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ABSTRACT Deep Reinforcement Learning (DRL) methods are increasingly being applied in Unmanned
Underwater Vehicles (UUV) providing adaptive control responses to environmental disturbances. However,
in physical platforms, these methods are hindered by their inherent data inefficiency and performance
degradation when subjected to unforeseen process variations. This is particularly notorious in UUV
manoeuvring tasks, where process observability is limited due to the complex dynamics of the
environment in which these vehicles operate. To overcome these limitations, this paper proposes a novel
Biologically-Inspired Experience Replay method (BIER), which considers two types of memory buffers:
one that uses incomplete (but recent) trajectories of state-action pairs, and another that emphasises positive
rewards. The BIER method’s ability to generalise was assessed by training neural network controllers for
tasks such as inverted pendulum stabilisation, hopping, walking, and simulating halfcheetah running from the
Gym-based Mujoco continuous control benchmark. BIER was then used with the Soft Actor-Critic (SAC)
method on UUV manoeuvring tasks to stabilise the vehicle at a given velocity and pose under unknown
environment dynamics. The proposed method was evaluated through simulated scenarios in a ROS-based
UUYV Simulator, progressively increasing in complexity. These scenarios varied in terms of target velocity
values and the intensity of current disturbances. The results showed that BIER outperformed standard
Experience Replay (ER) methods, achieving optimal performance twice as fast as the latter in the assumed
UUV domain.

INDEX TERMS Deep reinforcement learning, machine learning, adaptive control, underwater robotics.

I. INTRODUCTION control [3] provides an ideal framework to cope with this

Autopilots for unmanned systems are usually designed based
on the feedback provided by velocity and orientation sensors.
In the specific case of Unmanned Underwater Vehicles
(UUVs), the main objective of this design is to compensate
for waves and current-induced disturbing forces acting on
the vehicle’s body. Existing UUV autopilots are however
only able to compensate for low-frequency components of
sea-induced disturbances. It seems natural to assume that
UUYV performance could be improved by taking into account
the nature of disturbances in autopilot design. Adaptive
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issue. The objective is to automatically adjust the control
parameters when facing unknown or time-varying processes
such that a desired performance threshold is met. The
motivating hypothesis is that robust designs with fixed
parameters are too limited to handle complex regimes.

This work falls under the umbrella of learning-based adap-
tive control methods, in which machine learning algorithms
are used to compensate for the unknown (or unmodelled)
part of a process, while robust control of its known
part is maintained using traditional control methods. The
disturbances in the UUV environment (such as marine
currents) are considered the unknown part of the process,
whereas the maneuverability of the vehicle in the absence
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of disturbances constitutes its known part. In this context,
the present paper proposes a novel Bio-Inspired Experience
Replay method (BIER) that aims to incorporate concepts
from the biological Replay Mechanism [21] in the context
of Deep Reinforcement Learning (DRL) algorithms [33].
The BIER method extends the traditional Experience Replay
(ER) strategy by incorporating two new buffers representing
distinct memory management strategies:

(1) the sequential-partial memory uses incomplete sequences
of state-action pairs (trajectories) to train the machine
learning algorithm, while providing more emphasis on
recently learned policies in the ER process;

(ii) the optimistic memory emphasises the use of posi-
tive reinforcement, by increasing the probability of
transitions associated with high-reward regions in
ER training.

A. LEARNING-BASED ADAPTIVE CONTROL

Real-world systems are, in general, non-linear, and their
motion equations, parameters, and system measurements are
affected by uncertainty. A realistic scheme is to consider the
fact that the process model is partially available. In learning-
based adaptive controllers, model-free algorithms are used to
mitigate this lack of a complete description of the process
by finding (learning) an approximate representation of the
unavailable process model, or by fitting (funing) the best
control parameters for a target behaviour. Let ¢ represent
time, x the state variable, and u and p the input variables, the
dynamics of such systems can be represented as the sum of
their known (f1) and unknown (f>) parts:

X(1) = fi(t, x, ) + fao(t, x, p), ey
y(t) = h(t, x, u), @)

where classical model-based control methods can be used
to efficiently control fj, while f, can be approximated
by model-free learning algorithms. Current approaches for
learning-based control design estimate the unknown part of
the model by Artificial Neural Networks (ANN), whose
weights are obtained using some form of optimisation
procedure. Another prominent solution is to use DRL to
find the optimal control parameters by maximising the
agent’s future rewards. In DRL learning occurs through the
interaction between an agent and the environment, whereas
the value of states and actions (and consequently the policy)
are approximated by deep neural networks [35].

DRL can be defined as a Markov Decision Process (MDP)
expressed as a tuple (S, A, T, R), in which: § is the set of
possible states; A is the set of actions that can be executed
by the agent; T is the transition function that defines the
probability of reaching a successor state s’ € S from
the application of action a € A in a state s € §; R is the
reward function. In the domain of optimal control, the agent
is identified with the controller, environment is the controlled
system (or plant), and action is the control signal [35].
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In this context, the learning process can be summarised by
the following three steps:

o Step I: at an instant ¢, an action a € A is chosen by the

agent in a state s € S;

o Step 2: the execution of a by the agent to reach
the state 5,41 € S, in return the agent receives a
scalar value r;, the reward signal, which is a numerical
representation of the action outcomes with respect to a
reward function R(s). The goal of DRL is to maximise
this reward function;

o Step 3: the agent updates the value of executing action a
based on the reward received, according to the learned
policy.

Deep Policy Gradient (DPG) algorithms presented in [12]
are considered suitable for handling robotic tasks due to
the lower dimensionality of searching in the space of
policies compared to searching the state space, and the
algorithm’s proven capacity of dealing with non-observable
disturbances in real environments. These methods rely on
the Actor-Critic architecture [30], where the value and
policy functions are estimated simultaneously to improve
the agent’s performance. Progress in DPG methods has led
to the development of specialised algorithms, such as the
deep deterministic policy gradients (DDPG) [31], or the
twin-delayed DDPG (TD3) [9], that are efficient against
high-dimensional continuous spaces.

Two main approaches, classified as direct and indirect,
are dominating the field of learning-based adaptive con-
trol of UUVs using DPG algorithms. In the former, the
PI/PID control parameters are adjusted directly by a DPG
method [28], [39]; whereas in the latter, the adjusted control
parameters are the result of solving an optimisation problem
where the state and/or unknown parameters of the process
are first estimated and then used to compute the associated
optimal parameters [19]. In this work, a direct learning-
based adaptive controller was designed using a Maximum
Entropy DPG algorithm, the Soft Actor-Critic (SAC) method.
Contrary to the algorithms mentioned above, SAC builds a
stochastic policy and aims at maximising the expected return
as well as the entropy of the policy. This leads to better
training and evaluation performances compared to DDPG
and TD3. A complete description of the approach is provided
in Section III-B.

Off-policy mechanisms, such as the Experience Replay
(ER), have been developed to reduce the variance of the esti-
mates of the policy and values functions of DPG algorithms
using past experience. The performance of Deep Policy
Gradient methods is, however, sensitive to the distribution
shift problem, which is the difference between the training
and evaluation sets of states in the context of DRL. The
biologically-inspired ER strategy proposed in this work aims
to mitigate this issue.

Il. EXPERIENCE REPLAY (ER)
Given that an agent’s experience at time step 7 is defined as the
tuple e; = (s, as, 11, S¢+1), the general ER method consists of
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storing (at each time step) the experience e; in a memory unit
D = {ey, ..., e} of fixed size, the replay buffer [32]. Then,
ANNSs are trained by performing mini-batch gradient descent
of past experiences randomly pooled over the replay buffer
in order to approximate the optimal policy. The estimators
are hence trained on Independent and Identically Distributed
(IID) samples that are generated by various trajectories
and policies. This general formulation relies on various
parameters that impact the algorithm’s performance. One
such parameter is the replay buffer size, which determines
the amount of data available for the agent to learn from.
A larger buffer results in more IID data, leading to optimised
gradient iterations. If, however, the buffer becomes too large,
important state transitions may have less chance of being
selected during the policy update process, which can hinder
the learning process. On the other hand, if the replay buffer
is too small, the learned policy may be biased towards
recent transitions, resulting in poor performance. Another
parameter to consider is the age of a transition, which
measures the number of gradient steps taken by the agent
since the transition was generated. This age tells us how
different the oldest policy stored in the replay buffer is from
the current one. Additionally, the replay ratio, which is the
number of gradient updates per transition, can reflect the
balance between learning from existing data and collecting
new experiences. A higher replay ratio implies that the agent
is relying more on existing data for learning, while a lower
ratio indicates a higher reliance on new experiences.

A solution to the negative impact of the replay buffer size
on the learning performance consists of adding the latest
transition performed to the pooled mini-batch on the replay
buffer, as proposed in the Combined Experience Replay
(CER) method [40]. In this case, the most recent transition
is always sampled, which immediately affects the policy.
However, a drop in performance was observed when using
CER for certain replay buffer sizes. This behaviour was
related to the process itself rather than to the aforementioned
parameters [40]. In this paper, we propose a new ER
mechanism aiming to decouple the performance of the agent
from the process complexity, thus solving the performance
issues observed when applying the CER method.

Recent analysis presented in [21] revealed that increasing
replay capacity while keeping the age of the oldest policy
fixed can enhance performance by reducing overfitting.
As training progresses, spending more time in high-reward
regions leads to better estimation of returns and to an
improved performance.

Another finding was that increasing the buffer size with
a fixed replay ratio also improves the learning process, with
the replay ratio remaining constant when the buffer size is
increased due to the replay capacity and the age of the oldest
policy. Modulating these factors independently will change
the replay ratio. In the context of this study, the insights
from biological experience replay (ER) mechanisms [18] are
noteworthy. Biological systems exhibit temporally structured
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replay mechanisms, where temporally correlated experience
sequences are used for the combination of learning and
memory. This allows for more combinations of neurons, lead-
ing to a faster emergence of temporal waking experiences.
However, existing machine learning methods often ignore
this feature and only replay static and uncorrelated inputs.
Another important aspect of biological ER is that the replay
is modulated by reward, with only a few selected experiences
being used. It is intuitive to assume that not all experiences are
equally useful for learning a new task, as some may contain
more relevant information than others about the dynamics
of the task. However, the challenge lies in modelling and
measuring the quality of this information. Additionally,
replay in biological systems is treated differently for novel
versus non-novel inputs, with selective replay being weighted
by novelty. This aligns with the tendency of biological
systems to reduce the attention given to older experiences
and prioritise more recent ones that contain more relevant
information for the current situation.

In this paper, we propose a new ER mechanism that
includes these insights from biological systems, while
keeping in mind the constraints related to the regression
problem.

IIl. UUV MANOEUVRING CONTROL

The application domain of this work is the control of
UUV manoeuvring tasks, which can be summarised as the
stabilisation of an underwater vehicle at a fixed velocity and
orientation. Therefore, the state vector is defined as x =
[x yz¢ 0 ¥]'. The vehicle is fully actuated but subject to
external disturbances which consist of:

1) first-order current-induced forces (i.e. zero-mean oscil-
latory motions), and

2) second-order wave-induced forces (i.e. nonzero varying
components).

In the present case, these forces are assumed as non-
observable. The dynamics can therefore be framed as the
combination of its known f; and unknown f, parts.

Let the error between the present (X;) and the desired
(xref;) state variable be defined as e; = x,.. — X;. The task
of steering the UUV in order to maintain the error signals
within a specific threshold (), over a predefined amount of
time (guaranteeing the vehicle stabilization), can be achieved
when the following control objective is met:

Vielt—c,t], BieR*suchas |e(t)|>x, ()

where R¥ is the space of control inputs, ¢ is the current time
step and ¢ is the time period over which all the errors e; are
maintained at a value that is less than a small threshold .

This work used the RexROV2 platform, described in [13]
and illustrated in Figure 1, which is a cubic-shaped UUV
whose physical model instantiates the model-based part of
the controller (f1), as summarised below [7].
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FIGURE 1. The RexRov2 platform simulated in Gazebo.

A. DESIGN OF THE MODEL-BASED PART OF THE
CONTROLLER

The complete modelling of the RexRov2 platform is chal-
lenging [5], [38], but it can be summarised in the state-space
representation form [22] as:

n=Jemv,
MV 4+ C(w)v +DW)v + g(n) = 8 + Scable, “4)

where n and v are the position and velocity vectors
respectively, & is the control force vector, and S.qpe is the
vector describing the umbilical forces from the cable attached
to the ROV. RexROV?2 is propelled by 6 thrusters, while
the control vector § is obtained from the following equation
8 = T(x)Ku, where T(e) € R"™" is the thrust allocation
matrix; K is the thrust coefficient matrix; § is the control
force vector in n Degrees of freedom (DoF) and u € R”
is the actuator input vector. Using the thruster allocation
matrix, the vehicle can be directly controlled in the surge,
sway, heave, roll, pitch and yaw dimensions. The UUV
Simulator emulates several current and wave disturbances,
thruster dynamics, and body wrench disturbances. When
incorporated into simulations, the induced forces have a real
physical impact on the vehicle and on the dynamics of its
surrounding fluid. The sea current disturbance (which is the
main focus of this study) is modelled as a uniform force acting
over the simulated environment. This force is represented as
a linear velocity, v, (in m.s’l), a horizontal &, and a vertical
angle j. (measured in radians). The UUV is equipped with an
Inertial Measurement Unit (IMU) that returns the velocity and
orientation (in Euler angles). These variables are accessible
through ROS topics [15]. Our software architecture consists
of using the simulation meta-data to train the learning
algorithms considered in this work.

This work also assumes that the controlled UUV is fully
observable and controllable. This means that each of the
vehicle’s DoFs is measurable, and the desired vehicle states
(within the operating regimes) are supposed to be accessible.
In the present case, only the vehicle’s IMU feedback is
available, thus the characteristics of the current disturbance
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can neither be measured directly nor estimated. In this
context, a PID-type control law can be considered [2]. The
PID state-space is given as state feedback X = (A — BK)X,
whereas its control law is given by Eq. (5), where k,, k; and
k; € R, anti-windup is added on the integral term, and
a low-pass filter is applied on the derivative term to reduce
oscillations induced by process noise.

u = kye + kijo + kyx. 5)

To ensure the stability of the control law (in terms of
output boundness), the poles of Eq. (5) must be placed in
the complex left half-plane. For this, we only consider as
eigenvalue candidates the solutions of A3 + A%k; + Ak, +
k; = 0. In order to maintain the dimension of the gain space,
the pole-value candidates 7; € R™ can be the following terms:

rM=—=1/t1; 0 = —1/12; A3 = —1/13. (6)

The resulting gains of the control law (Eq. (5)) are obtained
by a resolution and transformation fully explained in [7].
From this, the bounds for the controller parameters can be
defined on the basis of control constraints that are easier
to derive in the pole domain. In the present case, with the
design represented in Eq. (6), for any t; > 0, the poles of
the feedback loop are placed on the x-axis of the complex
left half-plane. According to the control objective (Eq. (3)),
the desired maximum settling time of the closed-loop control
¢ = 10 seconds is defined as the maximum time after which
we want the system outputs to stay around y = 5% of
its desired values. We set 1,,;, = 0.025 because, for lower
values, the control inputs are too expensive in terms of control
efforts and too aggressive for our control objective. Thus, the
bounds of the poles are chosen as:

0.025 < 7; < 3.338. 7

The stability of the control loop must also be taken into
account when contemplating its implementation on actual
UUVs, especially due to their substantial operating expenses
and the elevated risk of vehicle loss in a real maritime envi-
ronment. Prior work [29] has shown that Lyapunov stability
analysis can be conducted for the proposed learning-based
adaptive control design in the context of UUVs.

When having access to limited information about the
environment disturbances, and under time-varying processes,
model-free adaptation can be exploited. To take into account
the uncertainties in pole selection, we propose to use DRL to
build a stochastic predictive model rr;, that maps a state vector
s; into the pole values. The objective of the learning agent is
to build a predictive model that directly maps the UUV state
to the pole values t; used to compute the PID control inputs
T; which regulate the vehicle velocities and orientations:

H S C REMS) _y A — R3xdim(w)
(8)

x = [s1" = [ il
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where the probability distribution of 7; is modelled by a
Normal distribution N (t;):

N(w) = Q)2 exp{—ziw(x — )% )

where A; € R and u; € RT are the mean and variance
of N(t;) estimated by the policy network. The outputs of
the policy network are the 18 pairs of (A, ) representing
the normal distributions A/(z;) used to sample the poles
for each control input u;. In practice, the action T;(¢) is
sampled from N(7;) after applying an invertible squashing
function (i.e. tanh) to N (t;) (in order to bound the Gaussian
distribution) and after using the change of variable to compute
the likelihoods of the bounded action distribution [25].

B. DESIGN OF THE DRL-BASED MODEL-FREE LEARNING
PROCEDURE

This work builds upon the Soft Actor-Critic (SAC) [16],
which is an efficient Deep Policy Gradient method known
to be more robust to uncertainties and suitable to partially
observable processes. SAC has three key components:

(1) an improved exploration and stability in performance
due to entropy maximisation [24];
(i) an Actor-Critic architecture [30] with separate Value
and Policy networks;
(iii) an off-policy formulation enabling the use of
past collected data within an Experience Replay
method [32].

Instead of optimising only the expected sum of rewards,
the objective function of SAC also maximises the entropy of
the behaviour policy (weighted by a constant) «:

T
T = > gy aypmy 11 ar) + aH (s, (10)

=1

where H(m,(.|s)) is the Shannon entropy of the policy 7,
which is represented by an ANN parameterised by wu.
By trying to maximise the entropy of the policy and the
reward at the same time, the search is driven by the best
actions while remaining as exploratory as possible, resulting
in improved robustness to uncertainty in terms of process
variation [1], [24].

For this purpose, the entropy term is explicitly incorporated
in the State-Value function V (s;) as:

V(s)) = E[O(s:, ar) + aH(mp (- Isi)],
= E[Q(s:, ar) — e log my(as1)], Y

In order to reduce the Actor-Critic value overestimation,
the state-value function is estimated by an ANN parame-
terised by W using the minimum of two different Q-Value
estimates represented by two ANNs parameterised by Y and
Y5 [23], [26]. TD-Learning [34] is used to iteratively build
an estimate of the state-value function (Eq. (12)) and the
Q-Value function (Eq. (13)). W is thus optimised to minimise
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the TD-error (Eq. (12)) of the state-value function:
v (W) = Vi (s) = (min [QF (51, @), 0F(sio )] (12)

~log nu(.ls,)).

Similarly, the parameters Y; of the estimator of
the i Q value function are optimised to minimise the
TD-error (Eq. 13):

Jo(X)) = Q! (si, ar) — (r(se an) +y
X Vz‘/L(Sz+1))~ (13)

where W’ represents the target value network and y = 0.99
is the discount factor. The parameters u of the policy
network are then optimised in order to minimise the expected
Kullback-Leibler divergence (Dgz) between the current
policy (rr,) and the exponential of the Q-Value function that
is normalised by a function Zv (cf. Eq. 14) [25].

Q*(st, ))]

I (4) = B D (e 150 |—5

(14)

where
0" (51, ap) = exp (min [T (51, @), OF(sroa]) . (15)

When using the distribution expressed in Eq. (15) as a
target for the policy shown in Eq. (14), the agent is forced
to explore actions according to their associated exponential
Q-Values. This implies a better exploration-exploitation
trade-off as negative Q-Values are transformed into small
but positive ones, forcing the policy to make progress along
sub-optimal strategies until the optimal policy is reached.

An unbiased estimator of the gradient in Eq. (14) [25] is:

Vydn (1) = Yy log mualsy) + (Ve log m(ayls)

=V min (O (51, an), OFs (51, a) Visoer, 51).
(16)

The derivative in Eq. (16) allows the use of Gradient
Descent to optimise the parameters u of the policy neural
network. Considering Eq. (11), the parameters p are opti-
mised for the desired maximum entropy objective (Eq. (10)).
The soft Q-update (Eq. (13)) guarantees that Q™ (s,, a;) >
Q7 (s, a;) and the repeated policy updates (16) ensure
convergence toward the optimal policy 7 * [25].

In order to avoid the instability of chasing a constantly
moving value function, it is common practice to have a
separate copy of the value network whose parameters are
tracking the parameter of the state value function using an
exponential moving average A. In this work, a target state-
value network Vy(s) was defined with A = 0.005, which
was then used to compute the Q-Value TD error (Eq. (13)).

The SAC algorithm builds a stochastic policy in which
the action distributions are modelled by Gaussian distribu-
tions [25]. There are several advantages of considering a
stochastic policy: it prevents early convergence of the policy
variance, it encourages exploration in the value function by
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increasing the value of regions of state space that lead to high-
entropy policy, and the resulting policy tends to perform more
consistently compared to its deterministic counterpart, with
improved robustness to uncertainties.

The present implementation of SAC has five fully
connected ANNs: two Q-value networks (with shared
architectures), one value and one target-value network (with
shared architectures), and one policy network. We used
analogous ANN architectures and hyperparameters to those
proposed in [25], where each network was composed of
two hidden layers of 256 hidden units each. Therefore,
no exhaustive hyperparameter tuning was required. The
PyTorch framework and CUDA toolkit were used to imple-
ment this architecture along with an Nvidia RTX 2070 GPU
card for gradient and simulation processing. The ANNs
were optimised using the standard Adam method and
regularisation techniques were used to prevent overfitting.
It has been demonstrated that regularisation does matter
for Policy Gradient methods [20]. Following these results,
we added regularisation to the critic NN only by means of
a weight degradation of 0.001. Given that this work uses
the maximum entropy framework, no further regularisation
was applied to the actor NN. The learning rate for all
networks was set to [, = 3e~%. The Leaky ReLU activation
function was applied to all hidden layers and gradient
descent was performed using a mini-batch of size 256. Layer
normalisation [4] was added before the activation function
of all hidden layers. The weights and biases were initialised
from the Gaussian distribution A/ (0, /2/f), where f is the
input of the layer.

IV. A BIO-INSPIRED EXPERIENCE REPLAY (BIER)

The Biologically-Inspired Experience Replay (BIER)
method, proposed in this work, assumes two distinct memory
units: the sequential-partial memory (B1), which stores
incomplete temporal sequences, and the optimistic memory
(B2), that emphasises the best transitions as measured by
the reward with respect to the current policy. As illustrated
in Figure 2, BIER takes advantage of the resilience of the
on-policy sampling while maintaining the efficiency of the
data from the off-policy formulation.

Buffer B1 has a similar function to the memory buffer
used in the original definition of ER in reinforcement
learning. In a robotic domain, the optimal behaviour is
highly temporally correlated, since early action sequences
have a more pronounced effect on future gains. In addition,
a vehicle’s behaviour is bounded by the natural constraints
of its actuators. Thus, the shape and number of possible
transitions are also limited to the same extent. From these
observations, it is possible to hypothesise that learning a
limited set of temporally correlated sequences can lead to
optimal behaviour efficiently. Therefore, recent, successive
temporal transitions are sampled with the highest priority
from this buffer. In the present work, the maximum size of
B1 was set to 1, 000, 000 items representing old and new
transitions.

123510

The replay procedure seems appropriate for a biological
system, but for an ANN the data has to be L.I.D. to guarantee
generalisation. The temporal sequence of interactions con-
sists of highly correlated samples; thus, using such samples
for the gradient-based optimisation of ANN may compromise
the learning process. In order to reduce the correlation of
these transitions, we propose not to consider the complete
trajectory but only one out of every two transitions. This
causes two main effects on the learning procedure: (i) it adds
a regularisation effect in the ANN fitting process; and (ii) it
reduces the age of the oldest policy contained in this buffer,
improving the learning performance (cf. [21]).

The optimistic memory represented by the buffer B2
is inspired by the observation that positive reinforcement
is more efficient in biological systems than the usual
combination of positive and negative rewards [36]. It has also
been shown that trying to estimate values of high-quality
regions (as measured by the rewards) results in better
performance [21]. However, in the traditional ER, as the
replay buffer size increases given the agent’s experience,
the probability of selecting positive transitions decreases,
slowing down performance improvement [40]. The goal of
B2 is to be optimistic by increasing the probability of using
past transitions associated with high-quality regions in the
solution space.

Buffer B2 stores the upper outliers of the reward distribu-
tion that are considered to be the best transitions. Outliers
can be defined according to various metrics, depending on
the nature of the variable distribution. The challenge here
is that the shape of this distribution cannot be predicted
a priori. For instance, with the reward function defined in this
work, the closer the vehicle gets to the set point, the higher
the maximum value of possible reward becomes (hence, the
optimal policy should lead to a reward distribution of Pearson
shape). In practice, however, the closer the vehicle is to
the set point, the more difficult it is to physically reduce
the errors (which is more akin to a Gaussian distribution).
Depending on the system, the operating conditions, and the
reward function (among other factors), the reward distribution
can assume various shapes, potentially making the predefined
metric not robust to different distribution assumptions. Thus,
this work considers a transition as an outlier of interest that is
stored in B2 if its associated reward r(s;) is greater than the
expected future rewards: r(s;) > E[r(s;)], where the expected
value E[r(s;)] is computed over the previous 50,000 rewards
generated that are stored as an additional variable M. The
size of M was chosen to compute the expected reward over
a moving window of 100 episodes to give more importance
to new inputs, which is similar to the ER mechanism in
biological systems [18].

This choice of expected value as a metric is related to the
subtracted baseline in Eq. (16) that is the value function,
resulting in the advantage function: A(s,a) = Q(s,a) —
V(s). This function represents the benefits of changing the
current policy as a positive value of A(s, @) indicating that
the evaluated pair of state-action is associated to a Q-value
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FIGURE 2. lllustration of the BIER procedure. This procedure takes
advantage of the resilience of the on-policy sampling while keeping the
data efficiency of the off-policy formulation.

higher than the expected one. Thus, positive values of A(s, a)
are associated with an optimistic memory, that should lead to
a faster discovery of successful trajectories.

The maximum size of B2 was set to 10, 000, which is much
smaller than B1 since, as the agent’s performance improves
over the course of training, what was considered a positive
transition may not be the case in a later situation. This reduced
buffer size ensures that the agent focuses on the current best
transitions. Contrary to B1, uncorrelated items are sampled
from B2 as single transitions that are iteratively stored in this
buffer. Finally, a mini-batch is constructed of n samples from
each memory unit.

The objective of the learning agent is to use SAC to build a
predictive model that directly maps the UUV state to the pole
values for a PID controller to regulate vehicle velocities and
orientations. Therefore, in the following sections, we refer to
the test results related to BIER as PID+BIER, and to those
related to CER as PID+CER. The baseline results, referred
to as PID, are related to the tests conducted with the off-the-
shelf PID controller provided by the UUV simulator.

V. TRAINING

The training iteration limit was set to 3000 episodes. This
value was obtained based on the observation that there was
no further notable improvement in set point regulation after
approximately 2500 episodes. The maximum length of a
training episode was set at 500 time steps (equivalent to
25 seconds). In this work, the following characteristics define
a training episode: (i) the UUV starts at a depth of 40 meters
with a random orientation (y, 6, ¢) € [_4—”; %] and with
zero velocity; (ii) the value of the sea current variables were
randomly chosen such that v, € [0.1,0.5] and [A, j.] €
[ 71 and a random vector of set points was generated
Xref = [vx,0,0,0,0,017 with vy € [0.1,0.5] (m.s™1); (iii)
the off-policy 7, (als) behaviour was used; (iv) an episode
ends when the control objective (3) is met or when the
episodic step number exceeds 500.

A. REWARD SHAPING
The control objective considered here can be defined as:

Tsuccess = 1000 if V1t € [t—100,1], |e;(t)| < . a7
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In other words, the goal state (or control objective) receives a
reward of 1000 when the error reading is less than a small
constant x for 100 consecutive steps (the value 100 was
chosen in accordance with the control requirements defined
in Section III-A and the simulation sampling rate). The value
of rguccess Was chosen in order to make sure that, for all
trajectory lengths, the maximum sum of returns is obtained
only by stabilising the vehicle. Otherwise, the reward r(s;) is
generated.

Let us define the Euclidean norm of the error vector
i=dim(u)

as epn(t) = /2 ) el.z(t), for a time point ¢, and its
derivative (denoted as d,4,(t)) as computed over the previous
two frames. The reward r(s;) can be defined as:

r(s1) = Ci X exp [—(eLz(l) x Cg)z] . (18)

The performance of SAC is highly dependent on the
choice of the reward scale (or amplitude) which, in the
case of the reward function in Eq. (18), is regulated by
the constant C;. The reward scale can be interpreted as
the inverse of the temperature parameter o in Eq. (10)
which controls the stochasticity of the resulting policy. Here,
we empirically chose C;1 = 40, obtained from the best
performances, in accordance to [17]. The reward signal,
Eq. (18), is equal to its maximum possible value per step
(that is C1) only when all current errors are equal to zero.
As the UUV moves slowly, successive states display error
signals ¢;(#) of minor and similar amplitude. The factor
C> = 10 made it easier for the critic to differentiate the
state-value of successive states without altering the reward
scale as limy_,0C x e * = (. The reward function
(Eq. (18)) encourages the agent to reduce the errors as much
and as fast as possible. The vehicle stabilisation is further
promoted by generating the maximum possible reward per
step.

B. EXPLORATION STRATEGY

For improved exploration, an adaptive parametric noise was
used which consists of adding random Gaussian noise to the
parameters of the policy network during each episode k+1 as
a proportion () of the Gaussian noise applied in the previous
episode (k), as shown in Eq. 19 [14].

aoy, ifd(m, ) <,

ok+1 =7 1 ) (19)
—oy, otherwise.
o

The noise standard deviation o was adapted according to
a distance measure d(-) between the non-perturbed policy
m and perturbed policy m [14], given by: d(w,7) =

\/% Zivzl Es[(7(s); — (s);)?]. Setting § = o results in an
action space noise that is analogous to a regular Gaussian
action space noise [14]. In this work, the values used in
this process were the initial ¢ = 0.60, § = 0.10, and
o = 1.01.
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C. PROCESS OBSERVABILITY

At each time step, the agent obtains an observation vector o;
representing the process dynamics defined as:

or=1[a;—1; O; V; Q; up; er5 ern; drares 8y1, (20)

where a;,_; € R!3 is the last action estimated (i.e. the
pole value); ® = [¢; 6; ] are the Euler orientation of the
vehicle (roll, pitch and yaw respectively); V. = [vy; vy; ;]
and Q = [wy; wg; wy ] are the vehicle’s linear and angular
velocities; u; € RO are the most recent control inputs applied;
e € RS are the error values at each set point; ez and dy g,
are as described in Section V-A; and §, € [0, 1] is a variable
which keeps track of the number of successive steps, where all
the errors are within the threshold (i.e. if 6, = 1, the control
objective is achieved). The dimension of the observation
vector o; is therefore equal to 42. It is worth noting that
the current disturbance characteristics are not included in
the observation vector in Eq. (20). The state vector s; was
defined according to the current and past observation vectors
along with their two-by-two differences. This results in
a 126-dimensional state defined as
s; = 015 00-1; 011 — 04].

space

Normalised return

=== P|D+CER
== P|D+BIER
PID

Setpoint rmse

Normalised std

|
|
b —t - T -
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FIGURE 3. Training curves for the ER methods BIER and CER.

D. TRAINING PERFORMANCE

Figure 3 shows the normalised mean return (top), the root
mean square error (RMSE) on the set point (middle), and
the standard deviation of the normalised mean, normalised
standard deviation (STD) (bottom), per episode of the train-
ing curves of the PID+BIER and the PID+CER methods.
The yellow dashed lines represent the performance of the
baseline PID controller. It should be noted that these three
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methods have the same fundamental structure (based on the
PID controller), differing on the pole values used to compute
the PID control inputs.

Figure 3 (top) shows that both PID+CER and PID+BIER
methods were able to converge toward the maximum value
of the reward, with a set point RMSE that was lower than
the baseline PID controller (Figure 3 (middle)). However,
PID+BIER presented a smoother (and lower) normalised
STD than PID+CER, according to the curves in the bottom
graph of Figure 3. PID4-CER, on the other hand, presented
a higher STD in general, showing spikes that represent an
agent’s performance that was much lower than the baseline
PID controller. It is worth pointing out also that the PID
controller achieved the lowest STD, owing to the model
information incorporated in the sequential model-based
algorithm configuration method [27].

The vertical dashed lines in Figure 3 show the episode
number in which PID+BIER (green dashed line) and
PID+CER (blue dashed line) outperformed the PID con-
troller. We can see that PID+BIER converged to the optimal
values in 500 episodes, whereas PID4-CER needed around
1200 episodes to achieve this. Therefore, DRL with BIER
learned twice as fast as the original CER method, thus
providing improved data efficiency and learning stability for
training a physical agent.

VI. ABLATION STUDY

The results presented in Section V-D above suggest that the
BIER method outperforms CER in the context of the adaptive
control of a UUV. The present section provides evidence of
the generalisation abilities of the method proposed in this
work with respect to other continuous control environments.
For this purpose, an ablation study was conducted to show
the benefits of BIER during training and to support the
choice of its components. This study was conducted on
multiple continuous control benchmark environments [10]
based on the Mujoco physics engine [37] by OpenAl
Gym [6]. The tasks represented in this benchmark do
not include an underwater environment but still represent
complex control tasks, with continuous domain variables,
where the agents face multiple challenges of real-world
reinforcement learning [11]. We argue that these tasks are
general enough to represent analogous processes involved
in UUV control, such as sensor noise, sensor occlusion,
or partial observability. More specifically, the considered
Mujoco environments incorporate [10]:

o Limited sensors: the state vectors are restricted to only
provide positional information, including joint angles,
excluding joint velocities. This forces the agents to learn
to infer velocity information in order to recover the full
state information. This is also the case for UUVs which
have limited sensor abilities due to restricted space for
onboard sensors and autonomy concerns. For instance,
we often do not have measurement ability of the process
disturbance, namely sea current for UUVs, which is
therefore excluded from the vehicle state.
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o Noisy observation and delayed actions: sensor noise
is simulated by the addition of Gaussian noise to the
states. A time delay is also introduced between taking
an action and the action being effective, which accounts
for physical latency. As a result, the agents must learn
to integrate both past states and past actions to infer the
current state. UUV processes are particularly exposed
to comparable delays as they are on the slow spectrum
compared to other robotic domains (such as aerial or
wheeled vehicles). In the UUV context, the effects of
actions may take a notable amount of time to be fully
manifested, making it hard for a DRL-based policy
to learn the correlation between an action and the
associated reward.

o System identification: the fundamental physical model
parameters are varied across different episodes. There-
fore, the agents have to learn to generalise throughout
different models, as well as to infer the model parameters
from the agents’ states and actions history. UUVs are
similarly subject to such process variations including
variations in velocities, depth, or water temperature and
salinity. These changes impact the process dynamics and
the UUV controller is therefore required to adjust its
response to multiple operating conditions.

For these reasons, we argue that the use of this benchmark
provides an appropriate illustration, not only to the proposed
algorithm, but also to the algorithm characteristics in solving
the task of UUV control. This work used the neural
network architecture and hyperparameters from the original
SAC paper [25], which was tested with the Experience
Replay methods investigated in this paper, CER and BIER.
Therefore, the only difference between the CER and BIER
agents is how the past experience of the agent is used for
the optimisation of the neural networks. A Google Colab
notebook guaranteeing the reproducibility of this study is
accessible with this link.

The following five OpenAl Gym environments were
considered in this study:

« Inverted pendulum: This is the CartPole environment,

a scenario in which a cart is capable of linear movement
and, affixed to one end of it, is a pole, while the other
end remains unfettered. The cart has the capacity to be
displaced to the left or right, and the primary aim is to
maintain the equilibrium of the pole atop the cart through
the application of forces. The ultimate objective is to
achieve stability for the inverted pendulum, allowing
it to remain in an upright position (within specified
angular constraints) for as extended duration as possible.
A reward of +1 is generated for every time step during
which the pole remains in an upright orientation.

o Double inverted pendulum: in this environment a
linearly movable cart bears a fixed pole and a secondary
pole attached to the unoccupied end of the first pole.
The cart moves laterally, and the primary objective is
to achieve equilibrium for the second pole atop the
first. This equilibrium is sought through the continuous
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application of forces to the cart. The reward structure
within this environment comprises three components:
Firstly, a reward of +10 is granted for each time step
during which the second pole remains in an upright
position. Secondly, a reward is assigned based on the
extent to which the tip of the second pendulum is
displaced from its equilibrium point. Finally, a negative
reward mechanism is used to penalise the agent for
excessively rapid movements.

o Hopper: this environment has a two-dimensional rep-
resentation of a one-legged entity with four anatomical
segments. The uppermost component is the torso,
situated centrally; the middle segment is the thigh;
beneath that is the leg; and the structure ends in a solitary
foot, serving as the base for the entire body. The primary
objective involves executing forward hops through the
application of torques upon the trio of joints that connect
the aforementioned body sections. The reward structure
encompasses three key elements: Firstly, a fixed reward
is generated for each time step in which the hopper
maintains a state of “health”. Additionally, a reward is
granted for successful forward hopping, its magnitude
determined by the extent and direction of the hopper’s
movement. Finally, a cost is imposed to penalise the
hopper for undertaking excessively substantial actions.

o Walker: in this domain a two-dimensional two-legged
figure (the walker) has to learn how to move. The figure
consists of four main body parts, a single torso at the top,
two thighs in the middle below the torso, two legs in the
bottom below the thighs, and two feet attached to the
legs on which the entire body rests. The goal is to make
coordinate both sets of feet, legs, and thighs to move
in the forward (right) direction by applying torques on
the six hinges connecting the six body parts. The reward
consists of three parts: a fixed reward generated at every
time step that the walker is alive, a reward for moving
forward which is measured as the distance and direction
the figure is moving to, and a cost for penalising the
hopper if it takes actions that are too large.

« HalfCheetah: the HalfCheetah is a 2-dimensional agent
consisting of 9 links and 8 joints connecting them
(including two paws). The goal is to apply torque on the
joints to make the agent run forward (right) as fast as
possible. A positive reward is generated in accordance
with the distance moved forward, while a negative
reward is generated for any backward movement.

Figures 4 to 8 show the learning curves for the afore-
mentioned environments with the mean reward represented
in bold, which is computed at every 100th episode, over
a moving window of 100 episodes. The shaded regions
represent the standard deviation.

In Figures 4-5 we can see that for the simple and double
inverted pendulum environments there was no difference in
performance between the CER and BIER methods. In these
environments, the reward is always equal or close to a
constant value and, therefore, every transition is stored in
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FIGURE 4. Training performance for the inverted pendulum V2
environment. The state dimension is 4 and the action dimension is 1.
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FIGURE 5. Training performance for the double-Inverted pendulum V2
environment. The state dimension is 11 and the action dimension is 1.
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FIGURE 6. Training performance for the hopper V2 environment. The state
dimension is 11 and the action dimension is 3.

B2 due to the proposed metric (Section IV). In this context,
we would expect the effect of the optimistic buffer B2
(Section IV) to be reduced, or negatively affect the learning
process as B2 replays the best transitions (as measured by
their associated rewards). In contrast, we can see that the
BIER agent was able to solve the environment, as well as its
competing method.

In domains of higher complexity with respect to the
dimension of the action space, the benefits of the BIER
method are more prominent, as can be seen at Figures 6-8.
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FIGURE 7. Training performance for the walker V2 environment. The state
dimension is 17 and the action dimension is 6.

I CER
. BIER

0.2 0.4 0.6
Million steps

FIGURE 8. Training performance for the halfcheetah V2 environment. The
state dimension is 17 and the action dimension is 6.

In these cases, the mean reward related to the BIER method
has a steeper increase compared to that observed in the CER
agent. In Figure 6 we can see that the CER agent seems to
have converged to a local minima while the performance of
the BIER is 3 times higher. This phenomenon is also evident
in Figure 7, which shows a performance level that is twice
as superior when employing the BIER agent compared to
using the CER method. This distinction becomes even more
pronounced in Figure 8, where, at the end of the training, the
performance of the BIER agent is approximately four times
greater. Figure 9 shows the performance of CER, BIER, and
each of the components of the latter (i.e. B1 or B2) in the
Hopper environment, where it is possible to observe that the
combination of B1 and B2 (composing the BIER method)
presents the best performance. It is worth noting also that
using B2 alone presented the worst performance overall, this
is due to the fact that In domains of higher complexity with
respect to the dimension of the action space, the benefits
of the BIER method are more prominent, as can be seen
at Figures 6-8. In these cases, the mean reward related to
the BIER method has a steeper increase compared to that
observed in the CER agent. In Figure 6 we can see that
the CER agent seems to have converged to a local minima
while the performance of the BIER is 3 times higher. This
phenomenon is also evident in Figure 7, which shows a
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performance level that is twice as superior when employing
the BIER agent compared to using the CER method. This
distinction becomes even more pronounced in Figure 8§,
where, at the end of the training, the performance of the BIER
agent is approximately four times greater. Figure 9 shows the
performance of CER, BIER, and each of the components of
the latter (i.e. B1 or B2) in the Hopper environment, where
it is possible to observe that the combination of B1 and B2
(composing the BIER method) presents the best performance.
It is worth noting also that using B2 alone presented the
worst performance overall, this is due to the fact that In
domains of higher complexity with respect to the dimension
of the action space, the benefits of the BIER method are
more prominent, as can be seen at Figures 6-8. In these
cases, the mean reward related to the BIER method has a
steeper increase compared to that observed in the CER agent.
In Figure 6 we can see that the CER agent seems to have
converged to a local minima while the performance of the
BIER is 3 times higher. This phenomenon is also evident
in Figure 7, which shows a performance level that is twice
as superior when employing the BIER agent compared to
using the CER method. This distinction becomes even more
pronounced in Figure 8, where, at the end of the training,
the performance of the BIER agent is approximately four
times greater. Figure 9 shows the performance of CER, BIER,
and each of the components of the latter (i.e. B1 or B2)
in the Hopper environment, where it is possible to observe
that the combination of B1 and B2 (composing the BIER
method) presents the best performance. It is worth noting
also that using B2 alone presented the worst performance
overall, this is due to the fact that B2 overfits on the best
actions (which also explains why it is the best at the beginning
of the training). However, these best actions are not enough
to solve the more difficult trajectories that the agent faces,
as its behaviour becomes more complex with further training.
In other words, with B2 alone the agent only sees the best
actions at each instance, but it is not aware whether or not
this leads to future gains in general. B1 works by providing a
compromise to this.

In complex environments, with a large action space,
the likelihood of executing a favourable action decreases,
which in turn increases the time required for it to influence
the policy. In contrast, the combination of the B1 and
B2 buffers allows the best transitions to affect the policy
with minimum delay, while reducing the negative impact
of large and small replay buffers. Thus, the benefits of the
BIER method are directly proportional with the environment
complexity, since the probability of a transition ¢ to be
replayed within k steps (k < m) is monotonically decreasing
with respect to the replay buffer size m [40]. BIER can be
applied to any off-policy DRL algorithm to help explore the
Q-Value space more efficiently, leading to higher learning
performance.

In conclusion, our findings demonstrate that the utilisation
of the BIER method consistently enhances performance. This
approach is characterised by its straightforward implementa-
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FIGURE 9. Training performance for the hopper V2 environment. The state
dimension is 11 and the action dimension is 3.

tion and scalability, making it a valuable avenue to explore a
wide range of problems.

The next section assesses the impact of distribution shift in
PID+CER and PID+BIER concerning set point and velocity
control of a simulated UUV on distinct scenarios.

VII. TESTS AND RESULTS

To evaluate the effect of distribution shift in PID4+CER and
PID+BIER with respect to set point and velocity control of a
simulated UUYV, the following scenarios were considered.

o Scenario 1: the set point range was the same as during
training, but no current disturbance was applied.

« Scenario 2: the process was the same as during training
but with different setpoint and current values.

o Scenario 3: the set point was increased to the range of
[0.5,1.0], that was not considered during training. The
current remained as defined in Scenario 2.

« Scenario 4: the set point was the same as during training
but the speed of the current v, was increased to [0.5,1.0]
(m.s~) and (he, jo) € [—m, U1, 7).

« Scenario 5: both set point and current speed were set to
the new values defined in Scenarios 3 and 4.

o Scenario 6: the maximum value of the set point and
the current velocity were increased to the values used in
Scenarios 3 and 4. In addition, at a random time between
the 100th and 400th time step of the episode, the current
characteristics (velocity and orientation) changed to
values chosen at random.

Table 1 shows the root-mean-square error (RMSE) per
step and the normalised mean return for each scenario,
as computed over 500 distinct episodes. These results are
also depicted in Figure 10, where the RMSE is represented
as dashed curves, whereas the normalised mean return is
represented as bars. The line ‘“‘Baseline” denotes the agent’s
performance at the end of the training.

These results show that the PID+CER and PID+4BIER
agents were able to stabilise the vehicle over the first
3 scenarios with a performance akin to that shown during
training. In these cases, the RMSE values had a slight
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TABLE 1. Results for the PID+CER method (left) and the PID+BIER method (right).

Scenario Mean RMSE per step Normalised mean return Mean RMSE per step Normalised mean return
Baseline 0.036 0.910 £ 0.046 0.033 0.922 £ 0.025
1 0.037 0.907 £ 0.031 0.037 0.935 4 0.026
2 0.035 0.911 £ 0.046 0.032 0.924 + 0.024
3 0.045 0.877 £ 0.045 0.042 0.912 £ 0.027
4 0.148 0.408 £ 0.296 0.121 0.507 £ 0.253
5 0.166 0.356 £ 0.285 0.151 0.429 + 0.257
6 0.180 0.324 £ 0.222 0.164 0.397 + 0.217
o225 respect to an increase in the complexity of the domain,
[ ] ] || [ | = | 0200 as observed by the tendency to convergence on the RMSE for
“ W NN N !, PID+BIER and PID+CER, whereas the fixed PID controller
c II II II " [° showed an exponential degradation from Scenario 5 to
2 - & . . .. .
¢ os AN HE II II e 1 ,f‘ ot g Scenario 6. This suggests that the policies obtained by
o — a . . . .
2 o g,EE'; I’ 73 Ho125 machine learning methods had greater generalisation and,
L. Offf II II I ,’J - | o100 2 therefore, more resilience to unforeseen process variations.
£ II II II Il'f ll |I I 2 In general, the fixed PID controller has no margin
Z /[ | +0.075 K R .
II II II II II II for future improvements (as its performance is totally
0219 | 0.050 -
. _H,g II II II dependent on a set of fixed parameters) whereas both
| O | [ O | [ [ 0.025 PID+BIER and PID+CER should present increasing per-
0.0 -

Baseline 1 2 3 4 5 6

Scenario number

FIGURE 10. Illustration of the evaluation results presented in Table 1.

degradation when compared to the training values but the
agent’s performance remained satisfactory.

A steep loss in performance was, however, observed with
respect to the sea current disturbance applied in Scenarios 4,
5, and 6, where there were an increase in the RMSE and
a degradation in the mean return obtained by the agent.
This sensitivity to disturbance is further depicted by the
sharp changes in values observed between Scenarios 3 and 4
when compared with the more modest difference between
Scenarios 5 and 6. We believe that the cause is the current
characteristics not being explicitly included in the state vec-
tor. The PID+BIER agent outperformed the other methods
tested in Scenarios 1, 2, 3, and 6, showing great resilience
to set point change, and to a combination of changes
in set point and disturbances (represented in Scenario 6).
However, PID+BIER presented a better performance only
against PID4+CER in Scenarios 4 and 5, where the simple
PID controller obtained the highest returns with the lowest
RMSE compared to the other two methods. This was due
to the fact that the baseline PID controller consisted in
optimal, but nonadaptive, model-based poles, which were
tuned to ensure satisfying performance over a wide range
of operating conditions but not against process variations.
In Scenarios 4 there was no process variation, but more
aggressive operating conditions, giving the model-based con-
troller an advantage whereas the learning-based models had
experienced only process variation analogous to Scenario 2.
Thus, it was expected that the machine learning component
of these models would present some generalisation to unseen
scenarios (such as Scenarios 1, 3, and 6), but not to
every domain variation. Nevertheless, the two learning-based
methods showed a smooth degradation in performance with
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formances with respect to the amount and variety of
training data.

VIIl. CONCLUDING REMARKS
The development of safe and efficient autonomous vehicles
is a key element in various applications of economic and
societal importance. However, the safe and effective control
of these vehicles is hindered by the inability of classic control
systems to adapt to changing environmental conditions. This
issue is more pronounced in autonomous underwater robots,
that have to operate under extreme conditions (such as low
temperature, high pressure, and turbulent environments).
The present paper investigated the integration of classic
control with state-of-the-art machine learning algorithms,
where the optimal manoeuvring of an unmanned underwater
vehicle was considered as a process model with two com-
ponents: one modelled with classical control, representing
the known part of the process; and another learned by
the SAC algorithm, a state-of-the-art DRL algorithm that
was used to approximate the unknown part of the process
(summarising the disturbances in the vehicle’s environment).
To this end, this work introduced a novel Biologically
Inspired Experience Replay (BIER) method for SAC, which
was built using ideas from earlier findings on biological
replay mechanisms related to the existence of two types of
memories in experience replay: one that uses incomplete
(but recent) trajectories of state-action pairs, and another
that emphasises positive rewards. The combination of classic
control with the proposed BIER strategy in SAC resulted in
a novel learning-based adaptive control method, which is the
main contribution of this paper. Results on manoeuvring tasks
in a simulated environment suggested that BIER had a faster
adaptability rate (represented by its steeper learning curve)
when applied in complex domains. BIER also presented an
improved stability when compared with both the baseline PID
controller and the original SAC algorithm.
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In terms of computational needs, contrary to supervised or
unsupervised learning algorithms, DRL takes advantage of
smaller NN architectures (i.e. 2 layers-depth neural networks)
which can be run on standard onboard processing units
such as a Raspberry Pi 3. We used the exact same NN
architecture in previous work for a wheeled robot [8] and
others have used a slightly smaller NN architecture on a
real UUV [28]. These previous works provide evidence that
BIER could be applied to a physical vehicle navigating in a
real environment. However, presenting results of executing
the sim-to-real transfer of policies learned with the methods
proposed in this work was outside of the present paper.

We postulate that the adaptive control method presented
in this work, which combines classical control with learning-
based strategies, plays a pivotal role in advancing real-world
autonomous robotic applications. This method capitalises on
the robustness offered by the underlying process physics,
as represented by its model-based component, while also
harnessing the adaptability to unforeseen or unmodelled
transitions, a characteristic feature of its model-free learning
component. We have argued that the proposed method can
be considered in processes where proportional feedback
control can be derived, which represents the majority of
UUV applications. Future work shall explore the extent to
which this work could generalise to other domains, for the
control of distinct types of vehicles operating under various
environmental conditions.
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