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ABSTRACT This paper proposed a cutting-edgemulticlass teeth segmentation architecture that integrates an
M-Net-like structure with Swin Transformers and a novel component named Teeth Attention Block (TAB).
Existing teeth image segmentation methods have issues with less accurate and unreliable segmentation
outcomes due to the complex and varying morphology of teeth, although teeth segmentation in dental
panoramic images is essential for dental disease diagnosis. We propose a novel teeth segmentation model
incorporating an M-Net-like structure with Swin Transformers and TAB. The proposed TAB utilizes a
unique attention mechanism that focuses specifically on the complex structures of teeth. The attention
mechanism in TAB precisely highlights key elements of teeth features in panoramic images, resulting inmore
accurate segmentation outcomes. The proposed architecture effectively captures local and global contextual
information, accurately defining each tooth and its surrounding structures. Furthermore, we employ a
multiscale supervision strategy, which leverages the left and right legs of the U-Net structure, boosting the
performance of the segmentation with enhanced feature representation. The squared Dice loss is utilized to
tackle the class imbalance issue, ensuring accurate segmentation across all classes. The proposed method
was validated on a panoramic teeth X-ray dataset, which was taken in a real-world dental diagnosis. The
experimental results demonstrate the efficacy of our proposed architecture for tooth segmentation onmultiple
benchmark dental image datasets, outperforming existing state-of-the-art methods in objective metrics
and visual examinations. This study has the potential to significantly enhance dental image analysis and
contribute to advances in dental applications.

INDEX TERMS Swin transformer, teeth attention block, U-Net, tooth segmentation.

I. INTRODUCTION
Dental imaging is essential for oral healthcare because
it helps in the diagnosis and treatment of various dental
conditions [1]. For example, dentists can recognize jaw-
related conditions and identify anatomical characteristics
such as teeth, maxillary sinus, and alveolar bone using
panoramic dental X-ray images [2]. Furthermore, the precise
measurements offered by this technique provide technical
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assistance in preoperative diagnosis, surgical planning, and
postoperative evaluation [3], [4].
Teeth image segmentation is a vital process in computer-

assisted dentistry diagnostics and serves as an initial step
in analyzing the tooth status. Dentists can use panoramic
radiographs to assess a range of dental conditions, including
missing teeth, dental development, impacted teeth, and
adjacent relationships [2]. This is achieved through image
segmentation. Current technology employs a ground-truth
identification mechanism for panoramic X-ray images and
utilizes a segmentation architecture to generate precise
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segmentation outcomes that can potentially facilitate clin-
ical diagnosis. Panoramic dental X-ray scans and tooth
image segmentation technology are essential components of
computer-assisted dentistry diagnostics because they enable
accurate measurements and provide a comprehensive view of
the jaw and teeth. For example, accurate teeth segmentation
from panoramic images is essential for diagnosing serious
dental conditions like periodontitis, which is a severe gum
infection leading to potential tooth loss. Through detailed
segmentation, dentists can identify anomalies in the tooth and
surrounding structures, such as enlarged periodontal ligament
spaces or bone loss. However, while segmentation is crucial
for initial evaluations, more specific imaging techniques,
like bitewing X-rays or CBCT, are often required for a
thorough diagnosis and treatment plan. As a result, teeth
segmentation remains a cornerstone in dental diagnostic
tools.

The precise categorization of teeth into distinct groups
poses a significant challenge in dental image analysis
despite its critical importance in various applications such as
orthodontic treatment planning, dental implant surgery, and
forensic odontology. Manual, semiautomatic, and automatic
approaches have been devised to segment teeth in dental
images [3]. Despite the progress made in this field, dental
restorations, malocclusions, and pathological conditions can
affect the segmentation performance.

Artificial intelligence applications in dentistry are grow-
ing, as they help practitioners increase patient safety while
simplifying complicated procedures and offering predictable
outcomes [5]. Medical image analysis uses deep learning
techniques that provide several benefits, including anomaly
detection, image segmentation, and classification [3]. Hence,
AI systems can potentially improve health data outcomes,
lower healthcare costs, and advance medical research [6]. For
example, in dental image analysis, deep learning techniques
have shown promising results in segmenting and classifying
teeth and dental structures, resulting in enhanced diagnosis
and treatment planning for various dental conditions [3], [6].

Convolutional neural networks (CNNs) have emerged as
the primary technique for image segmentation in dental
imaging because of their ability to collect local spatial
data and learn feature representation [7]. However, recent
advancements in deep learning architectures, such as trans-
formers, have demonstrated their potential to outperform
CNNs in several computer vision tasks by effectively mod-
eling long-range dependencies and global context [9]. The
progress of CNN-based segmentation models in accurately
segmenting teeth and other dental structures from background
noise enables the precise analysis and diagnosis of dental
conditions. With the increasing availability of large-scale
dental image datasets and the ongoing advancements in
deep learning techniques, CNN-based models are expected
to play an even more significant role in dental imag-
ing by facilitating rapid, accurate, and automated image
analysis.

Boundary box filters, also known as region proposal
methods, have been extensively used in medical image
segmentation tasks to improve the performance of deep
learning models by focusing on specific areas of interest.
Boundary box filters were used to identify nodules on
CT scans in [11] and [14] when segmenting lung nodules
accurately. Similarly, Oktay et al. [12] used boundary box
filters to increase the pancreatic segmentation accuracy.
Fan et al. [13] successfully segmented lesions in colonoscopy
images using boundary box filters. By focusing on specific
areas of interest in medical images, Nader et al. [10]
demonstrated that boundary box techniques can enhance
segmentation precision. In dental imaging, boundary box
techniques have been used to segment teeth and other dental
structures by identifying the regions of interest on panoramic
radiography and dental cone-beam computed tomography
(CBCT) [2]. These studies suggest that boundary box filters
have the potential to considerably enhance the accuracy and
efficiency of dental and medical image segmentation, thereby
improving diagnosis and treatment planning for a variety of
conditions.

Transformers have recently emerged as solid deep learning
architectures with excellent results in various computer vision
applications, including image segmentation [9]. Transform-
ers successfully represent long-term dependencies and the
global environment using self-attention processes, enabling
them to record connections between pixels or features in
an input image regardless of their geographical distance.
This characteristic makes transformers a potentially suitable
choice for dental image segmentation tasks where accurately
capturing the context and relationships between teeth and
their surrounding structures is crucial.

In this study, we present a cutting-edge deep neural
network model designed to segment teeth into 32 distinct cat-
egories based on panoramic dental radiography images. Our
proposed model achieves an accuracy rate of 97.26%, a Dice
Similarity Coefficient of 0.9102, and a Jaccard Index of
0.8501, all of which represent significant improvements over
previous methodologies, showing significant advancements
in dental 2D X-ray image segmentation. These enhancements
are the result of a novel methodology integrating CNNs
and transformers, combined with TAB, as a novel addition.
Utilizing these blocks facilitates the model’s ability to
focus on regions of interest, thereby effectively capturing
both local and global contexts. TABs address significant
challenges associated with dental image segmentation, such
as overlapping structures and varied tooth shapes, thereby
enhancing the overall performance and accuracy of the
model.

Our proposed tooth segmentation model offers significant
contributions to dental diagnostics and treatment planning.
By providing precise tooth segmentation, our architecture
enables early detection and diagnosis of various dental
diseases. For instance, it can facilitate the detection of
periodontal diseases or dental caries by identifying changes
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in tooth shape or the appearance of lesions. Moreover, the
accuracy achieved in tooth segmentation can greatly assist in
creating detailed treatment plans. Orthodontists, for example,
can use the segmentation results to plan braces placement or
determine the necessity of tooth extraction in overcrowded
mouths. These applications underscore the clinical relevance
and potential impact of our segmentation model in the field
of dental medicine.

This paper is organized as follows. An overview of
related works on dental picture segmentation is presented
in Section II, emphasizing deep learning-based methods.
Section III describes the proposed deep learning architecture.
The experimental setup, including the dataset, assessment
criteria, and implementation information, is presented in
Section IV. Section V presents experimental results and
comparisons with other state-of-the-art models. Finally,
Section 6 concludes the paper by addressing possible future
research directions in this field.

II. RELATED WORKS
Medical image segmentation has witnessed significant
advancements with the advent of deep learning-based
approaches. Yamanakkanavar and Lee [14] presented a novel
M-SegNet architecture that used a global attention CNN

model for automated brain MRI segmentation. The base
architecture, M-Net [41], is also used for brain image
segmentation. Badrinarayanan et al. [15] developed SegNet,
a deep convolutional encoder–decoder architecture, with
significant success in medical imaging applications. Gu et al.
[16] proposed CE-Net, a situation-encoding network for
2D medical-picture segmentation. Lin et al. [17] presented
an efficient piecewise training approach for deep-structure
models in semantic segmentation. Slic-Seg, a minimally
interactive segmentation approach for the placenta using fetal
MRI, was proposed by Wang et al. [18]. Lee et al. [19]
proposed a patchwise U-Net structure for automated brain
MRI segmentation. Deep learning-based techniques have
demonstrated exceptional efficacy in various medical image-
related assignments, underscoring their potential.

Dental image segmentation has recently emerged as
a popular research area. In this regard, deep learning-
based algorithms have exhibited encouraging results. This
section provides a comprehensive review of the literature
on dental image segmentation, focusing on deep learning-
based techniques. The intricate nature and proximity to
adjacent anatomical structures render dental image seg-
mentation a formidable task. Nevertheless, deep learning
methodologies have been demonstrated to overcome these
obstacles and exhibit encouraging outcomes. Various deep
learning architectures and techniques have been utilized
in numerous studies on dental image segmentation. These
include U-Net [20], Mask R-CNN [21], and ResNet [22].
The results of these studies suggest that deep learning-
based methodologies can yield positive results in terms of
precision and expediency in the dental segmentation of image
tasks.

Researchers have employed several methods to enhance
dental segmentation. Tekin et al. [23] segmented and
numbered teeth in dental imaging panoramic images using
a Mask R-CNN, yielding high-quality segmentation masks.
Similarly, Yang et al. [24] developed an automated system for
dental image analysis that included dental image diagnostic
knowledge, drastically reducing the amount of human labor
necessary for data preparation. Xia et al. [25] presented
a method that successfully separated individual teeth from
CT images of the upper and lower natural contact-scanned
teeth.

CNNs have been extensively used in various medical
image segmentation applications because of their ability
to gather local spatial inputs and generate hierarchical
representations [7]. Several CNN-based algorithms for tooth
segmentation have been introduced for dental image analysis.
Hou et al. [2] introduced Teeth U-Net, a segmentation
approach for tooth panoramic X-ray images that uses a U-Net
structure to capture contextual semantics and improve image
contrast. Similarly, Tekin et al. [6] developed an improved
tooth segmentation and numbering technique for bitewing
radiographs using a machine-learning algorithm based on
the U-Net architecture. These studies showed that CNNs
efficiently segment teeth and dental structures using different
dental images.

Recent advancements in deep learning architectures, such
as transformers, have shown their potential to outperform
CNNs in several computer vision tasks by effectively
modeling long-range dependencies and global context [8].
Although Transformers have mainly been used for natural
language processing applications, their use inmedical-picture
analysis is gaining popularity. Transformers have been
used for image segmentation, classification, and anomaly
detection tasks and have shown promising results in various
medical domains. The utilization of bounding box techniques
to concentrate on regions of interest has been observed
in medical imaging. This approach serves to decrease the
intricacy of segmentation tasks. Nader et al. [12] proposed an
automatic tooth segmentation method for panoramic X-rays
using deep neural networks with bounding boxes to enhance
the accuracy of the segmentation process. El Jurdi et al. [11]
presented BB-Unet, a U-Net design that includes bounding
box priors to improve segmentation results for medical
imaging tasks. The aforementioned studies demonstrated the
capacity of bounding box methodologies to enhance the
segmentation outcomes and augment the overall efficacy of
deep- learning models.

U-Net [20] has been widely used for dental segmentation
tasks. Koch et al. [26] employed a U-Net architecture to
segment panoramic images of teeth, resulting in enhanced
sample segmentation using a more compact and less complex
network design. Similarly, Kong et al. [27] proposed an
efficient encoder–decoder network (EED-Net) for the fast
and accurate segmentation of maxillofacial images. Zhao
et al. [28] developed a two-stage attention segmentation
network (TSASNet) to locate and segment teeth in dental
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TABLE 1. Summary of related works.

panoramic X-ray images that can combine pixel-level con-
textual information and identify fuzzy tooth areas. Cui et al.
[29] proposed a tooth segmentation network (TsegNet) for
3D scanning of dental structures. Some researchers have
also improved the U-Net architecture by enhancing the
encoder and decoder, modifying the convolutional layers, and
improving skip connections.

Attention techniques play a crucial role in boosting the
performance of CNNs in medical image analysis tasks. These
techniques allow the rescaling of extracted features through
skip connections, thereby enhancing high-level representa-
tion learning. For example, Jin et al. [30] proposed residual

attention U-Net (RAUNet) for liver tumor segmentation,
which includes a backbone branch for learning original
features and a soft mask branch to reduce noise and enhance
positive features. Similarly, Liu et al. [31] introduced the
deep residual attention network (DRANet), which improved
the feature processing between the encoder and decoder,
leading tomore accurate lesion-type classification.Moreover,
establishing extensive connections between encoders and
decoders can enhance the links between different modules.
To address this, Jose et al. [32] proposed the intervertebral
disc network (IVD-Net), which utilized a dense technique to
link encoders layer by layer, with each encoder processing
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a distinct image pattern. In addition, Zhang et al. [33]
proposed a multiscale densely connected U-Net (MDU-Net)
that fuses neighboring feature maps of multiple sizes at
high and low levels to improve the encoder, decoder, skip
connection performance, and segmentation accuracy. The
related works explained above are mentioned in Table 1 for
easy comparison.

Bymerging these relatedwork sections, we can observe the
evolution of dental image segmentation using deep learning
techniques, from the early use of the Mask R-CNN to the
more recent incorporation of transformers, bounding box
techniques, and improvements to the U-Net structure. These
advancements provide a strong foundation for our proposed
method and exciting possibilities for future research in this
field.

This diverse range of methods demonstrates the ongoing
advancements and potential for further improvements in
dental image segmentation using deep learning techniques.
In this study, we introduced a novel deep learning architecture
for tooth segmentation based on panoramic images to address
the weaknesses of existing approaches. Our method goes
beyond the integration of existing tools; it combines the
advantages of CNNs and transformers with a unique tooth-
bounding box technique that improves the accuracy of tooth
segmentation while resolving the challenges that currently
exist in dental image analysis.

The critical contribution of our methodology is the strate-
gic integration of CNNs, Transformers, and the novel TAB.
CNNs are used to extract features from dental images and to
capture specific local characteristics. When encapsulating the
global context, a domain in which CNNs fall short, transform-
ers are utilized. Additionally, our model incorporates novel
TAB, allowing for a focused understanding of the overall
dental arch structure, a factor in previous approaches.

Our significant contribution, TAB, is intended to improve
segmentation outcomes. This technique addresses the sensi-
tivity issues encountered in previous models by sharpening
the focus on the teeth, thereby reducing the impact of noise
and irrelevant regions.

Our approachmakes several significant contributions to the
field of dental image analysis.

1. This study proposes a cutting-edge multiclass teeth
segmentation architecture that combines anM-Net-like
structure with Swin Transformers. This architecture
integrates various components to efficiently capture
local and global contextual information, enabling
the accurate delineation of teeth and their adjacent
structures.

2. This study introduces an innovative component called
TAB, which plays a crucial role in the proposed
architecture. TAB enhances the segmentation perfor-
mance by selectively attending to teeth-related features,
further improving the accuracy of tooth segmentation.

3. This study incorporates a multiscale supervision
strategy by utilizing the left and right legs of a
U-Net structure. This strategy aids in precise feature

representation and boosts segmentation performance
by providing supervision at different scales.

4. Through a thorough examination, we demonstrated that
our model outperforms state-of-the-art techniques in
several important metrics.

III. PROPOSED METHOD
A. OVERALL ARCHITECTURE
We propose a tooth segmentation architecture that integrates
an M-Net-like structure with an encoder and decoder,
Swin Transformer [34], and TAB to segment dental images
accurately as shown in Figure 1. Our architecture aims
to capture both local and global contextual information
effectively, resulting in the precise delineation of teeth and
surrounding structures. The U-Net-like structure consists
of an encoder that extracts feature representations through
downsampling and a decoder that reconstructs the seg-
mentation mask through upsampling. The skip connections
between the encoder and decoder layers preserve spatial
information. Additionally, left- and right-leg supervision is
employed for the encoder and decoder to facilitate accurate
feature representation learning and improve segmentation
performance.

Swin Transformer blocks, placed at the bottleneck,
effectively capture long-range dependencies using the self-
attention mechanism, which models nonlocal information
and relationships between distant regions in dental images.
This enhanced the model’s understanding of complex struc-
tures and relationships. Furthermore TAB in skip connections
refine segmentation by focusing on object boundaries,
leading to more precise delineations between different teeth
and structures. This architecture effectively captures both
local and global contextual information, resulting in accurate
tooth segmentation.

B. PRE-PROCESSING
In our approach, pre-processing steps are performed to
enhance the overall quality of panoramic images before
training and testing the model. Figure 2 shows the block
diagram of our pre-processing steps.

As shown in Figure 2, the pre-processing steps perform
image resizing, normalization of pixel intensities to a range
of [0, 255], and multiscale morphology in sequence. Mul-
tiscale morphology [38] employs a range of morphological
operations at different image scales to reduce noise, improve
contrast, and highlight the salient features of dental imagery.
Such pre-processing is essentially required in refining the
input data for the model, ensuring enhanced performance
during the training and testing stages.

C. ENCODER
Hierarchical dental image features are extracted in the
encoder, wheremultiple convolutional layers are utilizedwith
a 3×3 kernel size in each layer, which is the same size used in
U-Net-like architectures. The encoder utilizes these layers to
learn varying levels of features from the input dental images,
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FIGURE 1. Overall architecture of the proposed teeth segmentation network. (TAB: Teeth Attention Blocks).

FIGURE 2. Block diagram of pre-processing.

from basic to complex. Batch normalization is performed
after each convolution to improve the stability of the model
and speed up learning. The activation function known as
Rectified Linear Unit (ReLU) is responsible for introducing
non-linearity into the model, enhancing its ability to learn
intricate patterns. The inclusion of max-pooling layers is
implemented to decrease the spatial dimensions of the feature
maps and increase the receptive field. The features retrieved
by the encoder substantially impact the overall performance
of tooth segmentation. They are responsible for identifying
different forms and patterns, hence facilitating accurate tooth
segmentation.

D. DECODER
The decoder recovers the spatial resolution of the feature
maps and reconstructs the segmented teeth. This upsampling
is achieved through transposed convolutions, effectively
increasing the height and width of the feature maps
while preserving their depth. Simultaneously, we reconstruct
segmentation masks from these up-sampled feature maps,
resulting in pixel-wise class predictions for the input dental
image.

Moreover, skip connections play a pivotal role in the
decoder by bridging the gap between the encoder and decoder
layers. These connections send the feature maps from the
encoder to their corresponding decoder layers through the

intermediate layers. This process allows for the incorporation
of high-resolution details from the encoder’s earlier layers
with the abstract, lower-resolution features from the deeper
layers. This fusion of features aids in the more accurate
reconstruction of segmentation masks, as it captures both
local details and global context, thereby enhancing the
precision of the tooth.

E. SWIN TRANSFORMER BLOCKS
Swin Transformer [34] is employed in deep learning
architectures to effectively capture local and global con-
textual information using a self-attention mechanism. They
divided the input feature maps into non-overlapping local
windows, enabling efficient processing and utilizing mul-
tihead self-attention layers to learn multiple relationships
simultaneously. Swin Transformers merge and shift win-
dows after each self-attention layer to capture long-range
dependencies, whereas position-wise feed-forward layers
help learn complex nonlinear relationships The multihead
self-attention layers in the Swin Transformer are followed by
position-wise feed-forward layers and layer normalization,
which allow the Swin Transformer to successfully manage
the multiclass tooth segmentation task. Specifically, the
multihead self-attention mechanism helps to capture intricate
spatial relationships across different parts of the dental image,
while the position-wise feed-forward layers enhance the local
representations with non-overlapping local windows within
input feature maps.

Following each self-attention phase, the Swin Trans-
former highlights its adaptability by merging and shifting
windows, which is for capturing long-range dependencies.
Additionally, the inclusion of position-wise feed-forward
layers enhances the model’s ability to identify complex
nonlinear relationships. In aggregate, these methods enhance
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the effectiveness of the Swin Transformer in addressing
dental image segmentation challenges. Since teeth exhibit
diverse morphologies, it is essential to recognize subtle
patterns and distant relationships in dental images. The
Swin Transformers are specifically positioned to address
the issues of tooth segmentation in our method. The Swin
Transformer blocks are strategically placed in the bottleneck
of our design to effectively capture long-range dependencies.
The utilization of nonlocal information management is of
utmost importance, as it allows the model to effectively
analyze complex connections between teeth and different
dental diseases.

F. TEETH ATTENTION BLOCK
TABs, a key contribution of this study, act as boundary-
aware or boundary refinement filters, playing a critical role in
segmentation tasks to improve the recognition of boundaries
between different objects or structures in an image. TABs
enhance the focus of the tooth segmentationmodel on a dental
image by observing a local receptive field around each pixel.
The implementation of a filtering operation in this receptive
field emphasizes the boundaries of the objects, specifically
the edges of single teeth and their adjacent structures.

The attention mechanism employed by TAB plays a
crucial role in enhancing the accuracy and precision of
the segmentation masks. Specifically, this is achieved by
effectively refining the differentiation between the individual
and surrounding teeth. In simple terms, TAB reduces the
effect of noise and meaningless information in dental images
by selectively optimizing the features of teeth and their
boundaries while minimizing irrelevant features or noise
that are not beneficial to the teeth segmentation task.
This improved attention helps achieve more precise and
consistent segmentation results, providing a cleaner and
clearer illustration of the individual teeth and their boundaries
in dental panoramic images.

FIGURE 3. Teeth attention block in the proposed teeth segmentation
network.

The proposed TAB using a self-attention mechanism
enables the model to assess the significance of various tooth
parts within the image by leveraging acquired contextual
knowledge. In the training stage, the TAB assigns increased
attention scores to boundary pixels around separate teeth.
This indicates that greater attention is given to the boundary
regions while generating feature maps, hence improving the
capability of the model to distinguish between individual
teeth.

The improvement of the overall segmentation performance
is facilitated by the attention capability of the TAB on
these boundary regions. Specifically, it aids in enhancing
the demarcation of tooth boundaries inside the segmentation
masks, minimizing the occurrence of overlapping between
neighboring teeth and improving the precision and accu-
racy of the segmentation process. The integration of the
TAB method into our model yields a notable advantage,
particularly in complex dental images characterized by
densely arranged or slightly overlapping teeth, therefore
mitigating the limitations of conventional segmentation
techniques.

The TABs were incorporated into the skip connections
in the tooth segmentation architecture between the encoder
and decoder layers which can be seen in Figure 3. RPN
detects boundary boxes that indicate potential regions
containing dental structures. Then, the boundary boxes pass
through the Channel Attention Block (CAB), fine-tuning
the feature’s attention. The utilization of specific filters
in TABs significantly improves the segmentation accuracy
of the model in accurately delineating complex object
boundaries, particularly those pertaining to individual teeth
and neighboring structures. The upgraded feature maps are
subsequently multiplied with the features from the encoder
via the skip connections. After the combination, the merged
entities undergo processing by the decoder to achieve final
segmentation.

TABs operate by considering a local neighboring receptive
field around each pixel and implementing a filtering operation
to highlight the boundaries of the teeth. The filtering
operation of the TAB, which is one of our novel contributions,
can utilize techniques such as convolutional layers and
attention mechanisms to learn and target object boundaries.
The incorporation of TAB within skip connections confers
multiple benefits to the architecture of tooth segmentation,
as follows:

• Improved segmentation accuracy: The model can
distinguish between each tooth and its surrounding
structures by concentrating on object boundaries,
thereby producing more precise segmentation masks.

• Smoother and sharper object boundaries:The utiliza-
tion of TAB has the potential to reduce the presence of
unusual or uneven edges within the segmentation masks,
thereby resulting in more refined and distinct object
boundaries.

• Better handling of overlapping or adjacent objects:
Teeth are frequently shown in proximity as well as
overlapping in dental images. The implementation of
TAB can enhance the model’s ability to differentiate
between teeth that are adjacent or overlapping with
enhanced performance.

In summary, the proposed TAB plays a crucial role in
enhancing the precision of tooth segmentation outcomes in
the dental image segmentation framework. This is achieved
by highlighting object boundaries and enhancing the differ-
entiation between various teeth and structures.
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G. SUPERVISION AND LOSS FUNCTION
The left and right legs of the U-Net structure were employed
for supervision during the multiclass tooth segmentation
task. Incorporating the multiscale supervision within both
the downsampling (encoding) and upsampling (decoding)
components of the U-Net, the model is supervised at
multiple scales. Such a technique helps to capture and
recognize the objects well and accurately segment the
different classes of teeth found in dental images. This
approach not only facilitates feature representation across
various scales but also boosts the differentiation capac-
ity of the model to distinguish between distinct teeth
categories.

In this study, we train our model using a custom square
Dice loss function. Dice loss, which is commonly employed
in medical image segmentation tasks, calculates the overlap
between the predicted and ground-truth images, making it
ideal for addressing the class imbalance frequently observed
in such tasks.

In the conventional Dice loss function, a score is calculated
as twice the region of intersection between the predicted and
true segmentation maps divided by the total number of pixels
in both maps. The Dice loss was calculated as one minus the
Dice score to obtain the best overlap between the predicted
and actual segmentations.

Before formulating the loss, we changed the Dice loss
function by squaring the pixel values. The following modifi-
cation, described as square Dice loss, gives greater emphasis
to every pixel, which makes the model more sensitive
to segmentation boundary changes. The significance of
precise segmentation boundaries in dental imaging cannot be
overstated, because even minor deviations can significantly
affect the quality of the resulting output.

The square Dice loss function includes a normalization
factor that avoids division by a zero. The computation
involves determining the intersection between the ground-
truth segmentation map and the predicted segmentation map
while considering the combined sum of the squares of both
maps. This causes the neural network to prioritize accurate
predictions for each pixel, which improves its precision and
recall.

L = 1 −

(
2

∑ (
yt · yp

)2
+ ϵ

)
/
(
2

∑ (
y2t + y2p

)
+ ϵ

)
(1)

where L denotes the loss function. yt and yp represent the
ground truth and predicted segmentation maps, respectively,
ε is a smoothing factor for avoiding division by zero. The
squared Dice loss is chosen for our method due to its
efficiency, leading to superior segmentation results. In our
investigation, we tried several loss functions, such as soft
Dice loss [44], Tversky loss [43], and Log-Cosh Dice
loss [43] functions, which are popularly used in medical
segmentation tasks. It was observed that the squared Dice
loss function achieved significantly better segmentation
performance in DSC and JI, etc.

IV. EXPERIMENTAL RESULTS
In this section, we discuss the experimental results for the
proposed tooth segmentation architecture. The present study
commenced by providing a detailed account of the dataset
and the pre-processing procedures employed in the training
and testing of the model. Subsequently, the evaluation
metrics, experimental setup, and comparison with established
methods are discussed. Finally, we evaluate the results while
addressing the performance of the proposed model.

A. DATASET
In this study, our dataset comprises dental panoramic
images, a collaborative effort between a dental college
and its students. These panoramic images were annotated
meticulously using a supervisory platform, resulting in a
detailed categorization of separate teeth across multiple
classes. In total, our collection boasts 540 annotated images.
To ensure computational efficiency and reduce memory
demands, we resized these images to dimensions of 1024 ×

512 pixels, taking care to preserve critical anatomical
landmarks.

B. EXPERIMENTAL SETUP
In this study, we utilized uniform settings to train and
evaluate the proposed tooth segmentation network, ensuring a
fair and consistent comparison with existing methodologies.
The Keras framework and an NVIDIA GeForce RTX
3090 graphics processing unit (GPU) were utilized for
model training and evaluation. The dataset was divided into
training (70%), validation (15%), and testing (15%) datasets.
We applied the Swin Transformer model with 2 × 2 regions
trained over 50 epochs. The initial learning rate was set
to 10−4and subsequently adaptively decreased to 10−7 to
address the potential overfitting issue. We maintained a
batch size of two throughout the training process. Dropout
layers are added after the encoder convolution layers to
overcome overfitting. Furthermore, if the validation loss did
not decrease over five consecutive epochs, we employed a
strategy to decrease the learning rate by 10%.

The effectiveness of our proposed teeth segmentation
model was quantitatively evaluated using a total of five
standard evaluation metrics, which is Accuracy (ACC),
Jaccard Index (JI) [35], Precision [36], Recall [36], and
Specificity [37]. These metrics are defined as follows:

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(2)

JI =
|P ∩ G|

|P ∪ G|
(3)

Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

Specificity =
TN

TN + FP
(6)
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TABLE 2. Comparisons between the proposed method and conventional ones.

TABLE 3. Comparisons of running times under the stopping criteria in experimental setup.

where True Positive (TP) and True Negative (TN) represent
the number of pixels accurately classified as teeth and non-
teeth, respectively. Conversely, FP (False Positive) and False
Negative (FN) refer to the number of pixels incorrectly
categorized as teeth and non-teeth, respectively. In the context
of the Jaccard index, ‘‘P’’ typically represents the set of
elements predicted by a model, while ‘‘G’’ represents the set
of ground truth or actual values.

These metrics offer a comparable scale from zero to one,
with one indicating an exact match between the predicted
and actual values. Higher scores across these parameters
denoted better segmentation performance, indicating that
the model was efficient in accurately segmenting teeth
and distinguishing between them and other structures in
the dental images. By applying these evaluation metrics,
we provide a comprehensive performance assessment of
the proposed tooth segmentation model, facilitating its
comparative analysis with other established methods in the
field.

C. RESULTS AND DISCUSSION
This section presents a comprehensive analysis and discus-
sion of the performance of the proposed model for dental
segmentation. We compared our segmentation model to
several well-established segmentation models, including the
traditional U-Net [20], Attention U-Net [12], ResNet-50
Attention U-Net [39], Swin U-Net [40], and a Modified U-
Net [10], which is identical to BB-Unet [11].The performance
of the proposed model was evaluated using multiple critical
metrics, including ACC, Dice Similarity Coefficient (DSC),
JI, precision, recall, and specificity. It is noted that we aim
to segment each tooth in an X-ray image into 32 categories
based on the World Dental Federation (FDI) notation [42],
where each tooth is categorized into #11 to #18, #21 to #28,
#31 to #38 and #41 to #48. Since our model classifies each
pixel into a specific number with multiclass 32-categorized
pixels, we also measure the True Positives (TP), True

Negatives (TN), False Positives (FP), and False Negatives
(FN) to obtain objective evaluation metrics for segmentation.
TP, TN, FP, and FN are computed for each tooth type,
considering tooth number as one class and all other teeth as
the other. This process was repeated for each tooth type in
each class.

We performed a computational cost analysis, where
we measured the training times for each method under
identical experimental conditions. Our proposed method
required approximately 60 minutes for training to achieve
the segmentation performance in Table 2. Other methods
achieve DSC values of 0.7602, 0.7846, 0.7875, 0.6348,
and 0.9004 and run-times of 45, 48-, 48-, 68-, and 64-
minutes training times for [10], [12], [20], [39], and [40],
respectively. These values are obtained from the above-
mentioned experimental setup. Since the stopping criteria
and learning rates are variable for each method during
training, it is not difficult to judge the superiority of the
complexity-performance trade-off. To investigate the change
of segmentation performance for each method, we set a sim-
ilar run-time by adjusting the stopping criteria and learning
rate values. Table 3 shows the comparison of segmentation
performances, such as DSC and JI, under almost identical
run times. As shown in Table 3, our proposed method
can achieve significantly higher segmentation performance
under similar complexity. It also indicates that our proposed
method requires much lower run-times to achieve the same
segmentation performance.

The accuracy score of our proposed (0.9726) is comparable
to that of the other models. However, based on the Dice
Coefficient (0.9102) and JI (0.8501), our model significantly
outperformed the other models. These scores demonstrate
that our model distinguishes true positives while minimizing
false positives and false negatives. In addition, the preci-
sion and recall scores of 0.8046 and 0.9389, respectively,
provided further evidence. This table demonstrates the
superior performance of the proposed model compared to the
others.
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FIGURE 4. Visual comparison between the proposed model and the conventional methods.

FIGURE 5. Visual comparison between the proposed model and the conventional methods.

The performance of each model was critically analyzed.
In this study, the traditional U-Net model exhibited com-
mendable performance in terms of ACC, Dice score, and
other metrics. However, it does not surpass the performance
of the proposed model. Similarly, although the Atten-
tion U-Net and ResNet-50 Attention U-Net demonstrated
improvements over the traditional U-Net model, they still
did not match the performance of our proposed model. The
performance of the Swin U-Net model did not align with
those of the other models, whereas the Modified U-Net
showed a performance close to that of our proposed model.

The superior performance of our proposed model can
be attributed mainly to the incorporation of the Swin
Transformer and boundary boxes and the application of a
modified loss function utilizing the squared Dice loss. These
design decisions enabled our model to learn and segment
dental structures in the input images, thereby improving the
performance across all evaluation metrics.

TABLE 4. Components of the variations in the ablation study.

In addition to a quantitative comparison, we visually
compared the segmentation results of all models which can
be seen in Figure 4 and Figure 5. This visual comparison pro-
vides evidence that the proposed model accurately segments
dental structures. Furthermore, it consistently produced more
accurate and consistent segmentation outcomes, highlighting
the benefits of the Swin Transformer, boundary boxes, and
modified loss function in our proposed dental segmentation
model.
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TABLE 5. Performance metrics for variations in the ablation study.

Furthermore, the improved generalizability of the
approach used for different dental images can be primarily
attributed to the addition of TAB and the squared Dice loss
function. The use of TABs in dental imaging improves the
accuracy of boundary delineation and increases the level of
detail in individual tooth analyses. This innovative approach
has demonstrated effectiveness in decreasing the impact
of noise and artifacts that are commonly found in dental
images. A closer analysis of row 1 of Fig. 3, illustrates
the effectiveness of the proposed approach. For example,
in the case of tooth #48 (FDI notation), most existing
models struggle to precisely define the boundaries. However,
our approach exhibits exceptional precision, providing
segmentation outcomes that closely match the ground truth.
This is largely due to the ability of TAB to focus on the local
receptive fields surrounding each pixel, thereby highlighting
the boundaries of objects and significantly improving the
differentiation between individual teeth and their neighboring
teeth.

This analysis highlights the potential advantages of our
proposed approach over other approaches, particularly when
dealingwith complex dental structures and obtaining accurate
and uniform segmentation results. The incorporation of TABs
into the model demonstrated a marked improvement in the
overall performance, indicating its potential as an asset in the
progression of dental imaging analysis and diagnostics.

The results presented in the table and figures demonstrate
that our custom dental segmentation model outperformed
several state-of-the-art models in terms of evaluation metrics
and visual comparisons. This significant boost in perfor-
mance can be primarily attributed to the unique TABs. The
use of TAB as boundary refinement filters significantly
enhances the identification of each tooth and its adjacent
structures. Although the Swin Transformer and the specific
loss function play crucial roles, the use of TAB further
propels the precision and efficiency of dental image analysis.
This study provides a robust platform for future advances in
dental image analysis and enhances the potential impact of
dental procedures, including diagnosis, treatment planning,
and patient monitoring.

D. ABLATION STUDY
An ablation study was performed to assess the contribution
of each component to the proposed tooth segmentation
network. Each variation in the network under similar training
conditions successively included essential components of the
basic U-Net model. The components investigated in this

study include Deep Supervision, Swin Transformers, and
TAB. We examined the effectiveness of each model, named
Variations A to D, and the complete proposed network using
several important metrics, such as ACC, DSC, JI, precision,
recall, and specificity. The performance results for each
variable are presented in Tables 3 and 4. We examined the
effectiveness of eachmodel, namedVariations A to D, and the
complete proposed network using several important metrics,
such as ACC, DSC, JI, precision, recall, and specificity. The
performance results for each variable are presented in Table 5.

Table 4 provides the details of the components of each
variation. Variation A is the basic U-Net structure, and each
variation includes an additional component, namely Deep
Supervision (Variation B), Swin Transformers (Variation C),
and TAB (Variation D). Table 5 shows the segmentation
performances for the ablation study. As shown in Table 5,
the accuracy of the segmentation results gets higher over
the variation number. Small gains were observed in DSC
and JI in Variation B, where Deep Supervision is used.
This improvement is due to better feature propagation
throughout the network, enhancing the model’s distinction
between teeth classes. Swin Transformers yields a marginal
enhancement in the DSC, as shown in the result of Variance
C. It is due to the fact that Swin Transformers, with
the self-attention mechanism, enable capturing local and
global contextual information, which is a crucial factor
for segmenting the complex structure of dental images
where each tooth can influence the context of neighboring
teeth. The improvement in the performance was notably
observed in Variation D, where the proposed TAB is solely
performed TAB enhances model performance by selectively
focusing on teeth boundaries, enhancing the accuracy and
precision of segmentation masks. TAB refines differentiation
between teeth and surrounding structures by assigning
higher attention scores to boundary pixels, resulting in more
distinct edges of individual teeth. This enhances the model’s
overall performance, resulting in more accurate and detailed
tooth segmentation results which can be observed from the
performance metrics.

Table 5 shows the segmentation performances associated
with each variation in the ablation study. The results
demonstrate that each successive variant, with an additional
component, results in a gradual increase in the performance
metrics.

We set the basic U-Net structure as a base in this study.
As we added features like Deep Supervision and Swin
Transformers, the performance of models shows improved

VOLUME 11, 2023 123901



A. Ghafoor et al.: Multiclass Segmentation Using Teeth Attention Modules for Dental X-Ray Images

results. Among the added featured tools, the most significant
boost in performance is shown for the proposed TAB.

Although this paper proposes a novel tooth segmentation
approach, it has certain limitations that guide our future
works. The dental images used in this study contain
complete teeth sets with relatively fewer images with dental
diseases, which may restrict our learning capability of the
model. Although our model achieves promising results in
segmenting teeth into many classes, further studies can be
feasible with a more extensive set of dental health issues.

V. CONCLUSION
In this study, we introduce an innovative tooth segmentation
model for dental panoramic images. It incorporates an M-
Net-like structure with Deep Supervision, Swin Transform-
ers, and TAB. The proposed model efficiently leverages local
and global contextual information, resulting in significantly
more accurate tooth segmentation. In particular, the proposed
TABs show remarkable proficiency in highlighting complex
dental anatomy and finely delineating tooth borders. The
novel attention mechanism embedded in the TAB precisely
highlights complex tooth structures, resulting in highly accu-
rate segmentation outcomes. Using multiscale supervision
and the squared Dice loss, our architecture effectively tackles
class imbalances and enhances feature representation, ulti-
mately achieving precise tooth delineation and surrounding
structure definition. Our proposed method demonstrates its
effectiveness and reliability in dental diagnosis applications
on a real-world panoramic teeth X-ray dataset. Furthermore,
our proposed method shows the feasibility of automated
disease diagnosis and treatment planning owing the precise
segmentation performance. For example, it enables the
early detection of periodontal diseases or dental caries by
identifying changes in tooth shape or the appearance of
lesions. However, although our model achieves significantly
better results over the state-of-the-art, the investigation of
a more extensive set of dental health issues remains as
further studies. The dental images used in this study contain
complete teeth sets with relatively fewer images with dental
diseases, which may restrict our learning capability of the
model.
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