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ABSTRACT As Unmanned Aerial Vehicle (UAV) remote sensing technology progresses, the utilization
of deep learning in UAV imagery object detection has become more prevalent. However, detecting small
targets in complex backgrounds and distinguishing dense targets remains a major challenge. To address these
issues and improve object detection efficiency, this study proposes an UAV imagery object detection method
called YOLO-UAV by optimizing YOLOvS5. YOLO-UAV first reconstructs the backbone and feature fusion
networks by simplifying the network structure and reducing computational burden. The employment of a
Dense_CSPDarknet53 backbone network, fashioned via the incorporation of dense connections, facilitates
the extraction of latent image information through the recurrent utilization of features. In the Neck structure,
an efficient feature fusion block with structural re-parameterization and ELAN strategies is integrated to
effectively reduce interference from complex background noise while extracting more accurate and rich
features. In addition, by proposing GS-Decoupled Head, this approach diminishes the parameter count of the
decoupled head without compromising accuracy. It also separates classification tasks from regression tasks
to lessen the influence of task disparities on prediction bias. To tackle the discrepancy between positive
and negative samples in bounding box regression tasks, this study introduces a new loss function, Focal-
ECIoU, capable of expediting network convergence and improve model positioning ability. Experimental
findings from the public VisDrone2019 dataset indicate that YOLO-UAV outperforms other advanced
object detection methods in comprehensive performance. Compared with the baseline model YOLOVS5s,
YOLO-UAV increased mAPO.5 from 35.1% to 46.7%, while mAP0.5:0.95 increased from 19.1% to 27.4%.
For small-scale targets, APy, ;; increased from 10.2% to 17.3%. The experiment proves that YOLO-UAV
performs well in improving object detection accuracy and has strong generalization ability, satisfying the
practical requirements of UAV imagery object detection tasks.

INDEX TERMS UAV imagery, object detection, YOLO-UAYV, VisDrone2019.

I. INTRODUCTION acquiring high-resolution remote sensing imagery. Capturing
With the progress in onboard sensor technology and com- imagery from an aerial viewpoint, UAVs offer a fresh
putational capabilities, UAVs have become indispensable for perspective for a range of industries. Especially when

combined with deep learning technology, the application
The associate editor coordinating the review of this manuscript and value of UAVs in various fields has been greatly expanded.
approving it for publication was Yi Zhang . The combination of UAV imagery and deep learning has
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considerably influenced the domain of identifying and
categorizing objects.

UAV small object detection, a pivotal technology in UAV
image processing, can identify small, morphologically intri-
cate objects and is hard to distinguish by color. This technique
confronts challenges due to the intricate backgrounds and
substantial detail found in images captured by UAVs. Tradi-
tional detection methods typically rely on manually-designed
features, sensitive to illumination, angles, and occlusions,
with limited capacity to handle complex backgrounds.
Despite their decent performance in simpler environments,
these methods could lead to false and missed detections in
more complex scenarios. In contrast, deep learning methods
compensate for these shortcomings, demonstrating excellent
performance in complex environments. The domain of UAV
small-object detection has seen a significant application of
deep learning methods, which now represent key solutions.
Within these developments, Convolutional Neural Networks
(CNNp5s) stand out as the dominant model structure. Address-
ing the issue of identifying small-scale objects in UAV
imagery, advancements in deep learning have contributed
significantly to research breakthroughs. [1]. Currently, object
detection algorithms can primarily be divided into two
categories: two-stage detectors and single-stage detectors.

The two-stage detectors include algorithms such as
R-CNN (Region Convolutional Neural Networks) [2],
Faster R-CNN [3], Mask R-CNN [4], Cascade R-CNN [5],
Libra R-CNN [6], etc. These algorithms typically exhibit
higher accuracy compared to the single-stage methods,
particularly in detecting small targets and managing complex
backgrounds, enabling more accurate object identification.
Moreover, two-stage methods initially generate proposal
regions, then perform classification and regression on
these regions to distinctly segregate the targets from the
background. However, due to the involvement of two
computational stages, these methods tend to have slower pro-
cessing speeds and require higher computational resources.
In contrast, single-stage detectors like the YOLO (You
Only Look Once) series [7], SSD (Single Shot MultiBox
Detector) [8], RetinaNet [9], CenterNet [10], etc., are
characterized by their fast processing speeds and robust real-
time performance. Nevertheless, these methods often exhibit
lower accuracy, especially when detecting small targets and
managing complex backgrounds, which may lead to false
positives or missed detections. Additionally, single-stage
algorithms need to perform classification and regression for
all potential positions, potentially leading to class imbalance
issues.

While these object detectors have performed well, they
often focus on general scene detection rather than explicitly
addressing the challenges of UAV imagery. During UAV
flights, environmental lighting, weather conditions, and
sensor noise can introduce instability in the image quality
of the dataset. In UAV-captured images, objects are often
captured from different perspectives and distances. Thus,
directly performing object detection at the same scale
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can result in significant errors and missed detections.
Additionally, UAV imagery datasets often contain densely
packed and small objects, along with scenes where objects are
heavily occluded, making the object features less prominent.
Furthermore, details of small objects may be lost as a result
of downsampling during image processing, causing it to be
difficult for the network to gather enough details for accurate
identification. Due to these challenges, current detection
methods face difficulties in precisely localizing and detecting
objects in UAV imagery. There is still a lot that can be done
to address these issues.

Centered on detecting small objects in UAV imagery, this
research utilizes YOLOVSs, a prevalent detection approach
from the YOLO family. Our research refines the YOLOvS5s
detection approach to bolster its detection efficacy, making it
increasingly suitable for identifying targets in UAV images.
We have proposed an object detection method based on
efficient multi-scale feature fusion termed as YOLO-UAV.
The YOLO-UAV strategy is designed to tackle the difficulties
unique to UAV imagery, consequently enhancing the accu-
racy of the model’s detection in this domain.

The following are the primary improvement strategies
discussed in this paper:

1) This study proposes an improved YOLOVS network

for object detection in UAV imagery. We simplified
the network architecture by eliminating the 20 x 20
large object detection head, subsequently reducing
redundant computations and model parameters, while
also streamlining the network. Furthermore, by intro-
ducing a 160 x 160 detection head, we enhanced the
model’s sensitivity towards smaller objects. To effi-
ciently merge features of different scales, we employed
the BiFPN architecture. These modifications not
only enhanced the detection accuracy of the model
but also lowered its complexity and computational
requirements.

2) This study proposes a Dense_CSPDarknet53 backbone
network that utilizes feature reuse to leverage the latent
information within the network. By combining and
connecting feature maps that are learnt in various
layers, the network enhances feature diversity and
reduces feature loss.

3) The efficient feature fusion block is integrated into
the multi-scale feature fusion process. This allows
for effective extraction and learning of both local
and global features in the feature maps, result-
ing in more affluent and more accurate feature
representations.

4) This study proposes an efficient and simple decoupled
head called GS-Decoupled Head. It decouples the
feature channels for classification and regression tasks,
reducing prediction biases resulting from differences
between tasks. This strengthens the model’s local-
ization and regression capabilities while reducing
the parameter and computational overhead of the
decoupled head module while maintaining accuracy.
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5) This study proposes Focal-ECIoU loss as a remedy
for the problem of sample imbalance in bounding box
regression assignments. This optimisation decreases
the effect of low-quality samples on the performance
of the model and focuses the regression processing
on great anchor boxes, thereby accelerating model
convergence.

Il. RELATED WORKS

Object detection stands as a pivotal task in the realm of com-
puter vision. In conventional object detection approaches, the
design and selection of features are substantially contingent
upon prior conditions, limiting their accuracy, objectivity,
robustness, and generalizability. Additionally, most tradi-
tional methods predominantly employ a sliding window strat-
egy, culminating in extended computational time, diminished
efficiency, intricate processing, and compromised precision.
With the ascent of computational prowess and the evolution
of dataset scales, it has become evident that traditional
techniques are no longer adept at meeting contemporary
demands. Consequently, deep learning-based object detection
methodologies, distinguished by their superior detection
performance, have garnered substantial attention from the
research community.

Influenced by the altitude of UAV flight, UAV imagery
tends to encompass a larger number of small objects
compared to traditional ground-based imagery. These objects
often manifest irregular orientations and distributions, fre-
quently encountering challenges such as clustering and occlu-
sions. Moreover, imagery captured from UAVs at varying
flight positions exhibits notable differences in background,
illumination, weather conditions, and topography. Potential
image blurring and noise induced by slight jitters of onboard
cameras exacerbate the difficulty in object identification.
A singular object, when viewed from disparate angles, can
manifest a myriad of forms, sizes, and textures. These
intricacies augment the complexities of object detection, ren-
dering conventional deep learning detection methodologies
less than optimal for UAV imagery. To better cater to these
unique characteristics of UAV imagery, researchers have
proactively introduced a plethora of innovative strategies to
refine existing detection techniques.

Wang et al. [11] enhanced the Faster R-CNN for improved
small object detection. They expanded the output feature
maps within the main network to emphasize the texture
features of minor objects. Additionally, considering the
histogram distribution of objects in training data, they
incorporated additional anchor boxes and fine-tuned their
parameters.

Huang et al. [12] proposed an object detection approach
based on the Cascade R-CNN. This method subdivides
the detection head for different object categories, allow-
ing for enhanced extraction of edge frames and precise
adjustments to them. This ensures a more accurate region
of interest, enhancing the reliability of the detection
results.
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Lin et al. [13] proposed the ECascade-RCNN object
detection network. This network comprises the Trident-
FPN backbone, RPN, and a cascaded dual-head detector.
Furthermore, based on the size distribution of targets in UAV
imagery, the anchor boxes in the RPN were re-clustered to
obtain more refined parameters.

Liu et al. [14] introduced the CBSSD method. Building on
the foundation of VGG-16, CBSSD incorporated the ResNet-
50 network as an auxiliary backbone, which enhanced feature
extraction capabilities and facilitated the retention of richer
semantic information. The CBSSD model boasts higher
recognition rates and lower false detection rates, maintaining
commendable detection performance even under low-light
conditions.

Gao et al. [15] proposed a single-stage detector tailored
for UAV imagery. It adopts the anchor-free concept from
FOCS, which provides a more rational judgment of positive
and negative samples. By employing a matching score
map strategy, the detector effectively leverages similar
information from the feature maps. Additionally, the use of
the Soft-NMS method alleviates the miss detection issues
caused by dense arrangements, proving beneficial for the
detection of slanting objects.

In the recent years, the YOLO detection approach,
known for its superior speed and precision, has seen
extensive use in the realm of identifying objects within UAV
imagery [16].

Jawaharlalnehru et al. [17] addressed challenges in UAV
imagery object detection such as low multi-scale object
localization accuracy, slow detection speed, and missed
detections by proposing an enhanced YOLOvV2 algorithm.
To tailor anchor box parameters to the specific detection task,
they re-clustered their custom aerial detection dataset. During
the network’s training process, they altered the model’s input
size every ten iterations, enhancing robustness to images of
varying scales.

Sahin and Ozer [18] explored how modifications to
the YOLO architecture influence the detection efficiency
of tiny objects within UAV imagery. Building upon the
foundation of YOLOV3, they introduced the YOLODrone
object detection method. This approach expanded the original
three different scale output layers to five. Such modifications
aid in acquiring more positional information, enhancing the
localization performance for small objects

Cheng [19] tackled challenges arising from camera
vibrations in UAV aerial shots, inconsistent lighting expo-
sure, and transmission noise. They introduced an enhanced
YOLO variant which incorporates various data augmentation
strategies like affine shifts, Gaussian blur, and grayscale
conversion. This amplifies the preprocessing efficiency of the
YOLOV4 framework and mitigates training challenges due to
data scarcity.

Shen et al. [20] proposed the CA-YOLO model based on
YOLOVS. CA-YOLO, by implementing the CA (Coordinate
Attention) module and Spatial Pyramid Pooling, alongside
an optimized anchor box method and loss function, enhances
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the detection capability of multi-scale objects and inference
speed.

Koay et al. [21] introduced the YOLO-RTUAV model.
YOLO-RTUAV builds upon YOLOvV4-Tiny and reduces
suppression errors using DIoU-NMS, reducing missed detec-
tions. It also utilizes 1 x 1 convolutions to reduce model
complexity. However, YOLO-RTUAV is predominantly
designed to detect small targets in UAV imagery and may not
be suitable for detecting objects of various sizes.

Wang et al. [22] presented SPB-YOLO, a streamlined
detector tailored for UAV imagery. By incorporating a custom
Strip Bottleneck module, it boosts the detection of objects
across various scales. Furthermore, utilizing a feature map
upsampling technique inspired by the PAN (Path Aggregation
Network), it elevates its efficiency in dense object detection
tasks specific to UAV visuals.

Huang et al. [23] proposed a new model, TCA-YOLOv5m.
TCA-YOLOv5m enhances the accuracy of feature extraction
and detection of tiny objects by utilizing the transformer
algorithm and CA module. Additionally, with the integration
of the PAN and an additional detection layer, it bolsters the
feature representation and the ability to capture targets.

The progress in the YOLO series and its variants have
shown considerable potential for identifying small objects
within UAV imagery, underlining the continuous efforts to
refine identification techniques in this specific domain.

Liang et al. [24] proposed an enhanced Sparse R-CNN
approach, integrating coordinate attention blocks with the
ResNeSt architecture. They further constructed a feature
pyramid to reinforce the backbone network, resulting
in improved object detection accuracy. To address the
challenges in complex scenarios, they introduced novel
data augmentation techniques. Moreover, the inclusion of
Self-Adaptive Augmentation (SAA) and Detection-Time
Augmentation (DTA) modules bolstered the robustness of
the model. This strategy offers a promising avenue for UAV
object detection, especially when dealing with UAV imagery
against intricate backdrops.

Liangetal. [25] proposed an object detector termed Detect-
Former, which leverages category-augmented transformers.
By utilizing a Class Decoder that synergizes proposed
category information with the Global Extract Encoder (GEE),
enhanced category sensitivity and detection performance are
achieved. To cater to varied scenarios, data augmentation
techniques were employed, and attention mechanisms were
incorporated within the network backbone to capture spatial
features and directional information across channels. Detect-
Former presents an array of innovative strategies for UAV
object detection, significantly elevating detection accuracy in
challenging environments.

Overall, the myriad of techniques and methodologies
emerging in the realm of object detection in recent years,
coupled with the latest advancements in this domain, have
ushered in substantial innovations and possibilities for
the field of UAV imagery object detection. These novel
techniques not only significantly elevate detection accuracy
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and real-time capabilities but also bolster the adaptability of
drones in diverse and intricate scenarios.

lll. METHODS

A. YOLO-UAV MODEL

In this study, the central challenges we address are the
complex backgrounds, minute target sizes, and significant
target occlusions present in UAV imagery. Current object
detection methods often fall short when confronted with
these specific issues. To better address these challenges,
we propose enhancements to the YOLOv5s model.

YOLOVSs [26] is highly regarded in the realm of object
detection algorithms due to its simplicity, computational
efficiency, and outstanding detection performance, striking
an effective balance between detection precision and speed.
During its training process, YOLOv5s conducts a meticulous
statistical analysis of the object size distribution in the dataset,
thereby autonomously gauging the most fitting anchor sizes.
Moreover, YOLOvVS5s continues the YOLO series’ multi-scale
detection scheme, performing detections on multiple feature
map scales to identify targets of various sizes. As such, in this
research, YOLOvVSs was chosen as the baseline model to
enhance the performance in detecting targets within UAV
imagery.

First and foremost, we simplified the network architecture
by eliminating the 20 x 20 large object detection head, thereby
reducing redundant computations and model parameters.
Concurrently, we introduced a 160 x 160 small object
detection head, enhancing the model’s detection capability
for smaller targets. Furthermore, to effectively fuse features
across varying scales, we adopted the BiFPN architecture.
At the crux of feature extraction, we introduced the
Dense_CSPDarknet53 backbone network, which capitalizes
on feature reuse to harness latent information within the
network. We also incorporated an efficient feature fusion
block during the multi-scale feature fusion process, enabling
the model to adeptly extract and learn both local and
global features from the feature maps. To mitigate prediction
biases caused by discrepancies between tasks and to fortify
the model’s localization and regression capabilities, all
while decreasing the parameter count of the decoupled
head module, we introduced the GS-Decoupled Head.
Lastly, to address the sample imbalance issue in bounding
box regression tasks, we proposed the Focal-ECIoU loss.
This optimization diminishes the influence of low-quality
samples on model performance, subsequently accelerating
model convergence. Fig. 1 illustrates the YOLO-UAV
structure.

B. IMPROVEMENTS IN NETWORK STRUCTURE FOR
OBJECT DETECTION IN UAV IMAGERY

1) SIMPLIFIED NETWORK STRUCTURE

In CNNs, lower-level feature maps contain a great deal of
information regarding location but less information related to
semantics. In contrast, higher-level feature maps contain less
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FIGURE 1. The network structure of YOLO-UAV.

information regarding positions but a wealth of information
related to semantics. There are only three detection layers
in the YOLOvVS, and when the input image size is 640 x
640, the network downsamples by factors of 8, 16, and
32, respectively. The respective sizes of the detection layer
feature maps for detecting targets of various sizes are 80 x 80,
40 x 40, and 20 x 20. In practical scenarios, objects within
images exhibit diversity in pixel occupancy, size, clarity,
and position; hence the mapping to images encompasses
objects of varying scales. Given that the target sizes in
UAV images are predominantly small, in YOLOVS, the layer
responsible for large object detection results from the image
being downsampled by a scale of 32. When the size of an
object is less than 32 pixels, the model may only perceive a
single point or might entirely miss the object. Moreover, the
20 x 20 feature layer can result in some degree of semantic
loss, impacting feature fusion within the network and causing
the model to overlook the target, thereby impeding network
detection. Consequently, the 20 x 20 large object detection
layer in YOLOVS is considered redundant for detecting small-
sized objects. Furthermore, in multi-scale feature fusion, the
information lost cannot be recovered through upsampling due
to the irreversible nature of downsampling. This results in the
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model being adversely affected by lower-resolution feature
layers, leading to decreased detection accuracy.

Based on the conclusions mentioned above, We have
modified the YOLOVS architecture in our study to lessen the
loss of valuable semantic details. The large object detection
head of 20 x 20, along with its corresponding feature
extraction and fusion layers, are eliminated. The model
then solely utilises the feature maps from the operations of
downsampling by factors of 8 and 16 for object detection
tasks. The refined network architecture design minimizes the
impact of downsampling on capturing object traits, improve
the network’s capacity to acquire detailed characteristics,
eliminates a substantial amount of redundant computation,
significantly reduces the model’s parameter count, and
shrinks the network structure, ensuring accuracy while
alleviating computational bottlenecks.

2) ADD A SMALL OBJECT DETECTION HEAD

The YOLOVS network possesses a large receptive field for
mid-to-high-level features, primarily focusing on represent-
ing abstract semantic information. However, its capability
to represent objects’ location and detailed information is
relatively weak. In feature extraction for small objects,
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selecting an appropriate receptive field size or considering a
multi-scale receptive field can effectively retain more local
feature information of the small objects. The objects that
must be detected in UAV imagery are minuscule. The original
multi-scale detection structure is prone to missing such
objects. Therefore, the inclusion of a smaller detection head is
essential to strengthen the network’s aptitude for identifying
small targets.

To optimize the perceptual range of the network and
boost its ability to identify small objects without raising
the input resolution, a new 160 x 160 detection head was
introduced in this study. This architecture enables the network
to retain vital information when extracting features from
small objects. In the network’s second layer, we integrated
an output feature map, designated as P2, and connected it to
the feature fusion network. When the input image dimensions
are 640 x 640, the P2 feature map dimensions are 160 x 160.
Each unit of the P2 feature map corresponds to a perceptual
area of 4 x 4 in the input image. This feature map size
has a smaller perceptual range. This characteristic brings
richer positional data about the target, which is pivotal for
enhancing the detection of minuscule objects and providing
valuable input for other layers in the process of feature
fusion. The newly introduced detection head focuses on
low-level features, thereby increasing sensitivity to small
objects.

3) EFFICIENT MULTI-SCALE FEATURE FUSION NETWORK
The Neck structure utilises a combination of FPN (Feature
Pyramid Network) and PAN. The original Neck struc-
ture of YOLOVS is shown in Fig. 2. FPN [27] delivers
high-level semantic characteristics, whereas PAN [28] deliv-
ers low-level position information towards deeper layers.
The Neck performs upsampling on features acquired from
the backbone network followed by downsampling fusion,
enabling each feature to contain more information. However,
the P2 section undergoes only 4 x downsampling, introducing
significant noise. To elevate its ability to extract features,
an improvement is employed to the Neck.

To further optimize the ability to detect objects, ensuring
that they possess both comprehensive location information
and full semantic information, the structure of BiFPN
(Bidirectional Feature Pyramid Network) [29] is adopted
to improve the existing feature fusion structure. Fig. 3
illustrates the BiFPN structure. The original design of BiFPN
incorporated a learnable-weight topology, which facilitated
efficient information flow across different scales, thereby
enhancing the model’s performance. However, despite poten-
tial performance improvements under certain circumstances
when introducing learnable weights, it concurrently escalates
the computational complexity of the model and the quantity
of its parameters. This increase in turn slows down the
model’s operation speed and amplifies the difficulty of
training the model. Additionally, inappropriate initialization
or setting of the learning rate may detrimentally affect
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FIGURE 2. The network structure of the original Neck.

the stability of model training. For instance, the weights
could dramatically increase or decrease to zero, causing the
model to struggle with convergence. Therefore, our design
did not adopt the approach of introducing weights, but
instead retained the concept of BiFPN in constructing fusion
channels. Fig. 4 illustrates the improved Neck structure.

Upon integrating P2, an upsampling node is added to
the Neck to acquire a 160 x 160 feature map. The 160 x
160 feature map obtained from upsampling the P3 layer
concatenates with the backbone network’s P2 feature map.
In the P3 and P4 layers, skip connections to the output
nodes are added, concatenating the initial feature from
the backbone with the top-down indirect feature and the
downsampling output feature to enrich the semantic data
of the feature maps without adding excessive complexity.
After improving the network structure, we finally obtained
YOLOVS5s-stru. The improved Neck can fuse deep feature
layers with larger receptive fields and shallow feature layers
with stronger position information to allow the model to
acquire stronger position features from shallow feature
layers, allowing in-depth features to perform more accurate
fine-grained detection. The improved multi-scale feature
fusion structure increases complexity without increasing
parameter and computational complexity. However, each
feature map can fuse more information, which considerably
strengthens the network detection precision and lowers the
rate of missed detection. Fig. 5 illustrates the YOLOvSs-stru
structure.

UAV imagery features images with diverse backgrounds,
from urban scenes to rural settings. This variety results
in objects of different sizes and looks. Our tailored skip
connections help preserve spatial hierarchies, guaranteeing
accurate detection of both large and small objects. UAV
imagery is taken from different altitudes and angles, leading
to scale and perspective variations. The integrated skip
connections facilitate multi-scale feature learning, making
the model robust against such variations. Due to the bird’s-eye
view in many UAV imagery, object occlusions and overlaps
are common. With the assistance of our skip connections,
our model can better differentiate overlapping objects and
identify partially occluded objects by effectively utilizing
features from different layers. As UAV imagery can be
captured at different times of the day and under varied
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weather conditions, they often exhibit stark lighting contrasts
and shadows. Our tailored skip connections ensure that
features affected by such lighting conditions are enhanced,
leading to improved detection accuracy.

C. EFFICIENT DENSE CONNECTION FEATURE EXTRACTION
NETWORK

YOLOVS is a high-performance object detection model that
employs the CSPDarknet53 feature extraction network as its
backbone. The CSPDarknet53 connection method creates a
direct link between the front feature layer and the back feature
layer. The formula is shown in Equation (1)

X = Hy(p—1) + xp—1 (D

Here, x;, represents the outcome from the nth layer,
whereas H),(-) stands for the nonlinear transformation oper-
ation.

This connection method effectively solves the vanishing
gradient problem. However, as the network grows in depth
during object detection, crucial information about features
may be lost during convolution and downsampling process.

To address the previously mentioned issues, Huang et al.
[30] introduced DenseNet, employing a dense connection
technique within its Dense Block. Unlike traditional methods,
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this block doesn’t use element-wise addition for shortcut
connections between a specific layer and its antecedent.
Instead, it connects a particular layer densely with all
previous layers. It performs channel-wise concatenation of
feature maps through skip connections. Fig. 6 depicts the
dense connection mechanism of the Dense Block. Forward
feedback connections are established between every layer
within the Dense block and the rest. The formula is shown
in Equation (2)

xn = Hy([x0, x1, -+, xa—1]) 2)

Here, [xo,x1, - ,Xx,—1] represents the combination of
feature maps derived from the network’s 0 to n— 1 layers, and
x,, indicates that the n layer essential information regarding
features from every previous xg, x1, - - - , X,—1 layers.

In DenseNet, every layer receives feature maps derived
from the that came before layers. Compared to the CSPDark-
net53 network, the DenseNet network’s connection method
retains vital feature maps and can repeatedly reuse critical
information regarding features, resulting in more abundant
and diverse features. It makes the network better at extracting
vital information and effectively solves the problem of vital
information getting lost in the CSPDarknet53 network.

In this study, we employ the dense connection structure
from the DenseNet network. Specifically, we select the C3
module in the CSPDarknet53 backbone network, and within
its BottleNeck structure, we integrate two 3 x 3 convolutions.
Moreover, we establish dense connections between each layer
within the BottleNeck and its preceding and subsequent
layers. Each layer retrieves additional input from all previous
layers and transmits its feature mapping to all subsequent
layers, resulting in the creation of a novel Dense_C3 module.
A comparison illustration of the C3 and Dense_C3 structures
is depicted in Fig. 7. As a further step, we replaced all C3
modules in the main network with Dense_C3, forming a new
backbone network, the Dense_CSPDarknet53. The structure
of the Dense_CSPDarknet53 network is displayed in Fig. 8.

D. EFFICIENT FEATURE FUSION BLOCK BASED ON ELAN
AND STRUCTURAL RE-PARAMETRIZATION

In YOLOVS, the Neck combines shallower features infor-
mation with deeper semantic features information in order
to extract features and merge feature maps derived from
various phases. This contributes to the enhancement of
what the model can do to identify characteristics across
different scales. The C3 is one of the vital sections in the
Neck section. The primary purpose of the C3 module is to
establish cross-stage connections to improve its perception
and accuracy. Although the C3 in the Neck of YOLOVS has
yielded positive results, the C3 module’s high complexity
level and extensive parameters require more storage space
and slow down the model’s computation speed. When CNNs
increase in depth, there is a critical problem: when input
or gradient information passes through many layers, it may
disappear or overinflate.
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FIGURE 6. The dense connection mechanism of the Dense Block.

We studied standard techniques to augment the learning
capacity of CNNs, such as DenseNet [30], VoVNet [31],
CSPVoVNet [32], and CSPNet [33]. According to the study,
if CNNs have shorter connections within layers near the
layers that provide inputs and outputs, the network can be
considerably deepened and trained with greater effectiveness.
The ELAN (Efficient Layer Aggregation Networks) in
YOLOV7 [33] incorporates the idea of segmenting gradient
flow from VoVNet and CSPNet to get detailed gradient
flow information. Using the stack structure in the calculation
block, the gradient length of all networks is optimally
optimised. The ELAN structure is displayed in Fig. 9.

Compared to the C3 structure in YOLOv5, ELAN indeed
increases the network’s layer count, enhancing the model’s
training accuracy and generalization capability. However,
adding multiple nonlinear layers increases the network
depth, resulting in substantial computational overhead, and
may lead to a decline in network performance. Complex
multi-branch structures, while capable of achieving rela-
tively high accuracy, tend to reduce the model’s inference
speed and memory utilization. In RepVGG [34], propose
a structural re-parameterization method that decouples the
multi-branch topology at the phase of training from the
normal structure at the phase of inference in order to
accomplish a more favourable balance between accuracy and
speed. By incorporating the structural re-parameterization
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technique, we decouple the standard structure during the
inference phase from the multi-branch structure during the
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FIGURE 10. Schematic diagram of RepConv. The (a) represents the
network structure employed during the training of RepConv, and the
(b) represents the structure utilized during the inference of RepConv.

training phase. While the multi-branch structure during
training can lead to higher accuracy, the inference is equiva-
lently transformed into a single-branch structure through the
structural re-parameterization technique, resulting in faster
inference speeds while maintaining consistent accuracy.
Fig. 10 shows the transition of RepConv between training
and inferred states. In the training state, with additional
1 x 1 convolutions, RepConv can guarantee accuracy
during training. The re-parameterized structure can be
equivalently translated to the inferred state in the inferred
state.

In the feature fusion block of DAMO-YOLO [35], the
CSPNet connection is employed to replace the original
feature fusion based on 3 x 3 convolution. Then, CSPNet
is upgraded by combining the re-parameterization technique
and the connection method of ELAN. The idea of segmenting
gradient flow is introduced into the feature fusion block of
DAMO-YOLO so as to enhance the inadequate efficacy of
the node stacking operation, improve the model’s accuracy
without increasing more computation, and optimize the
feature fusion. We replaced all C3 sections in Neck regarding
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has been separated into two sections, each of which is
adjusted by a 1 x 1 convolution layer. The lower branch
depicts the idea of an ELAN module, which is comprised
of multiple 3 x 3 RepConv and 3 x 3 Conv. Finally, the
resultant outputs of each of the branches are concatenated by
channel number and output to the next layer for processing.
Based on CSPNet, structural re-parameterization technique,
ELAN, and other strategies, the feature fusion block enhances
the capabilities of feature fusion. It can obtain more rich and
accurate feature representation so as to the network to more
effectively learn small object features, thereby improving
small object detection accuracy. Fig. 11 displays the efficient
feature fusion block structure based on ELAN and structural
re-parameterization techniques.

E. EFFICIENT AND SIMPLE DECOUPLED HEAD

There is a disparity among regression as well as classification
assignments in object detection. The contradiction between
classification and regression is essentially the contradiction
between the invariance and identity of convolutional trans-
lation, scale, and identity. The classification task hopes that
the category information remains unchanged after the target
state is translated, rotated, illuminated, and scaled, that is,
the invariance of translation and scale. For the regression
task, the change of target state should be reflected on the
feature and then accurately regressed to the position, that is,
the identity of translation and scale. Object detection tasks are
more challenging in the intricate background of UAV imagery
and the influence of objects of multi-class. The detection head
of YOLOVS incorporates a coupled architecture. By sharing
parameters in the final detection head, the classification and
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FIGURE 12. The structure of the coupled head.

regression assignments are strongly coupled. Fig. 12 displays
the coupled head of YOLOVS.

YOLOX [36] has proved that decoupling classification and
regression tasks and introducing two additional 3 x 3 convolu-
tional layers in each branch can better the network’s capacity
for detection. As a result of the outstanding capability of
the decoupled head, the decoupled head and its modified
version have been applied to a number of subsequent variants
in the YOLO series. For example, YOLO-Extract [37]
directly replaces YOLOvS5’s coupled head with YOLOX’s
decoupled head; YOLOv6 [38], building on the decoupled
head from YOLOX, adopts a hybrid channels method to
redesign a better decoupled head structure. It maintains
accuracy while reducing latency, alleviating the additional
delay cost brought about by the 3 x 3 convolution in the
decoupled head. However, the decoupled head of YOLOX
adds multiple additional convolutional layers. The standard
convolution process, involving multiplication and addition
operations between the convolution kernels at each position
with every location of the input feature map, results in
substantial computational expense. This procedure results
in a substantial increase in the total amount of module
parameters.

This paper replaces the traditional 3 x 3 convolution in
the original decoupled head with GSConv. GSConv [39] is
a mixed convolution of SC (Standard Convolution), DSC
(Depth-Wise Separable Convolution), and Shuffle. Fig. 13
depicts the GSConv structure. By means of the Shuffle
operation, GSConv infiltrates the data produced by SC into
every portion of the data produced by DSC. This approach
allows the data from SC to be completely mixed into the
output of DSC. Shuffle is a uniform mixing strategy, which
uniformly exchanges local feature information on different
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channels to make the information from SC wholly mixed
into the output of DSC. The SC maximises the preservation
of concealed connections between channels, whereas the
DSC completely eliminates these connections. GSConv
retains these connections as much as possible. Replacing SC
operation with GSConv reduces the computational burden of
convolution calculations while producing outputs that are as
close to SC as feasible.

After considering the balance between parameter, com-
putation, and accuracy, this paper redesigns an efficient
and simple decoupled head, the GS-Decoupled Head. The
GSConv can maintain the accuracy improvement brought
by the decoupled head module while reducing its param-
eter volume. In this paper, the proposed GS-Decoupled
Head separates the localization and classification functions
into distinct feature channels for object detection tasks.
These channels are individually responsible for bounding
box coordinate adjustment and object categorization. The
GS-Decoupled Head reduces the dimensionality of the input
features via a 1 x 1 convolution, curtailing the parameter
generation. Subsequently, it bifurcates the output features into
two pathways. The first pathway focuses on classification,
employing two 3 x 3 GSConvs for feature extraction and a
1x 1 SC to adjust the feature channel dimensions to align with
the target classes. The secondary pathway, in charge of regres-
sion, utilizes a pair of 3 x 3 GSConvs for feature extraction.
After the secondary pathway feature extraction, the feature
map is partitioned into two parts: one for the prediction of
bounding box attributes such as centre coordinates, height,
and width, and the other for determining the confidence
score of the object to obtain the Intersection over Union for
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the actual and predicted boxes. Unlike the coupled head,
which incorporates various information directly into a single
feature map, the GS-Decoupled Head is capable of reducing
conflicts among the different information regarding features
needed for multiple tasks, thereby enhancing localization and
regression capabilities. Simultaneously, the decoupled head,
through depth and breadth operations, can well preserve the
information in each channel, reducing the prediction bias
caused by differences between tasks and thereby enhancing
the precision of model detection. Fig. 14 depicts the structure
of the GS-Decoupled Head.

F. FOCAL EFFICIENT COMPLETE INTERSECTION OVER
UNION (FOCAL-ECIOU) REGRESSION LOSS FUNCTION
Object detection predicts the location of targets in images
via bounding box regression, and early works in object
detection employed IoU (Intersection over Union) [40] as the
localization loss. However, IoU loss encounters a problem of
vanishing gradients when the predicted box isn’t overlapping
the actual box, resulting in delayed convergence and less
precise detectors. This has spurred several improved designs
based on IoU loss, including GloU (Generalized-IoU) [41],
DIoU (Distance-IoU) [42] and CIoU [42]. In the detection of
objects, bounding box regression is crucial for determining
the efficacy of target localization.

In the context of bounding box regression, YOLOVS5 uti-
lizes the CloU as its distinctive strategy for the computation
of loss. CloU incorporates three significant geometric factors
into the target box regression function: overlap area, center
point distance, and aspect ratio. The expression for CloU
shown in Equation (3).

LCloU =1-1IoU + @ + av. (3)
IoU = 2% 4)
4 ws! W,
V= ;(arctan e arctan E) (®)]
%
T d—IoU)+v ©)
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Here, A and B respectively represent the predicted box
and the actual box, b represents the center point of the
predicted box, IoU represents the Intersection over Union

of the predicted and the actual boxes, £ z(lg b represents the
distance among the centre points of the predicted and actual
boxes, o represents used for balancing the proportion and
is a tunable parameter, v signifies the consistency parameter
between the aspect ratios of the predicted and actual boxes.

ClIoU is an enhancement of DIoU with adding an aspect
ratio parameter v, which measures the consistency between
the predicted box and actual boxes. CloU can accelerate
the regression pace of the predicted box to some degree.
Nonetheless, once the aspect ratio of the predicted and actual
boxes exhibits a linear ratio during the regression process
of the predicted box, the relative ratio penalty item added
in CIoU no longer functions. As inferred from the gradient
formulas of w and & for the predicted box, when one value
increases, the other must decrease; they cannot both increase
or decrease simultaneously.

To resolve this matter, Zhang et al. [43] proposed the
EloU (Efficient-IoU), a solution which divides the height-
to-width ratio based on the CIoU and leverages its penalty
term to separate the aspect ratio impact factor, enabling
separate calculations for the height and width of both the
target box and the anchor box. EloU is divided into three
sections: overlap loss, center distance loss, and height-width
loss. The initial two sections of EloU extend the CloU
methods, the height-width loss aims to directly minimize
the discrepancies in height and width between the predicted
box and actual boxes, enabling quicker convergence and
superior localisation results. The expression for EIoU shown
in Equation (7).

Zbgt,b Zhgt,h ZWgZ’W

LEon:1—10U+p(2 )Jr,O(2 ) p(2 )
c cp cs

(N

P28 h) . .
Here, 2 represents the height difference among the
h

predicted and actual boxes, represents the width
difference among the predicted and actual boxes.

When dealing with a box with a distant edge, the
computation of EloU can slow down and convergence isn’t
achieved in advance. To resolve this matter, Chen et al. [44]
proposed the ECIoU (Efficient Complete-IoU), that is able
to improve the adjustment of the predicted box and speed up
its regression convergence rate. The ECIoU is based on the
combination of CloU and EloU loss functions. First, CloU
adjusts the predicted box’s aspect ratio till it converges to an
acceptable range; then, EIoU adjusts each of the sides till it
converges to the correct value. The expression for ECIoU is
shown in Equation (8).

L2 W8 w)
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The majority of loss functions disregard the imbal-
ance between positive and negative samples. Specifically,
a majority of predicted box with a small overlap area
with the actual box dominate in the final bounding box
optimization. Considering there’s also a sample imbalance
issue during bounding box regression, within an image,
high-quality anchor boxes with minimal regression errors
are significantly outnumbered by low-quality samples with
substantial errors. These low-quality samples can result
in excessive gradients that negatively effect the training
procedure. To solve these issues, we have made adjustments
to the ECIoU loss and, combined with Focal Loss [9],
proposed a novel Focal-ECIoU Loss. From the perspective of
gradients, we separate between high-quality and low-quality
anchor boxes. In particular, it decreases the contribution of
a multitude of anchor boxes that have fewer overlaps with
the ground truth box to the optimisation of bounding box
regression. This approach ensures the regression process
focuses more on high-quality anchor boxes.

Due to the influence of surrounding environmental factors,
UAV images can have variable quality. In some cases, a part
of the target may be easily overlooked due to factors like
viewing angles and lighting, resulting in these kinds of targets
being significantly less numerous than other categories.
Different flying heights and shooting areas of the UAV can
lead to variations in the number and distribution of captured
object types. Moreover, UAV imagery contains a great
deal of background content, resulting in a lack of balance
between the content in the foreground and the background.
These factors may cause the imbalance between positive and
negative examples. As a result, the trained model may be able
to recognize easy-to-classify samples but perform poorly with
difficult samples.

To address this matter and better improve model per-
formance, we use FocalLl Loss to set different gradients.
The FocallLl Loss formula is shown in Equation (9).
FocalL1 loss, according to S, is capable of enhancing the
gradients’ value for inliers while reducing it for outliers.
When B is larger, it demands fewer regression errors
from the inliers and rapidly diminishes the value of the
outliers’ gradients. We assign higher gradients to areas with
larger error rates, thus placing greater emphasis on the
recognition of difficult-to-classify samples. This can mitigate
the effect of low-quality samples on the model’s performance.
By integrating ECIoU and FocalL.1, we obtain the final Focal-
ECIoU loss. The Focal-ECIOU loss formula is shown in
Equation (10).
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FIGURE 15. Category sample distribution statistics of VisDrone2019
dataset.

Lgocal—ECloU = IOUVLECIOU (10

Here, x denotes the disparity between the true value and the
predicted value, e denotes the base of the natural logarithm, 8
denotes used to control the curvature of the curve, C denotes a
constant, and y denotes a parameter used to control the degree
to which outliers are suppressed.

As the IoU increases, the associated loss also intensifies,
serving as an effective weighting mechanism. By assigning a
greater loss to superior regression targets, this approach aids
in enhancing the precision of the regression.

IV. EXPERIMENTS AND RESULTS

A. DATASET

This study uses the VisDrone2019 [45] public dataset. It is a
vast image library tailored for UAV vision research, offering
high-quality UAV visuals along with their corresponding
ground truth annotations, sourced from varied times, loca-
tions, and weather conditions. The VisDrone dataset is
collected using professional UAV photography techniques to
ensure high image resolution, quality, and clarity, and each
image is accurately annotated with objects, encompassing
a broad range of scenes, lighting, weather, and seasonal
changes. VisDrone2019 has ten detection categories. The
distribution of category samples in the VisDrone2019 dataset
is uneven. The category distribution sample statistics are
shown in Fig. 15.

Fig. 16 represents a distribution chart which illustrates
the dimensions of all label sizes in the training dataset.
In this graph, the vertical axis denotes the height of the
label box, while the horizontal axis corresponds to its
width. Observations reveal a concentration of points in
the lower left quadrant, suggesting a predominance of
smaller objects within the VisDrone2019 dataset. This trend
mirrors the real-world applications of drones, aligning well
with the research context and issues addressed in this

paper.

B. EXPERIMENTAL ENVIRONMENT AND TRAINING
PARAMETER SETTINGS

This experiment used an Intel Core ™i7-12700K CPU pro-
cessor with 64G of running memory and Ubuntu 22.04 LTS
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FIGURE 16. Size distribution of all labels in the training set. The
horizontal axis (x-axis) represents the relative width of the object
compared to the entire image width, while the vertical axis (y-axis)

represents the relative height of the object compared to the image’s total
height.

TABLE 1. Hyperparameter settings.

Hyperparameter Value
Epochs 300
Warmup epochs 3
Image size 640
batch_size 32
Learning_rate 0.01
Weight_decay 0.0005
Momentum 0.937
Optimizer SGD

operating system. The experiment was performed using an
NVIDIA RTX2080Ti GPU with 12G of video memory
for the parallel acceleration of the network. PyCharm was
used as the development platform. Training, validating, and
testing were performed under the same hyperparameters. The
Hyparameter settings are shown in Table 1.

C. EVALUATION INDICATORS

In this study, we aim to conduct a comprehensive
analysis of our model, focusing on its precision and
complexity. FLOPs (Floating-point Operations Per Second),
indicating floating-point operations per second, gauge the
computational complexity during model training. Params
(Parameters), denoting the count of parameters in the
model, quantify the computational memory resources
utilized.

Precision (P) denotes the fraction of accurately predicted
positive samples relative to all actual positive samples.
The formula for Precision is displayed in the following
Equation(11).

TP

P=— (11)
TP + FP

Recall (R) represents the proportion of correctly identified
positive samples out of all predicted samples. The formula for
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Recall is provided in the subsequent Equation(12).
TP

R= ——

TP + FN
We hope that both precision and recall are high, but the
two indicators are contradictory and cannot achieve both
high. Therefore, based on the balance point between them,
we choose an appropriate threshold to define a new indicator:
F1-Score (F1). F1 is the harmonic mean of P and R, serving
as a combined metric to optimize and maintain a balance
between their performances. The formula for the F1 is

presented in the upcoming Equation(13).

. 2P xR
~ P+R
mAP (Mean Average Precision) denotes the mean value of

average precision across all individual categories. The mAP
formula is shown in Equation(14).

(12)

(13)

c 1
mAP = % Z( / P(R)dR); (14)
i=1 70

Here, TP (true positives) signifies the count of samples
correctly identified as positive. FP (false positives) refers to
the quantity of samples wrongly classified as positive, though
they are negative. FN (false negatives) refers to the count of
instances incorrectly labeled as negative when they are in fact
positive.

D. COMPARISON EXPERIMENTS

1) COMPARISON EXPERIMENT OF IMPROVED DECOUPLED
HEAD

To establish the accuracy and efficacy of the GS-Decoupled
Head put forth in this study, we designed a comparative
experiment against YOLOX Decoupled Head. The baseline
model for this experiment was the YOLOvS5s-stru equipped
with a Coupled Head. This was sequentially replaced first
by YOLOX Decoupled Head and then by the GS-Decoupled
Head developed in this research. To ensure an unbiased and
valid experiment, we conducted a full cycle of retraining,
validating, and testing for all the models under scrutiny. The
experimental results are displayed in Table 2.

The comparison experimental results demonstrate that both
Model A, which utilizes a YOLOX decoupled head, and
Model B, employing a GS-Decoupled Head, substantially
outperform the baseline model in performance metrics such
as mAPO.5, mAP0.5:0.95, mAPOQ.75, and F1 Score, evidenc-
ing the significant optimization effect of the decoupled head.
The performance of the GS-Decoupled Head closely mirrors
that of the YOLOX decoupled head across the three mAP
indicators. Although the FI1-Score of Model B is slightly
lower than that of Model A, the marginal difference of only
0.006 indicates that their F1 performance is nearly identical.
In processing small and medium-scale targets, both models
exhibit comparable performance; however, when dealing
with large-scale targets, Model B, with the GS-Decoupled
Head, has a slight edge, corroborating the decoupled head’s
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TABLE 2. Performance comparison of the detector with different decoupled heads.

mAP0.5
(%)

mAP0.5:0.95
(%)

mAP0.75

Model (%)

APgan
(%)

AP edivum
(%)

APjgrge Params
(%) ™M)

Baseline(Coupled Head)
A(Decoupled Head)
B(GS-Decoupled Head)

40.2
43.9
43.8

22.0 21.1
253 25.4
25.1 24.8

0.440
0.472
0.466

12.9
16.0
15.8

29.8
32.8
32.6

34.0
37.4
38.2

2.12
9.33
5.83

advantage in handling targets of different scales, particu-
larly large-scale ones. Notably, this advantage is preserved
even when GSConv is applied to reduce computational
complexity.

While Models A and B are nearly equivalent in terms of key
performance indicators, Model B (5.8M) reduces parameter
volume by approximately 37% compared to Model A (9.3M).
This implies that Model B requires less storage space
and computational resources, thereby enhancing operational
efficiency on resource-limited devices.

In conclusion, the experimental results validate that our
GS-Decoupled Head, while maintaining performance compa-
rable to the YOLOX Decoupled Head, significantly reduces
the model parameter quantity, boosts model efficiency, and
meets practical application requirements. This attests to the
efficacy and efficiency of the GS-Decoupled Head.

2) COMPARISON EXPERIMENT OF IMPROVED LOSS
FUNCTION

To substantiate the efficacy of the proposed Focal-ECIoU
for the task of UAV imagery object detection, we conceived
a comparison experiment encompassing CloU, ECIoU,
and Focal-ECIoU. The baseline performance was gauged
using the YOLOvS5s-stru model that employs CIoU Loss
as the loss function. This was successively replaced with
ECIoU Loss and the proposed Focal-ECIoU Loss for this
research. To ensure the experiment’s fairness and legitimacy,
we conducted a full retraining, validation, and testing cycle
for all the models in consideration. The experimental results
are displayed in Fig. 17 and Table 3.

Upon analyzing the comparative experimental results,
we find that Model B has shown an enhancement relative to
both the Baseline and Model A in mAPO.5, elevating by 2.7%
and 1%, respectively. This indicates that Focal-ECIoU Loss
can augment the comprehensive performance of the model.
Under stricter evaluation metrics such as mAP0.5:0.95 and
mAPO0.75, Model B continues to outperform the Baseline
and Model A, signifying that Focal-ECIoU Loss maintains
high performance even when higher overlaps between
predicted and true bounding boxes are required. In terms
of the F1-Score evaluation metric, Model B also improved
compared to the Baseline and Model A, suggesting that
Focal-ECIoU Loss achieves a satisfactory balance between
recall and precision. When recognizing objects of differ-
ent sizes, Focal-ECIoU Loss likewise exhibits superiority,
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FIGURE 17. The loss comparison curve for CloU, ECloU, and Focal-ECloU.

especially in the identification of small objects, where Model
B exhibits the most significant improvement compared to the
Baseline and Model A, with the APy, increasing by 4.7%
and 3%, respectively.

The curve of the loss function can illustrate the model’s
behavior during the training phase and directly signal the
rate of its convergence. The bounding box regression loss,
a measure employed in object detection to gauge the
divergence between the predicted and actual boxes, serves
as an indicator of the model’s proficiency in the bounding
box regression task. This study compared models’ bounding
box regression losses using CloU, ECIoU, and Focal-ECIoU
respectively. Upon analysis of the loss function curves, one
can note that the bounding box regression losses for CloU,
EClIoU, and Focal-ECloU all exhibit a downward trend as
the number of training iterations growth. However, Focal-
ECIoU Loss converges the fastest, with the loss dropping
below 0.045 after 50 epochs. At the end of model training,
the losses for CloU, ECIoU, and Focal-ECIoU were 0.073,
0.065, and 0.039, respectively, with Focal-ECIoU Loss’s loss
value being closest to 0.

Comparative  experimental results indicate that
Focal-ECIoU Loss outperforms both CloU Loss and ECIoU
Loss in performance enhancement. It significantly improves
the model’s localization capability. Focal-ECIoU Loss is
characterized by a swift convergence rate and smaller
concluding loss values. Demonstrating strong stability
and adaptability, Focal-ECIoU Loss tackles the imbalance
between samples classified as positive and those classified as
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TABLE 3. Performance comparison of the detector with different loss functions.

Model mAPO0.5 mAP0.5:0.95 mAP0.75 F1 APgan AP cdium APirge
(%) (%) (%) (%) (%) (%)
Baseline(CloU) 40.2 22.0 21.1 0.440 12.9 29.8 34.0
A(ECIoU) 40.9 222 21.0 0.441 13.1 30.1 33.8
B(Focal-EClIoU) 41.3 22.6 21.6 0.449 135 30.5 34.1

FIGURE 18. The attention of different detection heads to the small objects.

negative, proficiently differentiating complex backgrounds.
This ultimately significantly boosts the model’s performance.

E. ABLATION STUDY

1) ABLATION STUDY ON THE IMPROVED NETWORK
STRUCTURES

We evaluate the effect of numerous network structure
optimisation methods on the performance of object detection
algorithms under identical experimental conditions through
ablation experiments of the improved network structure.
In identical conditions, YOLOvVSs is used as the baseline
model in the experiments,its results functioning as a standard.
The ablation studies on the enhanced network structure
are conducted by progressively incorporating the network
improvement strategies proposed in this research to the base
model of YOLOvVSs. The experimental results are displayed
in Fig. 18, Fig. 19, and Table 4.

As shown in Fig. 18, the first, second, and third rows each
respectively illustrate the attention given to small objects by
the detection heads of sizes 80 x 80, 40 x 40, and 20 x 20.
Comparing the attention of each detection head on small
objects, we found that the 20 x 20 resolution detection
head has a lot of noise in its attention to object features,
covering more background and having lower attention to
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small objects, even completely ignoring small objects in UAV
imagery. Only detection heads with resolutions of 80 x 80 and
40 x 40 are capable of identifying these small objects in UAV
imagery.

Fig. 19 shows the attention of the 160 x 160 detection head
on small objects. We observe that the 160 x 160 detection
head exhibits a high degree of attention to small targets within
the UAV images. Consequently, it can derive small object
features from UAV imagery more efficiently.

Through the analysis of ablation experiment results,
we found that upon the removal of the 20 x 20 large
target detection head and the related feature extraction and
fusion layers in Model A, which incorporated YOLOVSs,
the accuracy decreased marginally. However, the model’s
parameters and computation significantly reduced by approx-
imately 71% and 26%, respectively. This indicates that while
the elimination of these layers might marginally decrease
accuracy, it significantly reduces the model’s computational
complexity and memory overhead, thus rendering the model
more lightweight and efficient.

Model B, built upon Model A, incorporated a
160 x 160 small target detection head, leading to a
notable enhancement in the model’s performance metrics,
particularly in the detection performance of small targets,
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FIGURE 19. The attention of 160 x 160 detection head to small objects.

TABLE 4. Results of the ablation study on the improved network structure.

Model mAP0.5 mAP0.5:0.95 F1 APgpan AP,edivm AP0 Params FLOPs
(%) (%) (%) (%) (%) M) G)
YOLOvS5s 35.1 19.1 0.396 10.2 26.6 35.4 7.04 15.8
A 34.6 18.3 0.392 9.90 259 29.3 2.02 11.6
B 39.8 20.6 0.429 12.9 29.2 31.0 2.04 14.1
YOLOVS5s-stru 40.2 22.0 0.440 12.9 29.8 34.0 2.12 14.5
TABLE 5. Results of the ablation study on the improved strategies.
Structural . GS-
Model Improve- Dense CSP- Fusion Decoupled Focal- mAP0.5 mAP0.5:0.95 APgan AP, edium APjyrge
Darknet53 Block ECIoU (%) (%) (%) (%) (%)
ment Head
Baseline 35.1 19.1 10.2 26.6 354
A v 40.2 22.0 12.9 29.8 34.0
B v v 41.0 22.5 13.5 29.9 34.8
C v v v 429 24.7 15.1 33.1 37.6
D v v v v 45.7 26.6 16.9 35.0 39.4
YOLO-UAV v v v v v 46.7 274 17.3 36.0 39.7

v indicates the selected module.

which improved by approximately 30%. Concurrently, the
increase in the number of parameters and computation due
to this modification was minimal. This suggests that the
addition of the small target prediction layer significantly
improves performance while having a minimal impact on
model complexity.

YOLOvSs-stru, derived from Model B, underwent
improvements in the Neck structure. This change had a neg-
ligible impact on the model’s parameters and computational
complexity, yet it further enhanced the model’s performance,
particularly in the detection performance of medium and large
targets.

Compared to the baseline model, YOLOVSs, the improved
YOLOvS5s-stru model demonstrated enhancements in all
performance metrics. Moreover, it exhibited improved per-
formance across targets of various sizes, especially in
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the detection performance of small and medium targets.
Simultaneously, the model’s parameters and computation
exhibited a significant decrease.

The results of the ablation experiments reveal that our
improvements to the network structure of YOLOvSs are
effective. Our enhancement strategies significantly reduced
the model’s complexity and memory requirements while
improving performance.

2) ABLATION STUDY ON THE IMPROVED STRATEGIES

To substantiate the efficacy of the enhanced strategies
proposed in this study, we executed ablation experiments,
examining the influence of various strategies on the object
detection algorithm’s performance under identical experi-
mental parameters. Using YOLOvSs as the baseline model
under the same test conditions, we progressively incorporated
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FIGURE 20. Comparison of experimental mAP0.5 and mAP0.5:0.95 for ablation. The (a) is the comparison of experimental mAP0.5 for ablation,

and the (b) is the comparison of experimental mAP0.5:0.95 for ablation.

TABLE 6. AP and mAP0.5 comparison of different target detection methods on VisDrone2019 dataset.

Target class(AP/%)
Method Backbone Pede- ) ) Awning- mAP0.5/%
strian Person Bicycle Car Van Truck Tricycle tricycle Bus Motor
Faster R-CNN [46] ResNet-50 214 15.6 6.7 51.7 295 19.0 13.1 7.7 314 207 21.7
Faster R-CNN [46] ResNet-101 20.9 14.8 7.3 510 29.7 195 14.0 8.8 305 212 21.8
Cascade R-CNN [46] ResNet-50 22.2 14.8 7.6 546 315 21.6 14.8 8.6 349 214 23.2
RetinaNet [46] ResNet-50 13.0 79 14 455 199 115 6.3 4.2 17.8  11.8 13.9
CenterNet [47] Hourglass-104 22.6 20.6 146 59.7 240 213 20.1 17.4 379 237 26.2
DMNet [48] ResNet-50 28.5 20.4 159 568 379 30.1 22.6 14.0 47.1 292 30.3
CDNet [48] ResNeXt-101 35.6 19.2 13.8 558 421 382 33.0 254 495 293 342
HR-Cascade++ [48] HRNet-W40 32.6 17.3 1.1 547 424 353 32.7 24.1 46.5 282 325
MSC-CenterNet [48] Hourglass-104 33.7 15.2 12.1 552 405 341 29.2 21.6 422 275 31.1
DBAI-Det [49] ResNeXt-101 36.7 12.8 147 474 380 414 234 16.9 319 16.6 28.0
FPN [50] ResNet-50 33.0 25.8 139 694 400 343 274 134 49.1 376 35.6
YOLOV3 [50] Darknet-53 18.1 9.9 2.0 56.6 175 17.6 6.7 2.9 324 170 17.1
SIimYOLOV3 [51] Darknet-53(SPP3-50) 17.4 9.3 2.4 557 183 169 9.1 3.0 269 17.0 17.6
YOLOV3-LITE [52] Darknet-53(DSC) 34.5 234 7.9 70.8 313 219 15.3 6.2 409 327 28.5
YOLOV4 [53] CSPDarknet 24.8 12.6 8.6 643 224 227 114 7.6 443 217 30.7
Modified YOLOV4 [53] CSPDarknet 28.2 159 5.8 65.7 252 26.1 13.8 8.1 402 26.1 325
YOLOVS5s [26] CSPDarknet53(C3) 40.8 32.6 136 746 376 328 21.9 12.5 449 400 35.1
MSA-YOLO [54] CSPDarknet(MSAU)  33.4 17.3 112 768 415 414 14.8 18.4 60.9 31.0 34.7
YOLOVS [55] CSPDarknet(C2f) 50.2 39.7 213 748 505 46.2 333 22.1 674 453 45.1
YOLO-UAV Dense_CSPDarknet53  55.7 45.3 214 84.8 494 423 32.0 19.1 63.5 53.1 46.7

Bold text indicates optimal results.

the improved strategies proposed in our study. During the
training process, we used pre-trained weights for all models,
and training started directly from 0. The experimental results
are displayed in Fig. 20 and Table 5.

Through the analysis of ablation experiment results,
we found that in Model A, through network structure
adjustments, the model achieved significant improvements
across all performance indicators. In particular, the APg,qy
of small-scale targets increased the most, by 26.47%. This

VOLUME 11, 2023

suggests that the improvements to the network structure
enable the model to extract and utilize image feature
information more effectively, especially the extraction of
detailed features.

In Model B, the addition of the Dense_C3 module
improved the target detection performance across all scales.
This indicates that the Dense_C3 module can effectively pro-
mote feature propagation, enhance the richness of features,
and reduce feature loss.
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(c) Detection effect in object occlusion.

FIGURE 21. YOLO-UAV detection effect in different scenarios.

In Model C, the incorporation of the Fusion Block led to
improvements in all performance metrics. This suggests that
the Fusion Block, by merging features of different levels,
enables the model to better utilize both global and local
information.

In Model D, the inclusion of the GS-Decoupled Head led
to further improvements in model performance, particularly
for small-scale targets, whose APy, increased most signif-
icantly by 11.92%. This is because the GS-Decoupled Head
decouples classification and regression tasks, allowing each
task to be independently optimized, thereby enhancing the
model’s capacity to identify small targets.

In the final YOLO-UAV model, the introduction of the
Focal-ECIoU loss function led to improvements across all
performance metrics. This demonstrates the advantage of the
Focal-ECIoU loss function in dealing with the imbalance
between samples classified as positive and those classified as
negative, and optimizing the precision of target positioning.

When all improved strategies were added to the model,
compared to the baseline model, the YOLO-UAV achieved
optimal performance across all performance metrics, with
mAPO.5 and mAPO0.5:0.95 improving by 33.05% and
43.46%, respectively. The model’s recognition ability for
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(d) Detection effect in blurry image.

targets of all sizes also significantly improved, especially
for small targets, whose APg,,; increased from 10.2%
to 17.3%, an improvement of 69.61%. The results of
the ablation experiments demonstrate that each improved
strategy effectively improved the model’s target detection
performance, while also showing that the effects of these
improvement strategies are cumulative.

F. COMPARISON WITH STATE-OF-THE-ART METHODS

To establish the efficacy of YOLO-UAV in identifying a
variety of targets in UAV imagery, we performed a com-
parative study on the VisDrone2019 dataset, juxtaposing it
with multiple cutting-edge UAV image detection techniques.
The outcomes of this comparative analysis with advanced
methods are displayed in the Table 6.

YOLO-UAV outperformed other leading-edge techniques,
elevating the mAPO.5 from 45.1% to 46.7%, marking an
improvement of 3.6% over the second best, YOLOVS.
Compared to other advanced methods, YOLO-UAV obtained
the best detection performance in target categories such as
Pedestrian, Person, Bicycle, Car, and Motor, with AP for
these categories reaching 55.7%, 45.3%, 21.4%, 84.8%, and
53.1% respectively, demonstrating YOLO-UAV excellent
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FIGURE 22. Comparison of detection results between YOLOv5s and
YOLO-UAV in complex background environments.

generalizability and detection accuracy. However, in the
Tricycle and Awning-tricycle categories, the performance
of YOLO-UAV is not very good. This suggests that while
YOLO-UAV performs well in detecting common categories,
it underperforms in some uncommon or complex categories
due to insufficient training data or a specific model design
that cannot fully capture the features of these categories.
YOLO-UAV has a clear advantage in detection accuracy
in the Pedestrian, Person, and Motor categories, which have
the smallest objects. In these categories, the AP improved
by 11.0%, 14.1%, and 17.2%, respectively, compared to
the second-best network, YOLOv8. YOLO-UAYV also excels
in detecting larger categories such as Car, Van, Bus, and
Truck, with AP reaching up to 84.8% for Car, 63.5% for
Bus, 49.4% for Van, and 42.3% for Truck. For categories
with fewer instances, like Bicycle, YOLO-UAV also shows
the best detection performance, compared to the second-
best YOLOVS. Across all categories, YOLO-UAV performed
exceptionally well, especially in categories where other
models underperformed, such as Bicycle and Truck, main-
taining high accuracy. This demonstrates that YOLO-UAV
can sufficiently extract feature information when the number
of object instances is low. This experimental evidence
shows that YOLO-UAV performs well in UAV image object
detection tasks even when object instances are small.
Compared to the original algorithm, YOLO-UAV can
capture richer object features, thereby notably augmenting
the feature extraction efficacy for small entities and boosting

VOLUME 11, 2023

/ U
(b) YOLO-UAV detection result.

o/

FIGURE 23. Comparison of detection results between YOLOv5s and
YOLO-UAV in low-light nighttime environments.

the network’s detection precision. This highlights that the
YOLO-UAV, as introduced in this paper, possesses notewor-
thy strengths in dealing with UAV image object detection
tasks.

G. METHOD EFFECTIVENESS ANALYSIS

In order to substantiate the real-world applicability and
detection performance of YOLO-UAV, we performed eval-
uations using representative and difficult images drawn from
the VisDrone2019 test set. The results derived from these
detection tests are illustrated in the Fig. 21. YOLO-UAV
exhibits superior detection performance in UAV images with
various shooting angles, lighting changes, object occlusions,
and complex and densely distributed backgrounds. It can
detect more small objects and distant objects, effectively
suppress interference from image background noise, and
selectively extract important feature information beneficial
for UAV imagery object detection assignments.

To delve deeper into the effect variations between the
baseline YOLOvS5s and the YOLO-UAYV in managing UAV
imagery object detection tasks, we randomly chose images
depicting small object situations set against diverse envi-
ronmental backgrounds from the VisDrone2019 test set for
assessment, and performed a visual comparative study.

By comparing Fig. 22a and Fig. 22b, we found that
in complex background environments where the features
such as color, texture, and shape of target objects are
similar to those of the background, the baseline model
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YOLOVvS5s incorrectly identifies the background as target
objects. Also, the dense arrangement of targets in the image
causes many small and distant objects to be obscured by other
objects, resulting in undetectable areas for small and distant
objects, resulting to a large number of missed detection.
The YOLO-UAV model strengthens the network’s feature
extraction ability in small object areas, separating useful
information for UAV image object detection from a multitude
of feature data. It exhibits strong anti-interference capabilities
when dealing with complex background information and can
accurately identify objects.

By comparing Fig. 23a and Fig. 23b, we found that in
low-light conditions at night, the edges and details of target
objects are difficult to discern. Noise and interference in
the background increase and the contrast between target
objects and the background decreases, causing the outlines
and features of target objects to become blurred. This leads
to some missed targets in the baseline model YOLOvSs.
The YOLO-UAV model, however, uses multi-scale feature
fusion to enable the model to learn strong location features
from shallow features. This process allows deep features
to conduct more precise fine-grained detection, thereby
reducing noise interference and effectively improving the
detection of missed objects in low-light conditions at night.

Overall, when dealing with UAV imagery object detection
tasks, the YOLO-UAV has more obvious advantages com-
pared to the YOLOvSs. The YOLO-UAV is less affected
by external conditions such as lighting and still performs
well in nighttime conditions. It has stronger detection
capabilities for small objects, distant objects, objects in
complex backgrounds, and densely arranged objects. It can
effectively avoid missed detections and false detections,
demonstrating excellent generalization capabilities that can
meet the practical task requirements.

V. CONCLUSION

In this study, We have proposed an object detection method
based on efficient multi-scale feature fusion. The method is
aimed at tackling the complex issues of intricate backdrops,
diminutive object sizes, and significant target concealment
that are prevalent in UAV images. These challenges often
hinder the effectiveness of existing object detectors in target
feature extraction and achieving superior detection accuracy.
To tackle these issues, we put forth a re-engineered design
for both the feature extraction and fusion networks. This
design intends to minimize downsampling losses during
target feature extraction, streamline the network architecture,
and enhance multi-scale feature fusion efficacy. By adding
a 160 x 160 small object detection head, We improve the
ability of the networks to extract detailed feature information,
particularly concerning small objects. To address the issue
of losing feature information when extracting features from
small objects, we introduce the Dense_C3 module. This
module integrates dense connections within the C3 module
of the backbone network, forming the Dense_CSPDarknet
backbone network. This network capitalizes on feature reuse
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to extract implicit network information, increases diversity
in the inputs of subsequent layers, and improves feature
extraction capability for small objects. To achieve richer and
more accurate feature representations, reduce interference
from complex background noise, and enable better learning
of small object features, we introduce an efficient feature
fusion block in the Neck section of the network. This
module incorporates various strategies such as structural
re-parameterization and ELAN. Moreover, we redesigned
a simple and efficient GS-Decoupled Head to decouple
the classification and regression tasks, effectively avoiding
conflicts arising from different feature information require-
ments of these tasks and reducing prediction biases caused
by task differences. Additionally, we propose a redesigned
Focal-ECIoU Loss to tackle the imbalance amid positive and
negative samples. This loss function effectively distinguishes
complex backgrounds, improves the model’s regression and
localization capabilities, accelerates network convergence,
and enhances model performance. Findings from experi-
mental studies from the VisDrone2019 dataset indicate that
our proposed YOLO-UAV significantly improves object
detection accuracy compared to various advanced object
detection methods. It exhibits excellent generalization ability
and fulfills the requirements of practical UAV imagery object
detection tasks.

However, despite the achievements of YOLO-UAV, our
research has some limitations. For instance, although our
GS-Decoupled Head design drastically reduces parameters
and computational complexity compared to the decoupled
head in YOLOX, it may still impact real-time performance.
Additionally, there is room for improvement in optimizing
specific categories within our model. As for prospective
research directions, we plan to explore the design of
lightweight and efficient network models to fulfill real-time
detection requirements better. We will also delve deeper
into optimizing specific categories, including collecting more
targeted data, conducting in-depth feature engineering, and
making more detailed adjustments and optimizations to the
model structure.
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