.5,6.5,7.3,8.1,9.5,0.6)
Cl,
j =1 =2 =3
1 (4,6.2,7.2,8.2,9.2,0.9) (5.1,6.2,7.2,8.2,9.2,0.9) (2.8,4.2,5.9,6.8,8.1,0.6)
2 (3.3,5.4,6.8,7.2,8.9,0.9) (5.8,6.3,7.8,8.1,8.9,0.6) (1.9,3.3,3.9,4.4,4.9,0.8)
Bml
m =1 =2 =3
1 (568,678,788,9971106,0.6) (111,137,145,156,218,0.5) (185,189,211,224,298,0.8)
2 (294,323,337,367,398,0.6) (387,410,416,423,510,0.5) (457,467,498,521,635,0.8)
3 (185,189,211,225,310,0.6) (214,324,337,367,398,0.5) (387,410,416,423,537,0.8)
4
j =1 =2 =3
1 | (16789,18743,19053,22644,38599,0.6) | (19836,22873,35093,39086,481898,0.5) | (67836,68926,69349,85165,94653,0.8)

2 | (59875,61086,62085,67524,75438,0.6)

(64367,66753,71468,82468,92365,0.7)

(37862,38764,39086,4183,56148,0.5)

7%
kK'=1 k'=2 k'=3
(87354,88634,97591,98736,0.6) (78976,79864,81037,82754,98607,0.5) | (78976,79864,81037,82754,98607,0.8)
Ci
k=1 k=2 k=3

(158558,178953,299753,320985346337,0.6)

(29826,33086,39864,44791,67649,0.5)

(11345,12457,13487,14965,25722,0.8)

impacted by the proper parameterization setting [74]. Thus,
with the purpose of identifying the most appropriate parame-
ter setting that yields optimal results for our problem, Taguchi
experiment is used [75]. It is a method associated with sta-
tistical experimentation utilized to optimize configurations
or variables in a variety of processes, including GAOR.

122810

Implementation of Taguchi in the GAOR is performed as
shown in Figure 8. Various levels for the parameter setting are
stated in Table 10. Values of S-T-N ratio based on method-
ology present in Figure 8 are given Table 11. Finally mean
of S-T-N ratio for every parameter at each level is shown in
Figure 9, based on the figure the best level for parameters
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TABLE 8. Inputs for parameters of MOMLSTM in PFN format in case study.

S
j i=1 i=2 i=3 i=4
1 (8,9.4,10,13.4,13.8,0.7) (8.4,9.8,10.9,11.9,13.2,0.5) (8,9.5,10.4,13.2,14.2,0.9) (8,8.9,10.9,11.6,13.4,0.6)
2 (8,9.5,10.4,13.2,14.2,0.9) (8.5,9.8,10.8,11.8,12.7,0.9) (8,8.9,10.9,11.7,12.7,0.7) (8.4,9.8,11.1,11.9,13.5,0.5)
j TP
1| (22.5.28533.5.37.2.40.2.0.8) | (21.5.27.5.33.5.37.2.40.2.0.8) | (22.5.28.5.31.5.37.2.42.2.0.8) | (26.5.23.5.31.5.32.2.41.2.0.8)
2| (24.8,30.1,33.539.549.5,0.8) | (25.8,31.1,32.5,35.5,49.5,0.8) | (26.8,32.1,34.5,38.5,49.5,0.8) | (24.8,30.1,33.5,39.5,49.5,0.8)
J ﬁpij
1 (8,12.7,12.9,14.1,14.6,0.7) (9.8,11.2,13.6,14.1,17.1,0.8) | (9.2,12.7,12.9,13.9,14.9,0.6) (8,8.9,10.9,11.7,12.5,0.8)
2| (8.9,12.7,12.9,14.1,14.6,0.6) (9.8,13,13.9,14.3,14.6,0.9) | (9.9,11.3,13.2,14.4,17.1,0.7) | (8.9,12.7,12.9,14.1,14.6,0.6)
TCijn
k| i=1 i=2 i=3 i=4
1 (6,7,8,9,10,0.8) (6,7,8,9,10,0.8) (6.5,7.5,8,8.8,9.3,0.8) (5.4,6.3,7,8.1,10.3,0.6)
2 (5,6,7,8,9,0.9) (4.9,6.3,7.1,7.6,9.2,0.5) (7.5,8.2,9.5,9.8,11.6,0.8) (7.5,8.2,9.8,11.6,0.8)
21 7| (253.48.1,83,11.50.6) (6.8.8.7,9,10,11,0.9) (7.5,7.8,8.1,8.2,10.2,0.7) (7.1,7.9.9.2,10.4,11.4,0.8)
2 (6.8,8.7,9,10,11,0.9) (4.5,8.5,9.5,11.7,11.5,0.6) (7.5,7.8,8.1,8.5,10.5,0.6) (5.5,6.5,7.5,8.5,9.5,0.6)
37 (3.5,4.2,5.4,6.49,0.8) (6.8,7.8,8.1,8.2,10.2,0.7) (4.7,5,5.5,7.8,9.3,0.9) (2.5,3.6,4.6,6.7,9.6,0.8)
2| (7.5859.5,11.7,12.5,0.6) (2.5,4.8,7.5,8.3,11.5,0.9) (5.6,6.4,7.2.8.1,10.2,0.8) (2.4,3.7,4.6,6.7,8.1,0.8)
CCijk
k] j i=1 i=2 i=3 i=4
1 (2.5,3.2,3.9,5.6,6.9,0.6) (3.542,5.4,64,8.5,0.8) (2.5,3.2,3.9,4.6,5.3,0.6) (3.5,4.2,5.4,6.9.9,0.8)
12 (2.4,3.7,4.6,6.7,8.1,0.8) (2.5,3.4,8,8.3,10.3,0.6) (2.5,3.2,4,5.6,7.3,0.6) (2.5,4,5.6,7.3,0.6)
211 (2253.23.9627.2,0.6) (2.5,3.2,3.9,5.6,8.8,0.6) (24.3.7,4.9,6.7,8.8,0.8) (2.5,3.2,3.9,6.2,7.2,0.6)
2 (2.4,3.7,4.6,6.8,8.4,0.8) (2.4,3.7,4.9,6.7,8.8,0.8) (2.5,3.6,4.5,7.2,9.6,0.8) (2.5,3.4,7.9,8.4,10.1,0.6)
301 (3.5,4.2,5.4,6.4,9,0.8) (5.4,6.3,7.6,8.1,8.9,0.6) (2.5,3.6,4.6,6.7,9.6,0.8) (2.5,3.4,7.9,8.4,9.6,0.6)
2 (3.5,4.2,5.5,6.9,9.7,0.8) (2.5,3.2,3.9,5.6,6.9,0.6) (2.4,3.7,4.9,6.7,8.8,0.8) (2.5,3.4,7.9,8.4,9.6,0.6)
TTiji
k] i=1 i=2 i=3 i=4
1] 1 (8,9.4,10,13.4,13.5,0.7) (7.7,12.7,12.9,14.1,14.6,0.7) | (8,12.7,12.9,14.1,14.6,0.7) (8.7,12.6,13,14.1,14.6,.7)
2| (7.5,12.7,12.9,14.1,14.6,0.7) | (8.9,9.5,10.2,13.2,15.6,0.9) (8,12.7,12.9,14.2,14.9,0.7) (9.2,12.7,12.9,13.9,14.9,0.6)
2] 1| (89,9.5,10.2,13.2,14.1,0.9) (8.9,9.5,10.2,132,14.1,09) | (8.9,12.7,12.9,14.1,14.6,0.6) | (9.9,12.7,12.9,13.9,14.9,0.6)
2| (7.5,12.7,129,14.1,182,0.7) | (8.9,9.5,10.2,13.2,13.7,0.9) | (8.7,12.6,12.9,14.1,14.6,0.7) (8,12.7,12.9,14.1,0.7)
31| (7.5,12.7,12.9,14.1,14.6,0.7) | (8.9,9.5,10.2,13.3,14.8,0.9) (8,12.7,12.9,14.2,14.9,0.7) (10,11,13,16.8,18.5,0.7)
2 (8.7,12.6,12.9,14.1,0.7) (8.9,9.5,10.3,13.3,15.1,0.9) | (9.2,12.7,12.9,13.9,14.9,0.6) | (10.1,14.2,15.3,16.5,18.6,0.7)
CTiji
k| i=1 i=2 i=3 i=4
1] 1| (16.5,19.521.6,26.5,38.5,0.5) | (16.5,19.5,21.6,24.5,31.5,0.6) (20.5,22.5,26.5,38.5,0.5) (19.5,20.5,22.5,33.6,43.1,0.8)
2| (12.5,19.521.6,24.5,31.5,0.6) | (19.5,20.5,22.5.26.5,38.5,0.5) | (19.5,20.5,22.5,33.6,39.1,0.8) | (16.5,19.5,21.6,24.5,35.5,0.9)
2] 1] (16.5,19.521.6,24.5,31.5,0.6) | (19.5,20.5,22.5,29.6,40.5,0.5) | (19.5,20.5,22.5,29.6,40.5,0.5) | (19.5,20.5,22.5,26.5,38.5,0.5)
2| (16.5,19.5,21.6,24.5,35.5,0.6) | (10.9,19.5,21.6,23.5,30.5,0.6) | (19.5,20.5,22.5,33.6,43.1,0.8) | (19.5,20.5,22.5.29.6,40.6,0.5)
3 1] (12.5,19.5,21.6,24.5,31.5,0.6) | (19.5,20.5,22.5,33.6,41.5,0.5) | (19.5,20.5,22.5,29.6,40.5,0.5) | (16.5,19.5,21.6,26.5,38.5,0.5)
2| (16.5,19.521.6,26.5,38.5,0.5) | (16.5,19.5,21.6,26.5,38.5,0.5) | (19.5,20.5,22.5,29.6,40.5,0.5) | (16.5,19.5,21.6,26.5,38.5,0.5)

and operators X1, X2, X3, X4, X5, and X6 is 5, 5, 4, 3, 5,
and 2 respectively. The optimal solution of the MOMLSTM
is attained using GAOR is mentioned in Table 12.

The validation of the solution is performed in later sections

L25 array satisfies these conditions and act as appropriate
orthogonal array for experiment.

B. VALIDATION OF RESULTS USING DETERMININSTIC

using deterministic approach of ECM in subsection B of
section VI. For comparing the functioning and efficiency of
GAOR the comparison from previous literature is present in
sub-section C. Note: The orthogonal array for the experiment
is considered based on the total degree of freedom. Here, the
orthogonal array holds one degree of freedom for average
value; and four degrees of freedom for each of the six param-
eters. Thus, the total degree of freedom is 1 + 6 x 4 = 25.
The corresponding orthogonal array must contain at 25 rows.
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APPROACH: EPSILON CONSTRAINT METHOD

For validating the results attained using GAOR a determin-
istic approach i.e., ECM is used, it is one of the most distin-
guished deterministic approaches used to solve MOMLSTM.
In past it is adequately leveraged to solve multi-objective
models as shown in literature [76] and [77]. The primary
functioning of this approach revolves around the concept
of optimizing any one of the objectives and setting other
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TABLE 9. Inputs for parameters of MOMLSTM in PFN format in case study.

PFS SED SBI CL
(15,17,18,19,21,0.8) (18,20,22,24,26,0.5) (10,11,13,14,17,0.7) (16.5,19.5,21.6,24.5,31.5,0.6)
CE TPF TED TSB
(11.5,15.2,15.6,17.8,19.8,0.8) | (22.5,28.5,33.5,38.5,46.5) (4.9,6.3,7.8,8.1,8.5,0.6) (2.4,3.7,4.9,6.7,8.8,0.8)
7SS, 7SS, CP, CP,
(22.5,28.5,33.5,37.2,40.2,0.8) | (24.8,30.1,33.5,39.5,49.5,0.8) | (17.3,21,22,22,4,23,2,0.5) | (17.2,21.2,22.4,23.1,26.8,0.4)
CS, Cs, TB
(11.5,15.2,15.6,17.8,26.6,0.8) | (13.5,15.2,16.5,19.1,27.5,0.9) | (62537635, 63624375, 64827922,83094373,886253730.6)
CCr PRF
(4826570,4987540,5157759,5337680,6217999,0.8) (87933,87919,87940,87943,87948,0.7)
a a
(7975675, 8856764, 96155718, 9836575, 12532209,0.7) (6975675,7856764,86155728,8836575,10486780,0.8)
as Qg
(7974675,8855764,9614578,9835575,11149366,0.6) (8572797,8856764,9615578,9836575,12532209,0.5)
by b,
(823559,833559,84559,853789,863789,0.6) (854674,864674,876674,964674, 1156616,0.5)
CCP, CCP,
(78976, 79864, 81037, 82754, 99600,0.5) (659760, 798640, 880370, 852899, 996000,0.8)
CCL, CCL,
(482657,498754,515348,528756,661670,0.6) (482657,498754,56534,837756,851800,0.5)
CCL, CCL,
(482657,572581,665348,837756,851800,0.8) (873540,886340,975910,988836,1183754,0.7)
DP, DP,
(8438,8759,8789,8895,8996,0.6) (9012,9122,9215,9345,9474,0.5)

objective in constraint by picking suitable limits as shown
below. The steps mentioned here were conducted to attain
solution of the MOMLSTM considered in this paper:

o Step 1: Select objective function maximizing profit as
the main objective (Note: The target audience for the
model is enterprises taking tender of landfill clearing).

o Step 2: Solve the entire MOMLSTM problem with con-
sidering only one objective and hiding other objectives.
Find minimum and maximum value of these two objec-
tives and store as CE™" CE™® time™", and time™*
respectively.

o As per the literature mentioned in [78] for the problem
when primary objective is chosen as maximizing the
resulting form is
Max Profit
Subject to constraints
CE > SS2
Time > SS3

constraints eq (4)-(14)

Here, CE™" < SS2 < CE"*

and Time™" < SS3 < Time"*
Prior to availing the above three steps for MOML-
STM stated in subsection E of section III, defuzzifi-
cation is done using technique present in subsection
B of section IV. The model is solved using LINGO
optimizing software and executed on workstation
equipped with an 11" generation Intel(R) (TM) i9 @
3.20 GZ processor and 64.00 GB RAM. The solu-
tion attained after applying the compromise solution
technique yields Profit = 3661794000, CE = 4458675,
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and time = 3981205, and the allocations are shown in
Figure.10; it can be validated that the results attained
from GAOR are better than traditional techniques like
ECM.

C. VALIDATION OF PERFORMANCE OF GAOR USING
PRIOR LITERATURE

The results attained using GAOR in subsection A of
section VI are already validated using ECM in subsection B
of section VI. However, further validation of performance
of GAOR for some other multi-objective solid transporta-
tion problem (MOSTP) is performed in this text. The anal-
ysis is performed on the problem taken from [79]. The
problem stated in section 4.3 is solved using inputs from
section VI-A of [79]. As per the results from the literature the
Total cost= 751.72$ and total response time = 137.3(hrs)
refer Table 7 of [79]. However, the results attained from
GAOR are Totalcost = 738.72$ and total response time =
129.6(hrs) which are comparatively better than the results
from previous literature.

The new allocation results are shown in Table 13. This
comparative analysis further supports the performance of
GAOR over traditional GA algorithm. Thus, this research
demonstrates the efficiency and usefulness of GAOR tech-
nique, demonstrating its capacity for dealing with related
optimization problems.

D. PARAMETER SENSITIVITY ANALYSIS
In this section, the impact of each parameter on the three
objectives of the model is explained. Understanding the
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¥

Intake information of various levels of these inputs

/ Input parameters and operators of GAOR.

v

Identify the parameters and operators that are most

significant for the GAOR. Here, its population size,
crossover probability, and others as shown in table 5

v

Select Taguchi orthogonal array that gives least
count of tests to be implemented to find best
parameter combination for GAOR

Y

Calculate mean of S-T-N ratio at each level for each

Calculate deviation percentage (DP) for each
instance in every assessment count of tests
=P, 100
'T  Be

»| Here, 77= Output at each instance for the trial

parameter
v

Using mean of S-T-N ratio at each level for each
parameter identify the best level for each parameter

v

Output the best combination of parameters and
levels for the corresponding GAOR

v

Be= Best value out of all instances in the trial
i = represents instances for every level

v

Calculate signal-to-noise (S-T-N) ration using
DP as follows:

le
1
S—-T-N=-10 lOglo (’Ez DP,)
i

le= count of parameter setting being tested

FIGURE 8. Steps for implementing Taguchi experiment in GAOR.

Trial No.1
Trial No.2
Trial No.3
Trial No.4
Trial No.5

-110 4
-112

114 4

-116.5

116
-118 4
120

-122

S-T-N ratio

124
1264
128

-130 o

X1 X2 X3 X4 X5 X6

Parameters & operators

FIGURE 9. Mean of S-T-N ratio for every parameter at each level.

potential hazards and unpredictability related towards a

model requires sensitivity analysis.

Industries may improve how they make decisions and
create adaptive approaches to succeed by looking at several
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scenarios and evaluating how changes in factors affect
results. The aim of this analysis is to study the impact of
each cost contribution factor, carbon emitting factor, and
time-consuming factor on the overall profit, carbon emission
and time. The followings steps were taken to carry out a
parameter sensitivity analysis in the paper:

o Stepl: The first objective involving maximizing profit
depends directly on various cost associated during the
entire process i.e., prefeasibility cost (PFS), Spraying
bio inoculum cost (SBI),’Egllection cost (CCl-jkl,vsys-
tematic excavatiorlvcsost (SED), processing cost (CCijk),
segregation cost (SS;;) Transportation cost (Processing-
demand site) (TCTj,,/), processing cost (PP,~) , Trans-
portation cost (Dumpsite-processing site) (TC; ), and
Inventory cost (/;;). Here, each cost is increased in inter-
val of 5% within the range of 5% — 25% and change in
profit is examined. The subsequent change in profit is
plotted in graph in Figure. 11.

o Step 2: In second objective function the aim is to
minimize carbon emission to make the process more
sustainable and factors contributing towards carbon
emission are landfills (CL), segregation and sorting
of waste (CSj), excavation (TED), inventory (CIﬂ),
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FIGURE 10. Map of the area of observation under case study along with the allocations from epsilon-constrain metho.

5%, 10%, 15%, and 25%, the profit is more as compared
to similar incrggse in SBI; whereas at 20% the case

transportation  (Processing  Plant-Demand  point)
(CTTy), transportation (Landfill-Processing plant)

(CTyjx), processing (CP;). Here, each factor is increased
in interval of 5% within the range of 5% — 25% and
change in carbon emission is examined. The subse-
quent change in carbon emission is plotted in graph in
Figure 12.

Step 3: In third objective each time impacting factor
is examined for its impact on overall time. The factors
for which sensitivity is examined are prefeasibility

is vice versa. SS;; has lower impact on the profit as
compared to PP;;, SED, and SBI for all tested cases.
Within TC;j; and j; for 5% and 15% the former has less
impact on profit as compared to later and for 10%, 20%,
and 25% it is vice versa. Post this the decreasing order
in which the impact of each cost over profit can be
determined is collection PFS, and TCijkr The reason
that TCT]mk/ is least impactful here is as processing plant

study (TPF) spraymg bio inoculum (TSB) sorting and demand point lies near to each other.

and segregation (TSS ), processing (TPPU) excava-
tion (TED), transportation (Landfill-Processing plant)
(TT;j ), transportation (Processing Plant-Demand point)
(TTT},).Here, each factor is increased in interval of
5% within the range of 5% — 25% and change in time is
examined. The subsequent change in time is plotted in
graph in Figure. 13.

Post analyzing the graphs attained through sensitivity
analysis it is evident that in context of profit the most
sensitive parameter is PPU However, SED and SBI
show distant behavior in different range of their incre-
ment, say for instance when the SED is increased by

The major contributor of carbon emission are landfills CL
this is because whenever biodegradable trash such as left-
overs from cooking, garden debris, and other types of
organic substances, are dumped in dumps, they go through
an anaerobic breakdown, an event that takes place refrain-
ing from oxygen, which leads to the production of gases
like methane. Leachate, a fluid produced by rainwater pen-
etrating the garbage, is another fluid produced by landfills.
Leachate additionally generates further methane when it
comes into touch with anaerobic situations. Post landfill
the major contributor of carbon emission is waste process-
ing CP; followed by CS, CT,jk, CTT]mk/ CE and CIj.
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TABLE 10. Factors with corresponding levels and values for Taguchi
experiment.

TABLE 11. L25 orthogonal array for Taguchi experiment.

Time has an enormous effect on landfill clearing; Methane
production increases when garbage sits in a trash dump
for an extended period, which causes environmental dam-
age. Landfills occupy precious space that may otherwise
be utilized for construction and leisure activities. Buildings
and structures erected on or close to the landfill may sus-
tain damage to their foundations as a result of the sinking,
which is an event when the dump sinks. In regards to odor,
vermin, and aesthetic destruction, landfill may possess a
detrimental effect on the neighborhoods around them. Thus,
minimizing time of landfill clearing task is of profound
importance. TPP; covers major portion of overall time. It
is observed that TPF and TED time shows different contri-
bution. When the TPF rise by 5%, 10%, and 15%, it has
higher impact on overall time increment as compared to
TED; and for 20% and 25% it is vice versa. The decreasmg
order of overall time contributor is TSSJ, TSB TTUk, and
TTT k-

VOLUME 11, 2023

Trial | X1 | X2 | X3 | X4 | X5 | X6 | S-T-N
Parameters & operators Level & values No. ratio
; zgg U [ 1299
Population size (X1) 3275 2 ! 2 2 2 2 2 | -1254
4 >100 3 1 3 3 3 3 3 -123.9
? 3(1)255 4 1| 4 4 4 4 4 | -1343
7306 5 1 5 5 5 5 5 -121.6
Crossover probability (X2) | 3 0.7 6 2 1 2 3 4 5 | -131.7
4 30-8 7 2 2 3 4 5 1 | -122.0
5209
1>0.04 8 2 3 4 5 1 2 | -126.2
2 30.07 9 2 4 5 1 2 3 -122.8
Mutation probability (X3) 3 20.1 10 2 5 1 5 3 4 -120.3
4 2>0.13
55016 11 3 1 3 1 2 4 | -126.2
1 >Stochastic universal 12 3 2 4 2 3 5 -112.3
Sampling 13 | 3| 3 5 3 4 1 |-1174
2 > Tournament selection 14 3 2 1 3 3 2 | -1269
Parent selection method | 3 = The truncation selection
(X4) 15 3 5 2 4 1 3 -129.3
4->Roulette wheel selection 16 4 1 4 2 5 3 -129.6
5 2Rank selection method 17 4 3 3 3 1 4 | -1316
1 = Uniform crossover
2 = Arithmetic crossover 18 4 3 1 4 2 5 -115.9
Crossover type (X5) 3 = Cycle crossover 19 4 4 2 5 3 1 -114.4
4 > Single-point 20 [ 45 [ 3142|1136
5 = Two-point
1 > Swap mutation 21 5 1 5 4 3 2 | -111.6
2 - Inversion mutation 22 5 2 1 5 4 3 -116.5
Mutation type (X6) 3 - Insertion mutation 23 5 3 ) 1 5 4 2122.9
4 > Bit flip mutation
5 2> Gaussian mutation 24 5 4 3 2 1 5 -119.8
25 5 5 4 3 2 1 -111.7

E. MANAGERIAL INSIGHTS
The intention of this study is to provide a sustainability-
focused profit-maximizing landfill clearing optimizing
framework that minimizes carbon emission and time taken in
the entire process. The managerial insights cover the points
provided here that help in various aspects to authorities
responsible for landfill clearing as mentioned below:
o Identification of key drivers: Multiple costs mentioned
in model impact profit making capacity of the business.
The key drivers of carbon emission in landfill clearing
in decreasing order of their performance are CL >
CPj > CS] > CT,‘jk > CTijk/, TED > CIjl.
For profit depletion the role of factors in decreasing
order of thelr contribution is PP,, > SBI > SED >
SS,/ > I,l > TCl,k > CCUk >~ PFS > TCT,mk/
Since, time plays one of the most crucial roles in land-
fill clearing thus the contribution percentage of each
step of landfill clearing process in depleting order is
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TABLE 12. Optimal result of MOMLSTM from GAOR using inputs from
case study.

Profit = Rs.3667156369 Time = 3834899
Carbon emission = 4401700
Allocations (Xjp7;)

j=1
2 3 1 2 3

j=2

N
~
_

126 96 167 | 167 | 102 | 176

43 65 65 60 74 38
32 48 23 42 38 45
21 32 26 23 31 23
54 78 97 63 65 78
67 78 39 59 49 33
25 35 35 27 62 42
98 96 79 55 99 96
45 79 97 69 72 83
Allocations (x;jx)

\S)
W — W] —|w|o ._‘g

j=1
1 2 3 1 2 3

j=2

1823 | 1756 | 1976 | 1423 | 1232 | 1932
2109 | 1409 | 1836 | 2235 | 1234 | 1487
1595 | 1975 | 1624 | 1246 | 1864 | 1982
1875 | 1994 | 1853 | 1523 | 1934 | 1822

Bl W[N] — |~

TABLE 13. Allocation of relief products using GAOR for problem taken
from [79].

Total cost = 738.72$
Total response time = 129.6 (hrs)
k=1
i=1 i=2
Jlp=1|p=2|p=3|p=1|p=2|p=
1] 1.05 1.1 3.1 1.4 134 | 3.1
2107 093 | 4.11 2.1 0.8 4.1
3128 425 5.9 3.7 4.8 5.2
41325 227 |08 0.6 1.2 1.8
k=2
11098 |03 24 1.4 1.2 0.8
2| 1.1 0.56 |45 1.7 1.3 2.9
3| 1.7 6.1 2.0 2.8 3.9 5.6
4127 6.9 0.4 2.1 2.8 2.5

@ij>@>ﬁ>i§§j>ﬁ>ﬁiﬁ>
TTT,x . Note: This examining is for maximum increase
in each cost as shown in sensitivity analysis.

o Budget planning of assorted expenses: It is observed
that profits are impacted most by the increase in waste
processing cost as compared to other costs. To be pre-
cise CC;j, has maximum i.e., 69’.9_2/% more impact on
profit reduction as compared to SBI. Some preventive
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FIGURE 11. Parameter sensitivity analysis for profit objective showing the
involvement of different costs in profit.
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Percentage increase in components
contributing towards carbon emission

H25% 20% 15% ®W10% W5%

FIGURE 12. Parameter sensitivity analysis for carbon emission showing
the contribution of various factors in overall carbon emission.

measures that can be taken by the authorities to decrease
waste processing costs include introduction of automa-
tion and robotics to reduce labor cost, continuous waste
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FIGURE 13. Parameter sensitivity analysis for time highlighting
contribution of various steps of landfill mining.

audits and plant performance monitoring, frequent cost
benefit analysis. Implementation of regular maintenance
schedules. For reducing impact of SBI that has 3.84%
more impact on profit as compared SED to that has
few measures such as advocating the application of
concentrated bio-culture is advantageous as it produces
notable outcomes with little effort; figuring out the best
times and intervals for spraying; improving the effective-
ness of sprinkling apparatus; permitting within the farm
bio- inoculum manufacturing; and offering government
financing for bio- inoculum supplies are all profitable
projects. The other factors SSij,le, TCyji, CCyj, PFS,
and TCTj,,» does not show much variation on their
impact on profit. However, some crucial measures that
can reduce these costs are Routing optimization, trans-
portation expense bargaining, software for stock control
utilization, employee education, and market projections
are all ways to prevent stockouts and overloading of
inventories.

e Incorporation of sustainability for long lasting
impact: Sustainability inclusion is of vital importance
for enterprises implementing this concept into their
landfill cleaning operation. Businesses prioritizing sus-
tainability are more capable of adapting to changing
marketplace circumstances and regulatory requirements.
Furthermore, these companies are more likely to fol-
low regulations aimed at protecting the environment,
lowering their chance of facing fines and other legal
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repercussions. The major source of emission in the
entire process is emission from landfills CL followed
by emission during waste processing CP;. To enumer-
ate they are responsible for 14.02% and 13.36% more
emission as compared to segregation and sorting tech-
nique. The installation of an anaerobic fermentation
infrastructure, which traps the methane gas released
throughout decomposition, may lower pollutants from
dumps. Mechanisms for harvesting methane could be
put in place to use the gas to produce energy. By fur-
ther reducing the volume of oxygen inside the dump,
impenetrable coverings and obstacles can help lessen
emissions. Power-efficient cooling and heating as well
as lighting solutions, should be implemented at garbage
treatment establishments to reduce power usage and
the ecological impact that results from it. Leveraging
sustainable sources of energy, including plant matter,
solar power, or wind power, can significantly reduce
GHGs release. The damaging environmental impact due
tggarbon emi§§ion from other steps CS;, TED, CIj,
CTTjyu, and CTyj, of landfill clearing can be reduced
by investing good amount in carbon offsetting projects,
continuous innovation and upgradation in methodology,
consolidation of load, route optimization, educating
staff.

e Time critical adherences and deadline driven goals:
The major time taking activity i.e., waste processing
takes (TPP;) 37.42% more time than waste excava-
tion (TED), which in return takes 32.81% more time
than prefeasibility study (TPF). Because of their adverse
impacts on the planet, the scarcity of available land, and
legal requirements, landfills must be promptly cleared.
Investment in automated machines, identification of bot-
tlenecks, parallel processing, and frequent maintenance
of equipment can reduce lot of processing time. In order
to reduce TED following measures can be taken, com-
prehensive site evaluation, special care of safety, explicit
dump identification, and up to date devAic/es. Q}per “mea-
sures/_t&at should be taken to reduce TSB, TSS;, TT;i,
and TTT;,, are optimizing route, efficient labor, penal-
ties for delay, and awareness among population.

VIIl. CONCLUSION AND FUTURE SCOPE

Landfill locations are visually unappealing, but the concerns
extend far beyond the unsightliness of extensive waste heaps.
The disposal of waste in landfills gives rise to various health
and environmental problems, including the release of dan-
gerous pollutants, the formation of leachate, the emission of
GHGs, and the occurrence of frequent fires. Consequently,
the foremost goal of each government at present is not solely
to decrease waste generation but also to address the existing
waste in landfills. The waste deposited in these landfills
possesses substantial financial possibilities, with the potential
to yield numerous value-added products through appropriate
processing. Nevertheless, the crux of the matter is that there is
a significant demand for innovative ideas and research con-
cerning profitable landfill clearing methods that effectively
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control carbon emissions while being time-efficient. There-
fore, this research paper proposed an optimization framework
for landfill mining using MOMLSTM (Maximize Profit,
Minimize Carbon Emission, and Time-efficient Process). The
model incorporates cost, time, and carbon emission param-
eters throughout key stages of landfill mining, including
waste analysis, excavation, bio-inoculation, collection, sort-
ing, processing, and transportation. To enhance the practical
applicability of this model in real-world scenarios, various
uncertainties are accounted for using PFN. Subsequently,
an up-to-date defuzzification technique is employed to con-
vert the model into a precise format. To assess the real-life
implications of the model, a case study is conducted.

The research paper also proposed a novel technique to
solve MOMLSTM called as GAOR. This GAOR algorithm is
created by incorporating an offspring refinement step after the
mutation in the GA. To determine the most optimal parameter
settings for GAOR, the well-known Taguchi experiment was
conducted. Through an analysis of different combinations of
parameter settings, the most efficient selections for crossover
type, crossover probability, mutation type, mutation prob-
ability, population size, and parent selection method were
identified. Using the Taguchi experiment it was found that the
most negative mean S-T-N ratio for X 1, X2, X3, X4, X5, and
X6 are —127.02, —125.8, —124.74, —125.16, —127.36, and
—127.06 respectively. As a result, the best parameter setting
for GAOR is X1 = 125, X2 = 0.9, X3 = 0.13, X4 is
truncation selection, X5 is two-point crossover, and X6 is
inversion mutation.

Three critical performance metrics—IGDX, PSP, and HV
were used to gauge the GAOR’s performance over 24 test
cases from the CEC 2020 assessment suite. Then, the perfor-
mance of GAOR was contrasted with six well-known MOO
algorithms. GAOR outperformed MOEOSMA, EMOPSO,
MOGTO, ASDMSGA-II, MOSMA, and MEOA according
to the findings of a statistical evaluation, the FMR test.
Moreover, by utilizing the Wilcoxon test, it was shown that
the results acquired through GAOR were not arbitrary and
had noteworthy consequences for each of the three measures.
Furthermore, a more detailed analysis of the box plots for the
twenty PSP value iterations showed that GAOR had the best
box plot with the fewest outliers and the most prominent and
tightest clustering. This finding highlights the effectiveness
of the algorithm by indicating a striking similarity between
the computed solutions and the actual Pareto set.

The research paper’s analysis of MOMLSTM, coupled
with the GAOR approach, compared its outcomes to those
generated by the ECM method. The results revealed that
GAOR led to resource allocations that could enhance the
profitability of LFM in the Uttarakhand region by 0.14%.
Moreover, it exhibited the potential to reduce overall car-
bon emissions by 1.29% and decrease the time required by
3.81%. GAOR’s notable strength lies in its capacity to find
the optimal balance between intensification and diversifica-
tion efforts, which is achieved by incorporating a refinement
process for offspring using LS. Additionally, GAOR demon-
strates adaptability in navigating the search space, enabling
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it to strike a harmonious equilibrium between local and
global search strategies while adapting to the solution space’s
topology. Nevertheless, it is worth noting that GAOR does
have certain limitations, including increased algorithm com-
plexity, which may necessitate additional parameter tuning,
and the potential for further improvement in terms of time
complexity.

After conducting a comprehensive sensitivity analysis, it is
evident that to optimize profit, one must effectively man-
age processing costs with state-of-the-art technology, skilled
manpower, and regular servicing and maintenance of process-
ing equipment. Regarding carbon emission, the primary con-
tributor is the waste in landfills; thus, the installation of proper
methane trapping systems and impermeable covers in land-
fills becomes crucial in mitigating carbon emissions. Never-
theless, to reduce the time required for landfill clearing, one
can accelerate waste processing by incorporating advanced
automated tools and a more efficient workforce. Numerous
opportunities for future research exist, such as extending the
model to address the rehabilitation of vacant landfill sites
and exploring the use of type-2 fuzzy for input parameters.
Additionally, a mathematical model that incorporates diverse
revenue streams, including industrial enhancements, market
feedback, and environmentally friendly practices, could be
developed.
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