
Received 27 September 2023, accepted 27 October 2023, date of publication 1 November 2023,
date of current version 7 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3329048

FPGA Hardware Implementation of Efficient Long
Short-Term Memory Network Based on
Construction Vector Method
TENGFEI LI AND SHENSHEN GU
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

Corresponding author: Shenshen Gu (gushenshen@shu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62276163.

ABSTRACT Long Short-Term Memory (LSTM) and its variants have been widely adopted in many
sequential learning tasks, such as speech recognition and machine translation. The low-latency and energy-
efficiency requirements of the real-world applications make model compression and hardware acceleration
for LSTM an urgent need. In this paper, we first propose a weight parameter generation method based on
vector construction that can make the model have a higher compression ratio and produce less precision
attenuation. Furthermore, we study in detail the influence of the size of the construction vector on the
computational complexity, model compression ratio and accuracy of the construction vector, in order to
obtain the optimal size design interval. Moreover, we designed a linear transformation method and a
convolution method to reduce the dimension of the input sequence, so that it can be applied to training
sets of different dimensions without changing the size of the model construction vector. Finally, we use
high-level synthesis (HLS) to deploy the obtained LSTM inference model to the FPGA device, and use the
parallel pipeline operation to realize the reuse of resources. Experiments show that, compared with the block
circulant matrix method, the proposed designs generated by our framework achieve up to 2 times gains for
compression with same accuracy degradation, and it has an acceptable delay. With the same compression
ratio, our accuracy decay is 45% of the former.

INDEX TERMS Field-programmable gate array (FPGA), long short-term memory (LSTM), model
compression, construct vector method.

I. INTRODUCTION
In recent years, with the development of computer technology
and the improvement of the computing power of hard-
ware devices, artificial intelligence technology has achieved
unprecedented development [1]. Artificial Neural Networks,
especially Deep Neural Networks (DNNs), are widely used
in a variety of applications ranging from image classification
and recognition to speech recognition and natural language
processing [2]. Recurrent Neural Networks (RNNs) are an
important class of neural networks that contain loops that pass
signals across neurons as data is input [3]. Long Short-Term
Memory (LSTM) is one of the most typical RNN models.
It has achieved great success in applications in speech

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

recognition [4], video analysis [5], and other fields. However,
the improved accuracy of model identification comes at
the cost of larger model size and higher computational
complexity. Therefore, customized hardware acceleration
is becoming more and more important for the application
of LSTM. The recently used GPU, FPGA, and ASIC to
accelerate inference of LSTM are good examples [6].

ASIC is an application-specific integrated circuit. Unlike
programmable GPU and FPGA, ASIC cannot be changed
once manufactured. Therefore, it has the problems of high
development cost, long cycle and poor flexibility. Although
GPUs are widely used in deep learning algorithms, they are
not efficient enough to achieve lower power consumption and
higher throughput. At present, in addition to improving the
algorithm logic and structure itself, hardware acceleration
methods are also often used to optimize the forward

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 122357

https://orcid.org/0000-0002-0792-1019
https://orcid.org/0000-0002-4251-7388
https://orcid.org/0000-0001-5981-5683


T. Li, S. Gu: FPGA Hardware Implementation of Efficient LSTM Network

reasoning process of neural network models (which are
trained) to facilitate the deployment of the models on
edge devices. FPGAs are the high-performance, low-power
chips with unique advantages in accelerating neural network
algorithms [7]. On the one hand, they can achieve high
computing performance and high energy efficiency ratio.
On the other hand, FPGAs are highly flexible and can be
reconfigured. It integrates a large number of digital circuit
logic units and memories. Developers can customize the
wiring between the logic unit and the memory by burning the
configuration file to achieve different arithmetic logic, and
this configuration file is not one-time, the circuit logic inside
the chip can be modified at any time.

In this paper, we propose a method for generating weight
parameters based on the vector construction method. The
memory footprint is reduced to a large extent, and the
limitation of hardware resources on the FPGA is solved
when the network is deployed on the hardware architecture.
In order to adapt the matrix multiplication and reduce the
computational complexity of the input data on the FPGA
device, we perform dimensionality reduction processing
on the sequence of the input network: the dimensionality
reduction processing steps of the sequence are integrated
into the network model, and a one-dimensional convolution
kernel is used for convolutional dimensionality reduction.
We use high-level synthesis (HLS) to deploy the obtained
LSTM inference model on the FPGA device, and use
parallel pipeline operations to achieve resource consumption,
which makes up for the delay caused by the weight matrix
construction.

The rest of this article is structured as follows. In sec-
tion II, some details of the internal structure of the LSTM
layers are introduced, and review the related work to achieve
LSTM acceleration on FPGA platforms. Section III intro-
duces a method for generating weight parameters based on
the construction vector method. In section IV, we introduce
the hardware system design in this work and detail the data
path in the hardware design, which are further evaluated and
compared with some related works in section V. Section VI
is the summary of this paper.

II. BACKGROUNG
In this section, we first introduce some details of the
internal structure of the LSTM layers considered, and review
the related work to achieve LSTM acceleration on FPGA
platforms.

A. LSTM
The long and short-term memory network proposed by
Hochreiter and Schmidhuber was a kind of neural network for
processing sequence data, which had an important position in
the field of natural language processing [8]. With the help of
cell states and ‘‘gates’’, the memory of some periods can be
selectively retained to achieve both long-term and short-term
memory.

In this work, we use the representative LSTM network
model proposed [9]. An RNN network model based receives
a sequence of input vectors x = (x1; x2; x3; . . . xT ) (each
xt is a vector corresponding to time t ). The mathematical
expressions of LSTM are shown in (1) ∼ (5). As shown
in Figure 1, the network structure of LSTM is obtained
according to the formula. The dotted box is the internal
network structure, and the outside is the input and output
state.

ft = σ (Wf [xt ; ht−1; ct−1] + bf ) (1)

it = σ (Wi[xt ; ht−1; ct−1] + bi) (2)

ct = ft · ct−1 + it · tanh(Wc[xt ; ht−1; ct−1] + bc) (3)

ot = σ (Wo[xt ; ht−1; ct ] + bo) (4)

ht = ot · tanh(ct ) (5)

where t represents the current moment, and thus t − 1
represents the previous moment. c is the cell state, i, o, f
represent the states on the input gate, output gate, and forget
gate in turn. x represents the input layer state, and h represents
the hidden state.Wy(y = f , i, c) is model trainable parameter.
σ (·) is the sigmoid function, which can be expressed as a
formula σ (x) =

1
1+e−x , to map variables between 0 and 1.

σ (x) = 1 means complete retention, σ (x) = 0 means
complete oblivion. tanh(·) is the hyperbolic tangent activation
function, which defined as tanh(·) =

sinhx
coshx =

ex−e−x
ex+e−x .

FIGURE 1. Long-short-term memory network structure.

The cell state t carries some information about the network.
The core of LSTM is to update c with the help of the ‘‘gate’’
operation to control the change of information. The input of
LSTM is the input layer state xt at the current time, the cell
state xt−1 at the previous time, and the hidden state ht−1. After
passing through three gates, the hidden state ht at the current
time and the updated cell state ct are output. The details of
the three gates are as follows:

1) Forgetting gate (equation (1))
Its function is to selectively discard information that is not

important to the result, and retain part of the information in
the input ct−1 at time t .
2) Input gate (equation (2)(3))
If there are discards, there will be new additions. The

input gate is to consider the information that needs to be
supplemented and determine how many components in xt
remain in ct . After having the state of the input gate and the

122358 VOLUME 11, 2023



T. Li, S. Gu: FPGA Hardware Implementation of Efficient LSTM Network

forgetting gate, the cell state ct can be updated by using (3) to
obtain new information. The former term in (3) is the ct−1
related component retained in ct after passing through the
forget gate, and the latter term is the xt related component
that exists in ct after passing through the input gate.

3) Output gate (equation (4)(5))
The purpose of this gate is to use the cell state ct to

determine how many components of the output ot go into the
hidden state ht . First, the updated ct is calculated by (4) to
obtain the state on the output layer. Then, use (5) to determine
how much of the component ot is retained in the output
state ht .
In one gate or unit, W∗[xt ; ht−1] can be combined in one

matrix-vector multiplication by concatenating the matrix and
vector as W∗[xTt ; hTt−1]

T . The four gate/cell matrices can
be concatenated and calculated through one matrix-vector
multiplication asWifco[xTt ; hTt−1]

T as show in (6).

Wifco[xTt , yTt−1]
T

= [Wi,Wf ,Wc,Wo]T [xTt , yTt−1]
T (6)

B. RELATED WORK
Massively parallel elements are used for RNN acceleration to
achieve low latency and high throughput on FPGA [10]. [11]
presents different design strategies that balances memory
bandwidth and internal storage utilization to optimize per-
formance per power for RNN workloads. The architectures
mentioned in both works are fixed because the designer
cannot choose any trade-off between resource usage and
latency.

In order to improve the prediction speed and energy
utilization, a load balance-aware pruning method is proposed
in [12]. Using the RNN model based on weight pruning, the
model size can be compressed by 20 times, but the network
model structure will become irregular after pruning. Then
design hardware architectures that work directly on sparse
LSTM models. In [13], the irregular network constraints
are alleviated by combining block circulant matrices for
weight matrix representation in RNN instead of sparse
matrices to compress weight matrices, thereby achieving
model compression and acceleration. Various LSTM variants
are implemented on FPGAs through a proposed synthesis
framework called C-LSTM.

III. MODEL DESIGN EXPLORATION
Whether it is using deep learning technology to effectively
solve the problem of foreign body intrusion in transmission
lines, providing basic guarantee for abnormal detection of
transmission lines [26], or using a point cloud segmentation
method based on advanced dynamic graph convolutional
neural network in coal mining face under harsh environment,
aiming to provide key data basis for environment perception
in coal mines [27]. It is of great help to promote the
green and sustainable production of coal resources. This is
undoubtedly the perfect combination of artificial intelligence
technology in the industrial field. A big disadvantage of
deep neural network (DNN) is that it is too computationally

intensive [14]. This largely hinders the commercialization
of deep learning-based methods, especially on some edge
devices. Most edge devices are not designed for computing-
intensive tasks. If they are simply deployed, power con-
sumption and latency will become problems. Under certain
processing methods, getting rid of redundancy will not have
a great impact on the prediction accuracy [15].

From a hardware implementation perspective, model
compression plays a crucial role in saving computation and
reducing memory footprint, which means lower latency and
higher energy efficiency. Model compression is a software
methodwith low application cost. It is not contradictory to the
hardware accelerationmethod and can be added to each other.
In terms of subdivision, model compression can be divided
into many methods, such as pruning [16], quantization [17]
and so on. Deep neural networks can be divided into two
stages: training and inference. The training phase is to learn
the parameters in the model according to the data (for the
neural network, it is mainly the weights in the network).
In the inference phase, new data is fed into the model, and
the result is obtained after calculation. Over-parameterization
means that we need a large number of parameters in the
training phase to capture the tiny information in the data.
Once the training is completed to the inference phase, we do
not need so many parameters. This assumption supports that
we can simplify the model before deployment. The two
methods of pruning and quantization in model compression
are based on this premise. There are many benefits after
model simplification, including but not limited to:

1) The amount of computation is reduced, resulting in less
computation time and less power consumption.

2) The memory footprint becomes smaller and can be run
on lower-end devices. An additional performance benefit is
that DRAM, which is slow and power-hungry, can now be
put in SRAM.

3) Smaller packages are beneficial to application release
and update.

A. PRUNING
Although the LSTM network model solves the problem of
gradient disappearance, it has a large amount of parameters
due to the introduction of many gating units. However, due to
the robustness of the neural network, even if many parameters
are pruned, the accuracy of the neural network can still be
obtained by retraining [18]. First, we need to train the model
to understand which weights are necessary. Then prune those
weights that do not contribute to the prediction accuracy.
Finally, we retrain the model.

In [12], a method for sparse pruning is proposed. Due
to the discreteness of non-zero weights, it takes a lot of
resources to store location information. Storing location
information for each non-zero weight, the relative distance
from the previous non-zero weight is attached. Processing
elements (PEs) are a set of basic computing units with
corresponding weights for input speech vectors and are

VOLUME 11, 2023 122359



T. Li, S. Gu: FPGA Hardware Implementation of Efficient LSTM Network

responsible for the computing tasks of the LSTM. In addition,
when performing matrix-vector multiplication, it is ensured
that each PE unit processes the same amount of data during
pruning, and a FIFO structure is introduced to achieve load
balancing. [7] adopts the method of grouping to prune,
divides each c weights of the matrix into a group, and
only retains the k largest non-zero weights in each group.
The location information only needs log2 c bits to store the
location information, and the number of non-zero elements in
each group is the same, which is in line with load balancing.
There is also a block circulant matrix pruning method to
reduce the amount of parameters of the network [13]. The
maximum pruning rate was 16 times. When more than
16 times, the model accuracy will be greatly reduced. Our
analysis shows that although the sparse matrix is convenient,
if the distance between the two non-zero weights is unstable,
a large storage resource is required to store the location
information. Although Top-k pruning can only achieve
8 times the compression rate, there are many zero elements
in the matrix, which can reduce a lot of computing resources.
Ciculant matrix pruning can achieve 16 times the pruning
rate.

In this work, we propose a method for generating weight
parameters based on the construction vector method. The
purpose of pruning the weight parameters is achieved. The
specific principle and process are described in detail in
the next section.

B. WEIGHT MATRIX REASONING BASED ON
CONSTRUCTION VECTOR METHOD
When the algorithm model is implemented in hardware, the
design of the model algorithm in the early stage will have
a significant impact on the consumption of FPGA hardware
computing resources and storage occupancy in the later stage.
The biggest impact is the scale of the problem involved
(dimension). The scale of the problem will directly affect
the scale of the network model parameters. When the scale
of the problem increases, in order to reduce the possibility
of network underfitting, the first is to increase the trainable
parameters of the network.When the network does not overfit
under the appropriate circumstances, increasing the network
size can improve the performance of the network [18].
Therefore, the two requirements make the network model
have better performance while occupying a small amount of
hardware resources, which has become a great challenge.

Taking the formula ym×1 = Wm×nxn×1 as an example, the
parameter reduction method used in [9] is to use the block
circulant matrix processing method for the weight matrix
Wm×n obtained by training. The idea is to divide the matrix
intomultiple cyclic blocks. Then each cyclic block only keeps
the first row of parameters and store these parameters into
BRAM. Finally, the parameters of the remaining lines are
filled by the first line loop. Therefore, when the number of
loop blocks increases, the number of effective parameters
increases, and the structure between the parameters is more
complicated. So the calculation operations of transplanting

and restoring the parameters to a matrix are also more
complicated.

FIGURE 2. Schematic diagram of weight parameter generation.

Aiming at the optimization method of network weight
parameters, this paper proposes a weight parameter genera-
tion method based on the vector construction method. The
construction method is shown in Figure 2. The weight matrix
Wm×n can be constructed by the matrix multiplication of
the two construction vectors Wa and Wb. In the training
phase, each combination parameterWaiWbi of the constructed
matrix is directly trained. Therefore, compared with the block
cyclic matrix in [9], each element of the construction matrix
in this paper is an effective parameter, so the accuracy of the
model is greatly improved compared to the former.

After the matrix training is completed, the final con-
struction vectors Wa and Wb are obtained. The parameter
structure is simple, the parameter quantity is obviously
reduced, and it can be directly stored in the BRAM of
the FPGA without any compression processing. When
performing inference calculations on FPGA devices, only
one step of matrix multiplication can be used to obtain the
weight centering. Compared with the method of [9], after the
model is trained, this paper omits the operations of matrix
partitioning and matrix restoration, porting, and computing
stages are all convenient. By the operation of constructing
a matrix during hardware calculation, the reduction in the
number of parameters directly leads to a significant increase
in the number of multipliers consumed. So the resource
consumption and time consumption increase. A step-by-step
parallel processing method is designed later in this paper to
improve the sharing of multiplier resources rate.

C. FACTORS AFFECTING MODEL ACCURACY
The dimension of the input data directly determines the
number of weight parameters in the front part of the network.
At the same time, the choice of the dimension of the
construction vector in the previous section also has a direct
impact on the accuracy and parameter quantity of the model.
This section discusses the settingmethod of these two factors.

122360 VOLUME 11, 2023



T. Li, S. Gu: FPGA Hardware Implementation of Efficient LSTM Network

1) CONSTRUCT VECTOR DESIGN
When constructing the weight matrix Wm×n in the previous
section, two one-dimensional vectors ofm∗1 and 1∗n are used
to construct it. Therefore, the number of effective parameters
is m + n. When the dimension of the weight matrix is
small, this method greatly reduces the parameters with better
accuracy. However, when the dimension of the weightWm×n
required by the problem increases, the number of effective
parameters m+ n of the one-dimensional construction vector
is much smaller than the m ∗ n required by Wm×n. The
expressive ability of the model must be greatly reduced.
As the scale of the problem increases, the ‘‘dimension’’ of
the construction vector can be gradually increased. In theory,
the higher the ‘‘dimension’’ of the construction vector, the
better the network performance corresponding to the final
constructed weight matrix. The construction vectors are Wa
and Wb as shown in Figure 3, and the dimensions are (m, 2)
and (2, n) respectively. The construction vector is a matrix in
form, and it is called a construction matrix. The result of the
matrix multiplication of the two construction matricesWaWb
is the constructed weight matrixWm×n, and the weight matrix
is directly trained during training.

FIGURE 3. Schematic diagram of the construction vectorx (1).

The number of effective parameters of the weight matrix
is increased from m+ n of the one-dimensional construction
vector to 2(m + n), which is twice that of the former. The
expressive ability of the network is further improved, and the
model performance is further improved. When the required
dimension of the weight matrix Wm×n is very large, the
dimension of the construction matrix can be appropriately
increased, as shown in Figure 4. The dimension of the
construction matrix is increased to (m, k) and (k, n), and the
actual number of parameters is k(m + n), which is much
smaller than m ∗ n. Therefore, it is necessary to choose an
appropriate dimension for the construction vector through
experiments, so that the acceptable performance accuracy can
still be obtained while greatly reducing the actual number of
parameters of the model.

2) RESEARCH ON THE UPPER LIMIT OF CONSTRUCTING
VECTOR DIMENSION
The purpose of designing the construction vector is mainly to
reduce the number of model weight parameters, and make
the performance approach the original model. Therefore,
first of all, it is necessary to ensure that the number of

FIGURE 4. Schematic diagram of the construction vector (2).

parameters of the construction vector itself is smaller than the
required number of weight matrix parameters. Suppose the
input sequence is (x1, x2, x3, . . . xp)T , the number of hidden
neurons required by the LSTM unit is q, then the weight
matrix corresponding to each gate isWp×q, the corresponding
number of parameters is p × q, and the construction vectors
designed according to this requirement are Wa(p×m) and
Wb(m×q), then, design the constructor of the vector must
satisfy the following formula:{

m ≺ min(p, q)
pm+ mq ≺ pq

H⇒

m ≺ min(p, q)

m ≺
pq

p+ q
(7)

where min (min(p, q), pq
p+q ) is the upper limit of the construc-

tion vector dimension. The closer the selected value is to
the upper limit, the closer the parameters of the construction
vector itself are to the parameters of the weight matrix, and
the closer the performance of the model is to the original
model.

3) DIMENSIONALITY REDUCTION OF INPUT DATA
In the previous section, in the formula ym×1 = Wm×nxn×1 of
the example, the dimension of the input vector xn×1 is (n, 1).
In order to adapt the matrix multiplication, the dimension of
the weight matrix Wm×n should also match the input vector.
The dimension of the weight matrix is (m, n), the number
of elements is m ∗ n. When the dimension of the input
vector increases, the parameter quantity of the weight matrix
also increases sharply. Therefore, we perform dimensionality
reduction processing on the sequence input to the network.
This paper adopts two dimensionality reduction methods:
1) linear transformation method; 2) using one-dimensional
convolution kernel for convolution dimension reduction.

a: LINEAR TRANSFORMATION METHOD
As shown in Figure 5, the entire network model is divided
into two parts. The first part is the dimension transformation
layer, which is used to change the dimension of the input
sequence xn×1. This layer consists of a layer of linear layers.

VOLUME 11, 2023 122361



T. Li, S. Gu: FPGA Hardware Implementation of Efficient LSTM Network

The weight of this linear layer can be specified manually.
It can also be learned during training. The weight parameters
of the liner layer also contribute to the overall expression
ability of the model. The transformed vector xp×1 is finally
used as the input of the LSTM network.

FIGURE 5. Linear transformation method.

b: DIMENSIONALITY REDUCTION USING
ONE-DIMENSIONAL CONVOLUTION KERNEL
As shown in Figure 6, the figure takes a 3 ∗ 1 convolution
kernel (a1, a2, a3)T as an example. The filter starts from the
first three elements of the sequence xn×1, and moves the
filter in turn to obtain the corresponding convolution value.
The convolution operation is to multiply the corresponding
elements to average, the dimension p = n − k + 1 of
the vector xp×1 obtained after convolution. Where k is the
dimension of the convolution kernel, and the parameters of
the convolution kernel are set to 1 and −1 cyclic padding,
that is (1,−1, . . . , 1, −1)T . So the 3 ∗ 1 convolution kernel
parameter in this example should be (1,−1, 1)T .

FIGURE 6. Dimensionality reduction using one-dimensional convolution
kernel.

D. BI-DIRECTIONAL RECURRENT LSTM
NETWORK STRUCTURE
As shown in Figure 7, the bi-directional recurrent LSTM
network has strong expressive ability in learning the logical

FIGURE 7. Bi-directional recurrent LSTM network structure.

relationship between sequences. The bi-directional cyclic
LSTM network architecture is divided into four parts, namely
forward LSTM network, backward LSTM network, output
layer, and input layer [19]. Among them, the input layer was
introduced in the input sequence dimensionality reduction
process in the previous section. After processing the input
layer, the input sequence is input into the forward LSTM
network in sequential order, and the output sequence of the
forward network is obtained. The input sequence is reversed
and input to the backward LSTMnetwork in turn to obtain the
output sequence corresponding to the reverse network. The
output sequence is weighted and averaged to obtain the final
network output.

E. PERFORMANCE COMPARISON
The previous section discussed that the dimension of the
designed construction vector and the dimension of the
sequence, for example, have the greatest impact on the num-
ber of parameters inside the model. In this section, based
on models of different structures and scales, a variety of
construction vectors of different dimensions are used to
compare and verify the model. The purpose is to find the
appropriate dimension of the construction vector, which
can greatly reduce the actual number of parameters of the
model while still obtaining acceptable performance accuracy.
As shown in lines 1-5 of Table 2, the network based on it
has three layers of LSTM layers, and the number of hidden
units of LSTM units in each layer is 256, denoted as 256-
256-256. Based on this model, we designed 7 construction
vectors of different sizes, and comparedwith their phone error
rate (PER). The rule for determining the dimension of the
construction vector is determined by (7), and the upper limit
of the dimension is marked next to the layer size. The same is
true for models with a layer size of 1024-1024. We compare
each model with the baseline model that does nothing.

The column size of construct vectors in Table 2 represents
the size of the construction vector used by each layer

122362 VOLUME 11, 2023



T. Li, S. Gu: FPGA Hardware Implementation of Efficient LSTM Network

of LSTM. In the baseline model where the layer size is
256-256-256, the weight matrix of the LSTM gate is W ,
and the dimension of the input vector is n. Then ‘‘2-6-4’’
means that the weight matrix Wn×256 of the first layer (input
layer) LSTM gate is constructed by constructing vectors
Wa(n×2) and Wb(2×256), and the weight matrix W256×256 of
the second layer (middle layer) LSTM gate is constructed by
constructing vectors Wa(256×6) and Wb(6×256) construction,
the weight matrix W256×256 of the third layer (output layer)
LSTM gate is constructed by constructing vectors Wa(256×4)
and Wb(4×256).

Since the restoration of the construction vector to the
weight matrix requires matrix multiplication, when deployed
to the FPGA, the restoration of the weight matrix requires
multipliers and adders that consume a certain amount of
resources. Each gate of the LSTM unit corresponds to the
same weight matrix size and calculation. For the three-layer
unit, we only select one of the gates in each layer, calculate
the number of multiply-add resources consumed when
constructing the matrix by constructing the vector, and sum to
represent the number of multiply-add resources for the entire
model. New model represents the phone error rate of the
model corresponding to the construction vector of this size,
baseline model is the phone error rate of the model without
using the construction vector, and degradation represents
the PER degradation of the pruned model compared to
the baseline model. Matrix compression ratio represents the
compression ratio of the weight parameters of each layer
of LSTM relative to the weight parameters of the baseline
model under the construction vector of the corresponding
size. x represents the dimension of the vector, let in the
baseline model, the shape of the weight matrix of the
LSTM gate is Wp×q. When the construction vector is used
to construct Wp×q, the corresponding calculation formula
of matrix compression ratio rc is shown in (8), where n
represents the dimension of the input vector.

rc =
p× q

p× n+ n× q
(8)

[9] uses a block cyclic matrix for pruning, the matrix
compression ratios of different shapes are the same when
the block size is unchanged. Because the construction vector
method is used in this paper, even if the construction vector
size is the same, the compression ratios corresponding to
matrices of different shapes are different. As can be seen from
the first column, the weight matrices of the input layer LSTM
and the intermediate layer LSTM gate are different. When the
compression ratio is close, the size of the construction vector
is quite different, and the range of change is also different.

For the model whose layer size is 256-256-256, it can
be seen from Table 2 that with the increase of the size of
the construction vector, the parameter compression ratio is
smaller, the computational complexity also increases sharply,
and the performance of the corresponding model is better.
It can be seen from columns 1 and 2 that the size of the
construction vector of the input layer has a greater impact

TABLE 1. Shape of weight parameters on each gate.

on degradation. From columns 4(1) and 4(3), it can be seen
that the size of the construction vector of the output layer
has less impact on degradation. It can be seen from the
columns 4(1) and 4(2) that the different construction vector
sizes of the three-layer LSTM layers will also affect the
performance. When the small-sized construction vector is
placed in the middle layer, the accuracy of the model is
lower than that in the output layer. Worse, the reason for this
phenomenon is: the small size of the construction vector of
the previous layer will cause the layer to fail to capture more
input and more information of the layer, and the error will
continue to accumulate when the output of the layer passes
through the next layer. Therefore, this paper suggests that the
size of the construction vector of the front layer should be set
larger (that is, the compression ratio should be set smaller),
and the latter layer can be set smaller.

As the size of the construction vector becomes larger, the
time and resource consumption of constructing the weight
matrix Wp×q is more obvious. As an option, when the
application is sensitive to time delay and hardware resources,
the construction vector size can be set to 2-5-5. An accuracy
loss of no more than 0.31% can be obtained. When the
accuracy is required, the recommended setting is 2-6-6, and
an accuracy loss of no more than 0.18% can be obtained.

For the models corresponding to 1024-1024, it can be
seen from columns 6, 7, and 8 that when the size of the
construction vector is small, the change in the size of the
construction vector makes the change in degradation more
obvious. When construction vector size is large, the changes
in degradation will no longer be noticeable. Also as an
option, when the application is sensitive to time delay and
hardware resources, the size of the construction vector can
be set to 3-20, which can obtain the accuracy loss of no
more than 0.3% and compression ratio of 1:25.6. If there is a
requirement for accuracy, the recommended setting is 3-27,
which can obtain an accuracy loss of no more than 0.15% and
a compression ratio of 1:18.9.

IV. HARDWARE ARCHITECTURE
In this section, we first present the challenges in hardware
design, then present the hardware system design in this work
and detail the data path in the hardware design [20], [21].

A. MOTIVATION
In the previous work, the design of the weight matrix based
on the construction vector method significantly reduces the
number of parameters, thereby greatly reducing the memory
footprint. But it also introduces some new challenges,

VOLUME 11, 2023 122363



T. Li, S. Gu: FPGA Hardware Implementation of Efficient LSTM Network

TABLE 2. Comparation of matrix compression ratio and PER between diffierent models.

FIGURE 8. Overall system architecture.

the general-purpose processing unit in the hardware architec-
ture cannot effectively meet these challenges [22].

First of all, in the design of hardware computing, the
number of multipliers consumed by the weight matrix
operation of constructing vectors increases significantly,
so the resource consumption and time consumption increase.
Here we design a step-by-step parallel processing method to
improve the sharing of multiplier resources rate, which will
be described in detail in the datapath section below. For the
preprocessing of the input data, we can do it in the software
part. That is, the delay caused by the construction of the
weight matrix is compensated to a certain extent by reducing
the dimensionality of the input speech signal with time series.

B. SYNTHESIS OVERVIEW
In order to increase the broad adaptability of the architecture
designed in this paper, we propose the synthesis framework
shown in the figure below to use matrix structuring based on
the construction vector method to assist the model training
phase of LSTM. The model can be mapped through HLS to
the FPGA device, the inference design on the FPGA device

is generated. As shown in Figure 8, the architecture designed
in this paper mainly includes two parts: LSTMmodel training
and FPGA device implementation.

1) MODEL TRAINING
The model training phase provides a well-trained inference
model and obtains the inference model mapped to the
FPGA device through HLS. The sigmoid function, tanh
function, weight matrix, vector addition, multiplication, and
dot multiplication operations in the above figure are all
defined as primitive operators, which are combined into a
multi-stage coarse-grained pipeline so that we can analyze
the performance. At times, the optimal performance is sought
in some resource-constrained situations [23], [24]. Because
the hardware computing resources on the FPGA are limited,
we will tailor the original model accordingly, otherwise it
cannot be deployed on hardware devices.

2) MODEL IMPLEMENTATION
The architecture implementation designed is shown on the
right side of Figure 8, which is mainly composed of two parts:

122364 VOLUME 11, 2023



T. Li, S. Gu: FPGA Hardware Implementation of Efficient LSTM Network

model implementation and comprehensive framework. For
the LSTM algorithm model studied in this work, the
sigmoid function and the hyperbolic tangent tanh function
are the activation functions, and the point multiplication
operation is distributed to the operation unit of the FPGA
device through HLS. For the weight matrix based on the
construction vector method mentioned above, computing
units are allocated and parallelized. It should be noted that,
according to the comparison, such an architecture design has
a relatively high versatility.

FIGURE 9. Overall system hardware architecture.

C. DATAPATH
The overall hardware architecture of LSTM is shown in
Figure 9. It is mainly composed of memory, calculation
function, cache and controller. There are 5 BRAMs:
BRAM1 stores the weight matrix Wx , BRAM2 stores the
weight matrix Wh, BRAM3 stores the variable Xt , BRAM4
stores ht−1, and BRAM5 stores the offset b. The weight
matrices Wx and Wh are taken out from BRAM1 and
BRAM2 respectively, and the input feature vectors Xt and
ht−1 are taken out from BRAM3 and BRAM4 respectively.
The output is obtained by matrix-vector multiplication and
accumulation. The SPMV unit performs P multiplication
operations concurrently in one cycle. Here, the selection
of the P value determines the utilization efficiency of
resources, and more importantly, determines the degree of
parallelization of the algorithm and the degree of delay.
The output of the SPMV unit is passed to the adder tree
component. This component performs addition operations to
determine the sum of the outputs of the P operations. This
component has a register in addition to the adder, and the
current output is added to the previous output. Then, the
output is passed to the add component, which adds the bias

to the result output by the adder tree component, and saves it
in our reserved ping-pong buffer. The function part consists
of activation function and dot product operation, obtains the
outputs h and c, and writes them into BRAM4 and buff for
subsequent operations.

The activation function used in the long short-term
memory neural network is a transcendental function. It is very
resource-intensive for resource utilization to be implemented
on FPGA. To balance resource utilization and algorithm
accuracy, we employ quantized piecewise linear functions to
estimate them. We use y = Kx + B type linear functions to
represent, and only need to store the slope K and intercept
B of each linear function. Therefore, the complex calculation
of the activation function will turn into a call involving only
the slope and intercept, and the use of one multiplication
and addition. Practical tests show that the accuracy reduction
caused by the piecewise linear function to estimate the
activation function is negligible.

The multiplication and addition units of (3) are deployed
in the function module, which are respectively realized by the
DSP unit. Since the computations of ft ⊙ ct−1 and it ⊙ gt
are performed at different times, the addition computation
is performed by an accumulator within the DSP unit. After
the accumulate register is reset, the accumulation result ct is
stored in it. Then, the new result ct is passed to buff for use
in subsequent operations.

V. RESULTS AND DISCUSSION
To evaluate the performance of the proposed scheme, we use
the same TIMIT dataset to evaluate the performance of LSTM
on FPGA hardware architecture, which is the same as that
used in previous E-RNN and C-LSTM work. The TIMIT
dataset is a speech dataset constructed for the acquisition
of acoustic speech knowledge (model training) and the
evaluation of automatic speech recognition systems (ASR)
(model testing) [25]. It is widely used in various speech
experiments. The TIMIT dataset consists of recordings of
630 speakers speaking 10 sentences from 8 major dialect
regions in the United States, for a total of 6300 utterances.

TABLE 3. On-chip resourse of hardware platform.

A. EXPERIMENTAL PLATFORM SETTINGS
We evaluate the design proposed in this work on the Xilinx
ZYNQ ZCU102 platform. Mounted on a Xilinx ZCU102
board, the ZYNQ UltraScale+ ZU9EG MPSoC integrates
a powerful processing system (PS) and programmable logic
(PL) in the same device. The on-chip resources of the Xilinx
ZYNQZCU102 hardware platform are shown in Table 3. The
CPU used in this experiment is Intel Core i9-7960X Intel,

VOLUME 11, 2023 122365



T. Li, S. Gu: FPGA Hardware Implementation of Efficient LSTM Network

TABLE 4. Comparation between block-circulant matrice-based RNN and construct vectors-based RNN.

and the graphics card is NVIDIA GeForce RTX 3080 Ti.
Xilinx Vivado 2018.3 is used as a synthesis backend to
synthesize advanced LSTM designs given in C/C++ to
FPGA devices. The hardware implementation of LSTM on
FPGA runs at 200MHz.

Since we do not have the ADM-PCIE-7V3 FPGA board
used in the previous work in this work, we use the
ZYNQ ZCU102, which does not affect the experiment if
the hardware resources are sufficient. Relevant resources
about ADM-PCIE-7V3 are also listed in Table 4, and its
experimental results are obtained from experiments in ESE
and E-RNN.

B. COMPARISON OF EXPERIMENTAL RESULTS
The latency achieved by this design framework can be mea-
sured by multiplying the total number of clock cycles (Ncc)
by the clock cycles T (5ns) from the Xilinx SDx tool.
As shown in the detailed comparison results in the Table 4,
we implemented the experiments in the inference phase of
the LSTM network on the selected FPGA platform. The bit
length was quantized to 12 bits, and the model accuracy
was not lost due to quantization. The baseline RNN in
the Table 4 is the basic RNN model, and the experimental
results of the E-RNN part are from its corresponding
paper.

In Table 4, we select the models corresponding to the three
construct vectors size with a layer size of 1024 × 1024 to
the corresponding models of the two block sizes in [9]. From
separately comparing their multiple performance metrics,
our model (Construct vectors size: 3-24) has a higher
compression ratio than E-RNN(Block size: 8). When the

compression ratio is about 1:15, our model (Construct vectors
size: 3-27) has higher accuracy than the model of E-RNN
(Block size: 16). The reason for this is that E-RNN uses the
block loop method to prune the weight matrix obtained by
training after the training is completed. After the block is
divided, the parameters of each block are all carried out by
the first row of the block. It is obtained by cyclic filling, so
the uncertainty of the influence of different fillingmethods on
degradation is relatively large. However, the weight matrix
we obtained is constructed by constructing a vector, then
training is performed. Each parameter of the matrix obtained
after construction is determined and can be traces to follow.
Therefore, every parameter of constructing the vector actually
participates in the training process, so our method has higher
accuracy at higher compression ratios, while occupying less
BRAM storage. Due to the use of constructing vectors,
the hardware device consumes more computing resources
when constructing the weight matrix. The parallel processing
method designed in this paper improves the sharing rate of
resources and keeps the resource consumption rate within an
acceptable range.

VI. CONCLUSION
In this paper, we propose the method of parameter generation
based on the construction vector method to prune and
compression model weights, and introduce the hardware
architecture for implementing the LSTM network model.
Besides, this paper studies the influence of the size of the
construction vector on the computational complexity, model
compression ratio and accuracy of the construction vector
in detail, so as to obtain the optimal size design interval.

122366 VOLUME 11, 2023



T. Li, S. Gu: FPGA Hardware Implementation of Efficient LSTM Network

In order to reduce the dimensionality of the input sequence,
we propose linear transformation methods and convolution
methods. Moreover, we use HLS to deploy the obtained
LSTM inference model into the Xilinx ZCU102 FPGA
device. Overall, compared with the block circulant matrix
method, the proposed designs generated by our framework
achieve up to 2 times gains for compression with same
accuracy degradation. Our accuracy decay is 45% of the
former at the same compression ratio. Finally, for applications
with different requirements for time delay, precision atten-
uation and other indicators, we also give the best choice of
construction vector size.

This paper lacks the exploration of industrial application,
and the research is limited to the laboratory level. There are
three directions for further improvement in future research:
1) reducing data precision; 2) design more fine-grained
accelerators; 3) exploring industrial applications.

REFERENCES
[1] J. Misra and I. Saha, ‘‘Artificial neural networks in hardware: A survey of

two decades of progress,’’Neurocomputing, vol. 74, nos. 1–3, pp. 239–255,
Dec. 2010.

[2] R. Sarikaya, G. E. Hinton, and A. Deoras, ‘‘Application of deep belief
networks for natural language understanding,’’ IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 22, no. 4, pp. 778–784, Apr. 2014.

[3] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho,
J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols, G. Ostrovski, A. Cain,
H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis,
‘‘Hybrid computing using a neural network with dynamic external
memory,’’ Nature, vol. 538, no. 7626, pp. 471–476, Oct. 2016.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
‘‘Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,’’ IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 82–97, Nov. 2012.

[5] N. Srivastava, E.Mansimov, and R. Salakhudinov, ‘‘Unsupervised learning
of video representations using LSTMs,’’ in Proc. Int. Conf. Mach. Learn.,
2015, pp. 843–852.

[6] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
‘‘Accelerating recurrent neural networks in analytics servers: Comparison
of FPGA, CPU, GPU, and ASIC,’’ in Proc. 26th Int. Conf. Field Program.
Log. Appl. (FPL), Aug. 2016, pp. 1–4.

[7] M. Wang, Z. Wang, J. Lu, J. Lin, and Z. Wang, ‘‘E-LSTM: An efficient
hardware architecture for long short-term memory,’’ IEEE J. Emerg. Sel.
Topics Circuits Syst., vol. 9, no. 2, pp. 280–291, Jun. 2019.

[8] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[9] Z. Li, C. Ding, S. Wang, W. Wen, Y. Zhuo, C. Liu, Q. Qiu, W. Xu,
X. Lin, X. Qian, and Y. Wang, ‘‘E-RNN: Design optimization for efficient
recurrent neural networks in FPGAs,’’ in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2019, pp. 69–80.

[10] M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, and W. Sung, ‘‘FPGA-based
low-power speech recognition with recurrent neural networks,’’ in Proc.
IEEE Int. Workshop Signal Process. Syst. (SiPS), Oct. 2016, pp. 230–235.

[11] A. X. M. Chang and E. Culurciello, ‘‘Hardware accelerators for recurrent
neural networks on FPGA,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2017, pp. 1–4.

[12] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, H. Yang, and W. J. Dally, ‘‘ESE: Efficient speech recognition
engine with sparse LSTM on FPGA,’’ in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, Feb. 2017, pp. 75–84.

[13] S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang,
‘‘C-LSTM: Enabling efficient LSTM using structured compression
techniques on FPGAs,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays, Feb. 2018, pp. 11–20.

[14] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and
connections for efficient neural network,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 28, 2015, pp. 1135–1143.

[15] K.Guo, L. Sui, J. Qiu, J. Yu, J.Wang, S. Yao, S. Han, Y.Wang, andH.Yang,
‘‘Angel-eye: A complete design flow for mapping CNN onto embedded
FPGA,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 1, pp. 35–47, Jan. 2018.

[16] K. Xu, D. Zhang, J. An, L. Liu, L. Liu, and D. Wang, ‘‘GenExp: Multi-
objective pruning for deep neural network based on genetic algorithm,’’
Neurocomputing, vol. 451, pp. 81–94, Sep. 2021.

[17] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[18] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ inProc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[19] R. Zhao, R. Yan, J. Wang, and K. Mao, ‘‘Learning to monitor machine
health with convolutional bi-directional LSTM networks,’’ Sensors,
vol. 17, no. 2, pp. 1–18, Jan. 2017.

[20] A. Wuraola and N. Patel, ‘‘Resource efficient activation functions for
neural network accelerators,’’ Neurocomputing, vol. 482, pp. 163–185,
Apr. 2022.

[21] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, ‘‘Action
recognition in video sequences using deep bi-directional LSTMwith CNN
features,’’ IEEE Access, vol. 6, pp. 1155–1166, 2018.

[22] H. Y. Kim and C. H. Won, ‘‘Forecasting the volatility of stock price index:
A hybrid model integrating LSTM with multiple GARCH-type models,’’
Expert Syst. Appl., vol. 103, pp. 25–37, Aug. 2018.

[23] Z. Hajduk, ‘‘Reconfigurable FPGA implementation of neural networks,’’
Neurocomputing, vol. 308, pp. 227–234, Sep. 2018.

[24] E. Bank-Tavakoli, S. A. Ghasemzadeh, M. Kamal, A. Afzali-Kusha,
and M. Pedram, ‘‘POLAR: A pipelined/overlapped FPGA-based LSTM
accelerator,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28,
no. 3, pp. 838–842, Mar. 2020.

[25] Z. Wang, J. Lin, and Z. Wang, ‘‘Accelerating recurrent neural networks: A
memory-efficient approach,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 25, no. 10, pp. 2763–2775, Oct. 2017.

[26] Y. Wu, S. Zhao, Z. Xing, Z. Wei, Y. Li, and Y. Li, ‘‘Detection of foreign
objects intrusion into transmission lines using diverse generation model,’’
IEEE Trans. Power Del., vol. 38, no. 5, pp. 3551–3560, Oct. 2023.

[27] Z. Xing, S. Zhao, W. Guo, F. Meng, X. Guo, and S. Wang, ‘‘Coal resources
under carbon peak: Segmentation of massive laser point clouds for coal
mining in underground dusty environments using integrated graph deep
learning model,’’ Energy, vol. 285, Dec. 2023, Art. no. 128771.

TENGFEI LI received the bachelor’s degree in
electrical engineering and automation and the
master’s degree in electrical engineering from the
Anhui University of Science and Technology, in
2018 and 2021, respectively. He is currently pur-
suing the Ph.D. degree with Shanghai University.
His research interests include neural networks,
deep compression models, and especially efficient
hardware implementations of deep learning.

SHENSHEN GU received the B.E. degree in
computer science from the Shanghai University
of Engineering Science, in 2002, the M.E. degree
in computer science from Shanghai University,
in 2005, and the Ph.D. degree in automation
and computer-aided engineering from The Chi-
nese University of Hong Kong, in 2009. Then,
he joined the School of Mechatronics Engineering
and Automation, Shanghai University, where he
is currently a Professor. His research interests

include optimization, optimal control, and neural networks.

VOLUME 11, 2023 122367


