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ABSTRACT This paper introduces a novel method for road target segmentation in the context of autonomous
driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold
analysis to address the challenges of selecting appropriate thresholds. The approach involves converting
stereo road images into uv-disparity maps, extracting road planes using v-disparity maps, and calculating
occupancy grid maps using u-disparity maps. Persistence diagrams are then constructed by generating
segmentation results under various threshold parameters. By establishing persistence boundaries in these
diagrams, the most significant regions are identified, enabling the determination of robust segmentation
thresholds. Experimental validation using KITTI stereo image datasets demonstrates the effectiveness of the
proposed method, with low error rates and superior performance compared to other segmentation methods.
The research holds potential for application in autonomous driving systems.

INDEX TERMS Disparity map, persistent homology, image segmentation, threshold selection optimization.

I. INTRODUCTION
Significant progress has been made in the field of
autonomous driving in recent years, with stability-assisting
functions such as lane line extraction [1], path finding [2],
and multi-object recognition [3]. Stereo images obtain richer
information of various traffic elements, such as disparity and
depth in traffic scenes, having the advantages of a simple sys-
tem structure and flexible operational capabilities. Therefore,
the construction of stereo disparitymaps using stereo cameras
has gradually become a prominent vision-based method with
great development potential [4], [5]. Autonomous driving
requires automatic detection and recognition of targets in
front of the vehicle, involving first extracting the road surface,
followed by segmenting road obstacles, and finally localizing
and identifying these obstacles. One of the key technologies
is obstacle segmentation based on stereo camera vision. The
objects to be segmented are mainly road surface, road traffic
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signs, vehicles, pedestrians, and other road target information
in front of the vehicle [6], [7], [8], [9], [10]. These methods
all require setting thresholds, but accurate and reasonable
thresholds are often difficult to obtain due to various factors
such as noise. Moreover, the target segmentation results are
sensitive to threshold selection, resulting in poor robustness
of the segmentation results in practical applications due to the
limitations of threshold selection [11], [12], [13].

Numerous studies have reported road target segmentation
based on stereo disparity maps. For instance, Chen et al.
[14] utilized a depth slicing technique to segment the stereo
disparity map and then employed a region growing method
to accurately label the object boundaries, thereby enhanc-
ing the segmentation of obstacles on the road. Similarly,
Kormann et al. [15] proposed a region growing technique for
vehicle segmentation, using a planar segmented mean shift
clustering method and modeling vehicles as rectangles.

Wang et al. [16] presented a robust obstacle segmentation
method based on g-disparity and effective disparity map com-
putation, employing sample strips to construct road models
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FIGURE 1. Overview of the proposed method.

and uv-disparity mapping to segment obstacles. Additionally,
Lefebvre et al. [17] estimated 3D point clouds directly from
dense disparity maps computed from stereo pairs and applied
mean shift segmentation to achieve vehicle segmentation.
Erbs et al. [18] computed dynamic stixels from stereo dis-
parity maps and modeled real-world 3D road scenes using
dynamic Stixels, achieving optimal segmentation through
iterative dynamic planning. Furthermore, the group proposed
an approach [19] for traffic scene understanding and driver
assistance systems that combines Bayesian segmentation
methods, enhancing the algorithm’s robustness through the
Stixel representation of images, and ensuring stable opera-
tion even under adverse weather conditions. Lee et al. [20]
employed road features and disparity histograms for vehicle
segmentation, extracted road features from v-disparity maps,
utilized disparity histograms to localize obstacles, segmented
them into multiple obstacles, and remerged them using four
criterion parameters: obstacle size, distance, angle between
obstacles, and disparity value difference, ultimately opti-
mizing obstacle segmentation. Fritsch et al. [21] proposed
an improved v-disparity map with fused confidence values.
They estimated potential obstacle two-dimensional bound-
ing boxes using the u-v disparity map, obtained obstacle
object state vectors, and employed a weighted v-disparity
map method. Cao et al. [22] proposed the V-intercept method
for analyzing obstacles in the disparity space, which is fast
but requires a robust threshold value. Robust segmentation is
required for safe driving, and the target segmentation results
are generally sensitive to the selection of thresholds. How-
ever, these road target segmentation methods often fail to
provide robust threshold selection, as accurate and reasonable
thresholds are often difficult to obtain due to various factors,
such as lighting conditions and object texture.

In this paper, we propose a novel method based on persis-
tent homology thresholding analysis to achieve uv-disparity
road target segmentation (as shown in Fig. 1). By estab-
lishing persistence boundaries in these diagrams, the most
significant regions are identified, enabling the determina-
tion of robust segmentation thresholds. Compared with other

road target segmentation methods, this approach does not
rely on a predefined threshold during segmentation. Instead,
it obtains persistence boundary thresholds by analyzing all
clusters in the persistence graph, allowing the method to
achieve better performance. Additionally, the method utilizes
the persistence graph to visualize the segmentation results
corresponding to different thresholds. Through the analysis of
these visualizations, more robust persistence thresholds can
be obtained.

II. THRESHOLD SELECTION OPTIMIZATION BASED ROAD
TARGET SEGMENTATION METHOD
The commonly used uv-disparity map [23] target segmen-
tation method is to set a threshold on the occupied grid by
a priori knowledge, but accurate and reasonable thresholds
are often difficult to obtain due to various factors, such as
lighting conditions and object textures, which lead to poor
quality disparity pictures and bring errors. And the target
segmentation results are generally sensitive to the threshold
selection, i.e., a small threshold change can lead to a large
difference in the segmentation region. In this regard, we pro-
pose a topological segmentation method based on persistent
homology to solve the above problem in order to obtain more
robust segmentation results, and the algorithm process is
shown in Fig. 1. As shown in Fig. 1, our proposedmethod first
transforms stereo images into UV disparity maps by SGBM
method, then extract road from V-disparity, and threshold
selection optimization based on persistent homology is per-
formed on U-disparity.

A. CONSTRUCTION OF U-V DISPARITY MAP
Firstly, we utilize the Semi-Global Block Matching (SGBM)
algorithm [24] to derive the disparity map from the stereo
image. This map represents a 3D point cloud where each
point’s coordinates are denoted as (u, v, d). Here, (u,v) cor-
responds to the (x,y) coordinates in the 2D image, while d
indicates depth information, allowing us to associate each
point in the depth image with a point in the real 3D world.
Assuming the camera’s declination, pitch, and rotation angles
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FIGURE 2. Disparity maps of the sample images of KITTI dataset (a) left grayscale image; (b) uv-disparity map of Fig. (a); (c) u-disparity map;
(d) v-disparity map.

are calibrated to 0, we establish transformation equations
between world coordinate points and their corresponding
points in the depth image.

By projecting all points onto the ud-plane and vd-plane,
two sub-images can be generated: the u-disparity and v-
disparity maps. Fig. 2 exhibits an example disparity map
obtained using the aforementioned method with the KITTI
stereo dataset [25], [26]. Fig. 2(a) displays the left grayscale
image of the stereo image, Fig. 2(b) represents the corre-
sponding disparity map, and Fig. 2(c) and Fig. 2(d) show the
u-disparity map and v-disparity map, respectively.

u = u0 + au ·
zW − x0 − bs/2

yW − y0

v = v0 + av ·
zW − z0
yW − y0

d = au ·
bs

yW − y0
(1)

where (x0, y0, z0) is the center coordinate of the stereo cam-
era, au and av is the intrinsic focal length parameter, and bs is
the baseline distance between stereo cameras.

B. ROAD SEGMENTATION FROM V-DISPARITY
Based on the disparity map obtained in Section II-A, this
study extracts the road using the v-disparity map. In real
road scenarios, the road surface area can be approximated
as a continuous horizontal surface, causing the disparity in
the v-disparity map to decrease from bottom to top along
the V-direction. Consequently, under ideal circumstances, the
disparity statistics for the pavement area in the v-disparity
diagram form a continuous diagonal line segment, encom-
passing the longitudinal extent of the pavement area in the
original image. While the shape of obstacles may vary, along
with the distance of each point on them from the acquisi-
tion device, the disparity value associated with a particular
determined obstacle tends to remain within a specific range
and exhibit continuity relative to other obstacles. Therefore,
in an ideal state, the disparity statistics point corresponding
to the obstacle in the v-disparity map approximately forms
a continuous vertical line segment. The intersection of this
vertical line segment and the diagonal line segment represents

the coordinate of the vehicle’s contact point with the road
surface in the original vehicle image.

Accordingly, the pixel value corresponding to each row of
the roads in the v-disparity map corresponds to the minimum
pixel value within that specific row. As a result, the projection
of the road on the v-disparity map appears as a line, which
can be approximated by fitting a straight line within the
v-disparity map.

To obtain a robust estimate of the road plane, a straight
line is fitted to the v-disparity map by selecting the global
minimum of the matching cost function, which is defined
as gground (d). The noise and the error in generating the dis-
parity map may cause some error in fitting the road plane,
so we set a threshold value hl and hh with the assumption
that obstacles are within the thresholds to reduce the fitting
error:

gground (u, d)+
(
αuhl
αvb

)
d≤g0(u, d)≤gground (u, d)+

(
αuhh
αvb

)
d

(2)

where αu and αv are the camera intrinsic focal length parame-
ters and b is the baseline distance of the stereo camera system.
This value can be set according to the training dataset. For
example, in the KITTI dataset, we set hl = 200 and hh =

1700, thus the ground plane 0.2m above the fitting line is
preserved to avoid fitting errors and plane 1.7m above the
fitting line is cut to avoid the influence of obstacles above
the car.

C. OCCUPANCY GRID FROM U-DISPARITY
Given a point s in a u-disparity map with coordinates of
(su, sd ), we define two binary random variables Vs and Cs
denote the visibility of the point (Vs = 1 indicates the point
is visible and Vs = 0 indicates the point is invisible) and
the obstacle confidence (Cs = 1 indicates the presence of an
obstacle at s), respectively. Thenwe can obtain the probability
of occupation Os at point s.

P (Os) =

∑
P (Vs=v,Cs=c) • P (Os|Vs=v,Cs=c) (3)

We assume that Vs and Cs are independent of each other,
which means P (Vs = v,Cs = c) = P (Vs = v)P (Cs = c).
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In order to obtain expressions for P(Vs = v) and P(Cs = c),
we first need to calculate.

NP(s) = |AP(s)|

=
∣∣{(u, v) |u = su, v ∈

[
glower (sd ), gupper (sd )

]}∣∣ (4)

NO(s) = |AO(s)| = |{(u, v) |ID(u, v) = sd } ∩ AP(s)| (5)

NV (s) = |AV (s)| = |{(u, v) |ID(u, v) ≤ sd } ∩ AP(s)| (6)

where ID is the disparity map, (u, v) is the coordinate in the
disparity image. NP(s) is the total number of measured points
on point s in the image, NO(s) is the total number of obstacle
points, and NV (s) is the total number of visible points of the
points.

Then the visibility probability of point s in the u-disparity
map is defined as

P(Vs) =
NV (s)
NP(s)

(7)

The confidence probability of the observation is:

P(Cs) = 1 − e−λ
NO(s)
NV (s) (8)

where λ is a constant. Then define P (Os|Vs = v,Cs = c) as:

P (Os|Vs = 0,Cs = c) = 0

P (Os|Vs = 1,Cs = 1) = 1 − PFP
P (Os|Vs = 1,Cs = 0) = PFN (9)

where PFP and PFN represent the false positive and false
negative of occupancy respectively.

D. THRESHOLD SELECTION OPTIMIZATION BASED ON
PERSISTENT HOMOLOGY
The u-disparity map contains the probabilities of the target
regions or edges in the disparity map, from which we want
to obtain regions with high probability values or regions
surrounded by edges with high probability values.

When studying the topological properties of a space, the
homogeneous type of this space is generally constructed
because the topological properties of two spaces with the
same embryo are the same. However, it is difficult to construct
the homology of an image space, so we use the idea of con-
tinuous homology to approximate this space by constructing
a simplicial complex with a series of continuous parame-
ters [27]. In this paper, we use the Vietoris-Rips complex to
construct the simplicial complex.

We compute a set of simplicial complexes at different
scales in a continuous homogeneous manner to find features
that are closer to the essential properties of the data by
computing features that are consistently stable over a range
of scales. This process is called filtration Sε. When ε1 < ε2,
Sε satisfies Sε1 ⊆ Sε2.

The values corresponding to the appearance (birth) and
disappearance (death) of topological features in the filtering
process are called the appearance time and disappearance
time of the kth n-dimensional feature, respectively. The set

of points consisting of emergence and disappearance times
(bkn, d

k
n ), is called a persistence graph. The duration graph

has stability, i.e., if there is a change in the point cloud set,
there will be a corresponding change in the duration graph.
A diagonal line can be drawn along the bottom left to the
top right of the continuum graph. Since the vanishing time
of the connected components in the screening process is
always greater than the appearance time, the point on the
continuum graph must be at the top left of this diagonal line.
The value of each point on the continuum graph is defined as
the continuum interval λ = dkn − bkn.
When distinguishing a topological space, we want to

find its topologically invariant features, i.e., topological
invariants. The homology group is an important topologi-
cal invariant characteristic of a topological space, and the
homology of a topological space can be measured by the
Betti number [28]. Betti number is the rank of the homology
group, and the nth dimensional Betti number is the number of
n-dimensional holes on the topological space [29], [30].
In this paper, we focus on the 0-dimensional Betti number,
i.e., the number of connected components.

As shown in the filtering process in Fig. 3(a), the emer-
gence (birth) and disappearance (death) of the connected
components within the filtering process for the upper level
set occupying the probability fs of the grid can be visualized.
When τ = 0.02, the cyan area of the right vehicle appears.
When τ = 0.03, another red area appears, but it merges with
the cyan area at the time τ = 0.10, i.e., it disappears, and the
red area lasts for an interval of λper = 0.07. When τ = 0.53,
the cyan area continues to exist and expands in size. When
τ = 0.61, the cyan area merges with other areas. If we choose
to keep only the region with the duration interval λper > 0.2,
then the cyan region will be kept and the red region will be
removed, and we can see from the image that the red region is
not the vehicle target we want and can be considered as noise
in the probability map.

In the duration map in Fig. 3(b), the appearance and
disappearance information of all regions is shown. Each
point in the persistence diagram represents the period from
appearance to disappearance of the connected components
occupying the grid in the filtering process as the threshold
value changes, and its horizontal coordinate is the threshold
value corresponding to the moment of appearance and the
vertical coordinate is the threshold value corresponding to
the moment of disappearance, so the persistence diagram can
be understood as a function relationship about the threshold
value. Since the disappearance is generally caused by the
merging of small connected components with each other,
the graph contains information about the merging of these
regions. In order to obtain a robust segmentation of the
target, a persistence boundary λper is set to select the most
salient regions in the clustering process of the data. This
selection process is represented in the persistence diagram
as the feature selected above a specific straight line. As the
line increases, the targets close to each other in the image
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FIGURE 3. Road target segmentation screening and duration map (a) u-disparity map corresponding to the screening process with
different thresholds; (b) continuity map.

space are first merged, so that a smaller number of regions
can be segmented but occupy a larger area. In Fig. 3(b), only
the region larger than the persistence boundary λper = 0.2,
i.e., the red line on the way, is retained. In order to mark the
corresponding segmentation results in the u-disparity map,
we need to determine the support domain corresponding to
the persistence diagram. Here we choose the region and the
threshold corresponding to the region when its point set is
maximum before it disappears. Since in this case the different
regions selected may have overlapping parts, the overlapping
region in the u-disparity map is labeled to the region with the
earliest vanishing time.

III. EXPERIMENTAL RESULTS AND ANALYSIS
To illustrate and evaluate the performance of the road
segmentation method proposed in this paper, experiments
were conducted using images from two stereo image
datasets, KITTI 2012 and KITTI 2015, by MATLAB
R2022a on Intel(R) Core(TM) i7-11800H 2.3 GHz CPU
and NVIDIA Geforce RTX 3060 GPU Windows system.
Section III. A describes the experimental setup and dataset;

Section III-B and III-C conduct comparison and validation
experiments on several stereo image datasets; the algorithm
proposed in this paper is compared and discussed with tradi-
tional methods in Section III-D, and the role of persistence
bounds is discussed.

A. EXPERIMENT SETUP
In this paper, three publicly available online stereo
image datasets are used for experimental evaluation and
comparison.

(1) KITTI 2012: a real-world dataset containing different
traffic scenes was collected, and images were obtained from
a moving platform recording on a Volkswagen station wagon
driving around Karlsruhe, Germany. The stereo image dataset
consists of 194 training image pairs and 195 test image pairs,
saved in lossless png format.

(2) KITTI 2015: KITTI 2015was collected in the sameway
as KITTI 2012 data, consisting of 200 training scenes and
200 test scenes (4 color images per scene, saved in lossless
png format).
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(3) Daimler dataset: a real-world dataset containing 21,
790 image pairs (640∗480 pixels) with 56492 manual labels,
and images of various objects were captured.

(4) Enpeda dataset: Enpeda is a synthetic stereo image
dataset containing 496 image pairs with 640∗480 pixels.
PSMNet [31] and Displets v2 [32] are two of the leading

methods in the KITTI stereo leaderboard compared in this
paper.

The Displets v2 method performs specification at larger
distances and determines the target parallax position (dis-
plets) by constructing an ensemble topological model of
the object surface. Displets considers that the shape of a
particular class of objects is not arbitrary, it has a typical
regular structure. While most binocular vision stereo match-
ing algorithms concentrate on textual features and smoothing
assumptions, ignoring the importance of semantic informa-
tion. The Displets v2 method takes into account the weak
textuality, reflectivity and translucency of the target class,
and improves the matching effect by increasing the distance
between possible targets using the knowledge of target recog-
nition. It obtains planar parameters by matching local planes
and parallax maps, and establishes an energy cost function
to estimate pixel point parallax values. Combining the above
ideas, experiments are conducted for vehicle targets, and the
method is ranked top in the KITTI dataset.

PSMNet argues that the current architecture relies on
patch-based Siamese networks, but it is still difficult to find
accurate counterparts in inherently ill-defined regions, such
as occluded regions, repetitive patterns, texture-free regions,
and reflective surfaces. Simply applying the intensity consis-
tency constraint between different viewpoints is not sufficient
for accurate correspondence estimation in ill-defined regions,
and is useless for texture-free regions. Therefore, PSMNet
incorporates region support from global contextual informa-
tion into stereo matching. PSMNet also extends pixel-level
features to accept region-level features at different scales
using spatial pyramid pooling (SPP) and null convolution
to enlarge the perceptual field. In addition, a stacked hour-
glass 3D CNN and intermediate supervision are designed to
regulate the cost volume. The stacked hourglass 3D CNN
reprocesses the cost volume in a top-down/bottom-upmanner
to further improve the utilization of global contextual infor-
mation.

B. COMPARISON EXPERIMENT RESULTS
KITTI 2012 ranks the methods according to the number of
non-obscured error pixels at the specified disparity/endpoint
error threshold. The evaluationmetrics are defined as follows:

1) Out-Noc: the percentage of erroneous pixels in the non-
occluded region.

2) Out-All: percentage of the total number of erroneous
pixels.

3) Avg-Noc: the average disparity/endpoint error in the
non-occluded region.

4) Avg-All: average difference/total endpoint error.

The error thresholds were set to 3, 4 and 5 px (pixel), and
the segmentation of KITTI was performed using the method
in this paper and bothDisplets v2 and PSMNet, and the results
are shown in Tables 1 to 3.

As seen from Tables 1 to 3, the algorithm in this paper
performs well in both Out-Noc and Out-All regions, with
1.17% and 1.54% at 3px, 0.92 and 1.21 at 4px, and 0.77 and
1.01 at 5px, respectively, which are significantly better than
the Displets v2 and PSMNet methods. The indicators are
close to PSMNet, but they are still the best performers among
the three methods.

TABLE 1. Test results of KITTI dataset (error threshold of 3px).

TABLE 2. Test results of KITTI dataset (error threshold of 4px).

TABLE 3. Test results of KITTI dataset (error threshold of 5px).

The KITTI 2015 dataset adds the use of semi-automated
methods to obtain the true value of dynamic images compared
to KITTI 2012, so the evaluation algorithm is implemented by
calculating the ratio of false detected pixels to true pixels in
the test images.

The evaluation metrics for this set of experiments are as
follows:

1) D1: the percentage of stereo disparity anomalies in the
first frame.

2) bg: the percentage of anomalous values averaged over
the background region only.

3) fg: percentage of outliers averaged over the foreground
region only.

4) all: the percentage of outliers averaged over all ground
truth pixels.

The results of the segmentation of KITTI using the
algorithm of this paper and recent methods such as Displets
v2 and PSMNet are shown in Table 4.

The performance of the proposed model is quantitatively
evaluated using the percentage of erroneous pixels in the
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FIGURE 4. Variation of segmented regions with the conventional method (a) the number of regions added; (b) the number
of regions removed; (c) the total number of regions changed; (d) the variation of the total number of regions with [the
threshold width in (a)-(c) is 0.05].

TABLE 4. Test results of KITTI dataset.

background (D1-bg), foreground (D1-fg), and all pixels
(D1-all), and as can be seen in Table 4, the proposed model
performs significantly better than other methods for the
texture-free and foreground regions on the KITTI dataset.

C. VALIDATION EXPERIMENT RESULTS
In this section, experiments are carried out on Dameler and
Enpeda stereo image dataset to validate proposed method.
The following metrics from literature are used to quantify the
segmentation performance:

1) Precision: correct matches / total groundtruth objects.
2) Recall: correct matches / total objects.
3) FA: false alarms.
The results are shown in table 5. Our evaluations on KITTI,

Daimeler and Enpeda datasets demonstrate that the proposed
method give pretty accurate and precise segmentation result.
The robustness of the proposed method is discussed in the
next section.

D. EXPERIMENT DISCUSSION AND ANALYSIS
Although the threshold method is a simple method to occupy
obstacle segmentation in probability maps, it is very sensitive

TABLE 5. Quantitave analysis result of proposed method on various
datasets.

to the choice of parameter values. In contrast, the method
based on persistence analysis can obtain robust thresholds and
keep track of all generated segmentation results in a topo-
logical manner. The segmentation results from the validation
experiments, KITTI dataset, show that the method proposed
in this paper can obtain more stable results.

To further analyze the robustness of the algorithm in this
paper, the relationship between the traditional method and
the method and segmentation region in this paper are investi-
gated in Fig. 4 and Fig. 5, respectively. The histogram of the
increase or removal of the connected components when the
threshold value of the two methods changes is visualized and
quantified.

Fig. 4(a) and (b) show the histograms of the corresponding
changes in the emergence and disappearance values in the
persistence analysis when the threshold value τ is changed
using the traditional method. Fig. 4(c) shows the change in
the total number of regions for different threshold parameters.
Fig. 4(d) presents the relationship between the segmented
regions as a function of threshold value τ . As seen in Fig. 4(c),
when τ changes from 0.45 to 0.5, about 30 regions are added
or removed, and some of them are removed by the post-
processing process. When τ changes from 0.5 to 0.55, about
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FIGURE 5. Variation of segmented regions in this paper with (a) the number of regions removed; (b) the variation of the
total number of regions with (where the threshold width is 0.05).

FIGURE 6. Road segmentation results of the proposed method and the
corresponding persistence diagrams.

20 regions are added or removed. We note that the curve of
the total number of regions segmented versus the threshold
value τ is not smooth and thus the robustness of the threshold
segmentation is not good.

In this paper, the histogram of region removal λper is
obtained by merging the regions, i.e., with the horizontal
coordinate λper and the number of regions as the vertical
coordinate, and the results are shown in Fig. 5(a).
As seen in Fig. 5(a), the λper changes from 0.15 to 0.2 or

from 0.2 to 0.25 results in less than 10 regions. The total
number of regions as a function of λper is shown in Fig. 5(b),
which is directly related to the histogram in Fig. 5(a), and the

curve is smooth, indicating good robustness of the threshold
segmentation.

Persistence boundaries λper are used to select the most
prominent regions in the clustering process of the data. This
selection process can be shown in the persistence plot as the
features selected above a specific straight line. As this straight
line moves upward with the increase of λper , obstacles close
to each other in the image space will be merged, so that a
smaller number of regions but occupying a larger area can be
selected.

Figure 6 shows several results of our image segmentation
using our method. It can be seen that our method is able to
segment the ground and obstacles correctly. For cars that are
not too far from the cameras, they are consistently detected as
a single region. In the second row, the method is also able to
detect a person who is riding a bicycle. Also, most of the trees
and bushes on both sides of the road were properly detected
and segmented. While the bushes on the left side were always
detected, they were sometimes segmented into single regions
or merged into a single region. Overall, the method success-
fully recognizes and segments the ground and obstacles, and
is particularly good at detecting vehicles in close proximity,
recognizing them as a single area. In addition, themethodwas
able to detect bicyclists, as well as trees and bushes on both
sides of the road.

IV. CONCLUSION
In conclusion, this paper proposes a robust method for
extracting road planes and segmenting obstacles from stereo
disparitymaps. The approach utilizes the uv-disparitymethod
to transform the stereo traffic scene into a uv-disparity map,
extracts road planes using the v-disparity map, and calculates
the occupancy grid map based on the u-disparity map. Dif-
ferent from other segmentation methods, this method obtains
persistence boundary thresholds by tracking all clusters in
the persistence diagram. The persistence diagram can visu-
alize segmentation results at various thresholds, enabling
the identification and selection of more precise persistence
parameters. Overall, the segmentation results of the method
are satisfactory in most cases. Experiment results on KITTI,
Daimeler and Enpeda datasets validate the proposed method
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on different stereo image datasets. Experiment results also
demonstrate that the proposed method achieves a lower error
rate compared to methods such as PSMNet and Displets v2
according to the KITTI System Benchmark.
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