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ABSTRACT Cancer is the deadliest disease in humankind. Ovarian Cancer (OC) is important among
female-specific cancers. Epithelial Ovarian Cancer (EOC) is the most commonly occurring subtype of
OC. The disease is identified in later stages due to the unrevealed symptoms in the early stages. Gene
Expression experiments and machine learning (ML) methodologies can lead to preventive care of OC. This
can be achieved by identifying malignant gene transformations earlier and using precision medicine that
aids in fast recovery. The proposed hybrid Tabular Variational Auto Encoder oriented dictionary based
Stratified K Fold Cross Validation (TVAE_dict_SKCV) is an effective model to handle the threat. The
main objective is to assess the significance of EOC screening variables for categorizing high-risk patients.
It initially generated synthetic data using the TVAE model to increase the EOC subtype data size from
the Cancer Cell Line Encyclopedia. The synthesized data were balanced utilizing the Synthetic Minority
Oversampling Technique. Significant features were selected with the Boruta Feature Selection method. The
HYPERPARAMETERS were fine-tuned employing Optuna optimizer and applied enhanced SKCV with
Random Forest classifier. The TVAE_dict_SKCV method with Boruta acquired an accuracy of 98.5 %
and outperformed the experiment with Lasso Feature Selection and with original data. Shapley Additive
explanations summarize the main features which classify. Optuna efficiently reduced the computing time
compared to the Grid Search Cross Validation optimizer.

INDEX TERMS Machine learning, ovarian cancer, pickle, Optuna, TVAE, Boruta, Lasso.

I. INTRODUCTION
Ovarian cancer (OC) is the development of cancerous cells
in the ovaries of the female reproductive system, mostly not
seen in early stages. Fast recovery solutions are required
for controlling OC. The cells can penetrate and obliterate
healthy biological tissue and reproduce swiftly. OC plays a
significant role in female cancers. Despite many symptoms,
it is often diagnosed late. Therefore, the death rate is higher
among those who get this disease. Concerning a study by
the American Cancer Society, 1.28 % of women are affected
by ovarian cancer. Among them, 0.9 % of patients die. The
total duration of treatment for each patient varies, and it
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depends on the root cause of the illness. The root cause can
be found by tracking the genetic variations. Molecular studies
on RNA-seq technology play to aid in detecting the genotype
factor behind it [1], [2], [3], [4], [5].
EOCs, germ cell tumors, and stromal cell tumors are the

three varieties of ovarian cancer. More than 80% of OCs
are epithelial ovarian. In females, High-Grade Serous OC
(HGSOC), Low-Grade Serous OC (LGSOC), Endometrioid
carcinomas, mucinous carcinomas, and clear cell carcinomas
are the subtypes of epithelial ovarian type. HGSOC is the
most commonly seen among the subtypes [3]. The major
problems in molecular studies are less data size and more fea-
tures. Due to the minimum number of samples, underfitting
may occur, and due to the high dimensionality of the data, the
issue of overfitting will also appear. Because the dimensions
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are given differently in each data set, there are also issues in
combining data sets. Machine and Deep learning grounded
scrutiny of genes, their expressions, and disease subtypes
can enhance precision medicine-related research.ML and DL
algorithms can automatically learn the multi-scale attributes
to detect the differentially exhibited genes [6], [7], [8].

The implementation unveils the novel TVAE_dict_SKCV
model, a hybrid model combining the Tabular Variational
Auto Encoder (TVAE) [9] data synthetic method to increase
the number of EOC data along with Synthetic Minority
Oversampling Technique (SMOTE) for data balancing [10],
Boruta Feature Selection (FS) [11], Optuna optimizer [12]
for fine-tuning hyperparameters, and dictionary-based SKCV
[13] with Random Forest (RF) classifier in classifying the
EOC subtypes and feature selection as an early identification
mechanism for OC. The selected model was saved with the
pickle tool [5], preserving the parameters. The main features
that are responsible for classification were recognized with
the Shapley Additive explanations (SHAP) [14].

A. MOTIVATION
The limited sample size and the enormous mass of Gene
Expression (GE) data features pose significant challenges
for molecular cancer research. Along with this, late detec-
tion of the cancer disease due to the absence of premature
indications exposes the criticality of earlymalignancy screen-
ing. This exhibits how crucial it is to use data synthesizing
and feature selection methods to select essential attributes
from thousands of features. Considering this, the proposed
methodology extracted the differentially expressed (DE) fea-
tures from the dataset. The extracted features indicate that
similar features may be DE in patients.

Regarding the objective, the paper deals with classifying
and selecting features of EOC subtypes. The purpose is to
discuss the methods involved in developing automatic feature
recognition systems, with a view on the underlying concepts,
the present literature, and the future perspectives, and hav-
ing EOC subtypes and features as a potential target. The
overview in the article includes the proposed methodology,
Experimental analysis, Performance Analysis, Conclusion,
and Future enhancement. All the methods used are discussed
in the proposed methodology part.

II. LITERATURE SURVEY
Fewer data in molecular datasets is a big challenge in per-
forming research. Data synthesis can be applied as a remedy
for increasing sample size. Inan MS et al. [15] created
high-quality synthetic tabular data of breast cancers using
the conditional generative adversarial network (CTGAN) and
Tabular Variational Auto Encoder (TVAE). The classification
with TVAE data outperformed CTGAN, achieving 82.83 %
accuracy for prognosis and 96.66 % for diagnosis datasets.
The presence of unbalanced classes can give biased results.
Therefore, balancing the class data is essential. SMOTE is
one such technique that can be applied to balance the data

among different classes. Ishaq et al. [10] have used SMOTE to
handle class unbalancing in identifying survivors of heart fail-
ure, achieving an accuracy of 92.6%. Sorayaie Azar et al. [16]
also applied SMOTE to balance OC survival-related classes,
fine-tuned data using Grid search cross-validation, classified
the categories using an RF classifier, and analyzed significant
features using SHAP.

Molecular datasets usually have thousands of features
or genes. It is better to choose feature selection algo-
rithms to obtain prominent features. Hwang et al. [17] have
applied the Least Absolute Shrinkage and Selection Opera-
tor (Lasso) and RF to recognize bone marrow disease from
images. The Lasso-RF model acquired a recall percentage of
87.3 and a specificity of 86.2 %, outperforming the Principal
Component Analysis Logistic Regression models. Similarly,
Casiraghi et al. [11] have used Boruta and RF to predict the
variables for coronavirus-infected patients and outperformed
other models. Wang and Wang [18] proposed Post-Selection
Boosting Random Forest (PBRF) that used Lasso Regres-
sion and RF in real-time data analysis. Phung et al. [19]
used Boruta for feature selection and RF for classification
to identify environmental variables responsible for the deaths
of children below five. Htun et al. [20] has done a survey on
different Feature selection and feature extraction techniques
and explained different types of features considered for the
models.

The Optuna optimizer could reduce the time complex-
ity in parameter optimization. Akiba et al. [12] proposed
the Optuna Framework, a hyperparameter optimizer. This
easily defined lightweight computational method speeds up,
parallelizes, and efficiently chooses the best parameters for
machine learning algorithms. Using efficient sampling algo-
rithms [TPE, CMA-ES] and pruning algorithms Hyperband]
supports the attainment cost and time efficacy. Agrawal
[21] created an automated machine learning tool to gener-
ate improved ML pipelines on Optuna optimizer. Srinivas
and Katarya [22] predicted heart disease by Optuna opti-
mized XGBoost classifier. Hyperparameter Optimization
makes the ML and Deep Learning Models more efficient.
Shinde et al. [23] utilized a dataset from the UCI ML reposi-
tory tomodel various classifiers in investigating liver patients.
The proposed system uses Grid search cross-validation
(GsCV) for parameter optimization and DT, NB, RF, plus
SVM for classifying. RF classifier performed well with accu-
racy, F1 score, and recall of 72 %, 76.22 %, and 77.37 %.

Class-wise division of data for train-test partitions delivers
advanced improvement in performance attainment. This is
detailed by El-Gawady et al. [24], whoever preprocessed
the GE of Alzheimer’s disease (AD) and further split using
SKCV and then grouped the classes as AD and normal
procuring 97 %, 97 %, 98 %, 98 % for sensitivity, speci-
ficity, P, and Acc, approximately. Prusty et al. [13] also
explored four usual examination methods by operating SVM,
RF, KNN, and XGB classifiers and later applied SKCV.
Their findings have shown the RF classifier as a satisfactory
replacement, achieving the 95-98 % range for all the tests.
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A different methodology is given by Fazelabdolabadi [25]
who predicted crude oil price employing a hybrid Bayesian
Network. A recent study on OC [26] used the LASSOmethod
to identify differentially expressed prognosis-related genes
from genomic data-related computer tomography images.
Another work [27] identified biomarkers based on microR-
NAs by applying the Boruta algorithm and ML algorithms.

The motivation from the literature survey to consider syn-
thetic data generation technique TVAE [15], feature selection
techniques [Lasso and Boruta [17], [18]], handling imbalance
data by SMOTE [19], fine-tuning the parameters with Optuna
[21], classifying the data with SKCV with RF classifier,
and projecting the features with SHAP brought out a novel
methodology to sub organize EOC data.

III. PROPOSED METHODOLOGY
The main objective of this research paper is to propose a
methodology to classify the EOC subtypes and identify the
biomarkers responsible for grouping. The outcome of the
classification can help in diagnosing disease to check for
the differential expression of corresponding biomarkers as
an aid for stratified medicine. The proposed methodology
architecture and algorithm are shown in Fig. 1, 2.

The proposed methodology contains seven steps: data col-
lection, filtering, generating synthetic data, feature selection,
balancing, optimized classification, and a SHAP summary
plot. Ovarian genes were filtered from EOC subtype data
(HGSOC, LGSOC, endometrioid, clear cell, and mucinous
carcinomas) from theCancer Cell Line Encyclopedia (CCLE)
database. The sample size was increased with the help of a
TVAE data synthesizer. The synthesized data were balanced
by oversampling the data with SMOTE. Once the SMOTE
technique is applied, Lasso and Boruta-based FS can be
used. The hyperparameters were fine-tuned with an Optuna
optimizer for each FS selected feature, and classification
was performed in a dict_SKCV RF classifier (Based on split
value, assign train-test records for different folds of corre-
sponding split separately). According to train-test records,
train the model, perform classification, and store correspond-
ing train-test documents and performance measure values in
dictionaries and lists. Finally, significant features of the best
model were plotted employing SHAP.

A. DATA SYNTHESIS
Synthetic data is widely used in the financial industry, par-
ticularly for risk management, credit risk examination, and
fraud detection. Similarly, the TVAE method is applied for
synthetic data generation of gene expression data. It is imple-
mented using the Synthetic Data Vault (SDV) package. The
model studies the motifs of actual information and gives rise
to artificial data. Once data is created, the generated data
will be compared with actual samples. If the quality score
is above 80 %, it is good. To use Python for this, first build
a TVAE model utilizing the tabular package of the SDV tool.
A TVAE instance must be used to train the sample data.
Later, using that TVAE model, synthetic information can be

FIGURE 1. The TVAE_dict_SKCV Algorithm.

generated by specifying the total amount of rows required.
Additional quality scores can be assessed. In TVAE, the deep
generativemodel, Variational Auto Encoder (VAE), is applied
for generating synthetic data from tabular data. In VAE,
a regularization term is added over the latent space of the
auto-encoder by adding a loss function to avoid overfitting
[28]. TVAE is trained using Adam with a learning rate of
’1e – 3’. The loss function used in TVAE is Evidence Lower
Bound Loss (ELBO). The created artificial data, A(x), can be
kept as in Eq. (1).

A (x) = B (Decomp (Comp (x))) (1)

where x represents actual EOC data, B is the TVAE method
with x as the entered values and generates A (x). The
Comp method, which acts as an Encoder, masters the latent
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FIGURE 2. Proposed methodology architecture.

diffusions of actual data. Later, the Decomp method, the
Decoder, generates synthetic data by inspecting the latent
diffusions [15].

B. DATA BALANCING
The biases arising from the imbalance between majority and
minority classes were avoided by applying the SMOTE tech-
nique. The SMOTE method up-samples the minority classes
to avoid overfitting. It accomplishes this by generating fresh
synthetic examples near other points (of minority class) in
the feature space. New neighbors for the minority class were
derived based on the Euclidean distance between samples.
The sampling rate is proportional to the imbalance in data.
New samples’ for minority class group R can be generated
utilizing Eq. (2).

s′ = s+ rand (0, 1) × |s− sl | (2)

where s and sl represent the sample and corresponding neigh-
bors in R [11].

C. FEATURE SELECTION
The number of features can be reduced through FS algo-
rithms. Lasso is on such an algorithm, which is useful when
the number of samples is less and the number of elements
is high. Lasso reduces the distance between the actual value
and predicted value by adjusting the tuning parameter λ so
that coefficients of maximum parameters reach near zero.
Variables with zero coefficients will be removed from the
model. The C1 regularization term of Lasso, which controls
the number of parameters, can be evaluated as in Eq. (3)

C1 = λ × (|a1| + |a2| + . . . |ad |) (3)

wherea1, a2, ad are the coefficients of the parameters [10].
Another similar FS algorithm is the Boruta algorithm.

Boruta works with the principle of creating shadow attributes.
New attributes can be made by arbitrarily rearranging the
existing attributes. Newly generated ones will be merged
with currently available ones. The new dataset has to be
executed with an RF classifier. Among the old attributes,

those with more feature importance than the most important
new attribute will be reserved for the ultimate list of attributes.

D. HYPERPARAMETER OPTIMIZATION
The execution of data without parameter optimization may
generate poor outcomes. So, it is always good to fine-tune
the values of the hyperparameters of the classifier before
performing classification. Hyperparameters for the RF classi-
fier were evaluated with the GsCV hyperparameter optimizer.
The GsCV creates as many models based on the combination
of the number of parameters chosen for the model and the
optional values for each parameter. For example, the param-
eters of RF estimators like n_estimators with weights (10,
20, 30, etc.), max_depth = (5, 10, etc.). Due to the trial with
each combination of parameters for each of the algorithm, all
possible type of models was trialed. Thus, GsCV takes much
computing power and time for execution.

The total number of models, the number of models for the
classifier, and the number of fits for a particular test size of
the data using GsCV can be evaluated based on the following
calculations.

In Eq. (4), ‘m’ represents each of the parameters for the
classifier, and ‘n’ represents the no of choices for each; the
total no of models for the classifier that may be created inside
a GsCV can be evaluated as

TMc =

∏N

i=1
mini (4)

If cross-validation, cv= ‘p,’ with ‘p’ fits for each of the TM
models for each test size, the total number of fits TF can be
evaluated as in Eq. (5)

TF = pTMc (5)

To save computing power and time of execution of the
same work, optimization is trialed with selected hyperpa-
rameters using the Optuna hyperparameter optimizer. Optuna
optimizer has many sampling and pruning algorithms to
remember previously well-performed executions and to stop
poor executions early. Optuna’s study object is created with
direction as maximizer to maximize accuracy, pruner as
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FIGURE 3. The stratified k fold cross validation.

Hyperband algorithm for early stopping, and sampler as TPE-
Sampler algorithm. The study object’s optimize function was
called with objective function and trials as parameters. Tests
specify how many times the objective function has to be
executed.

The objective function is defined with trial objects to
create the model. The trial object suggests parameters spec-
ifying whether the parameter’s choices are integers, float,
categorical, etc. When the algorithm model is defined, the
trial-defined variables for parameters have to be assigned
to the corresponding algorithm’s parameters. The described
model has to be trained with the train data from which the
score can be evaluated and returned to the study object. The
trial suggestions for RF given were int for [ ‘n_estimators,’
’max_depth,’], categorical for [’criterion,’ ’bootstrap’]. The
GsCV’s andOptuna’s best parameters accomplished the same
performance measures, but Optuna efficiently preserved time
and computing power [12], [23].

The time complexity of the Optuna optimizer TO, when
the sampler is considered as TPESampler [11], is given in
(Eq. (6)), where d stands for search space dimension, and q
is the completed trial count.

TO = O(dq(logq)) (6)

E. DICT_SKCV STRATIFIED VALIDATION
Stratified K Fold Cross Validation-based execution of the
model can give different combinations of inputs for the train
and test set, which can provide variations in performance
measures. Consider that the split =3, then one of the three
parts of each subtype data will be assigned as test data in
the first run. The remaining data will be taken as train data.
The next part is given for the test in the second run, the rest
as the train. In the third run, the third part will be given
for the test section, balance as in Fig. 3. Likewise is the
execution when the split takes each assessment 5, 7, and 10,
respectively. Final scores will be the mean of both executions
plus or minus the standard deviation.

Suppose k acts as the split value {3, 5, 7 or 10}, then
the volume of data Sd in similar groups in each fold for a
particular split is given in Eq. (7) as

Sd =
100
k

(7)

If C i can be taken as the count of HGSOC, LGSOC,
endometrioid, mucinous, and clear cell individually, then T t ,
the number of test data for each run (fold or model) in split k,
can be derived as in Eq. (8)

T t =

∑5

i=1
Sd × C i (8)

Similarly, T r is the number of train data for each run of a
particular split can be derived as in Eq. (9)

T r = T−T t (9)

where T is the count of the total data.
In the dict_SKCV model, during each fold execution of a

split, the corresponding train and test set can be stored in a
dictionary. The performancemeasures of each fold model can
be stored in related lists for later access. With the fine-tuned
fold model algorithm, the best-performing model for a split
can be evaluated. Based on the fold number, the correspond-
ing stored train, test set, and trained model can be retrieved
from the dictionary for the SHAP summary plot of the main
contributing features. The fine-tuned FSmodel algorithm can
be applied to choose the best models from all splits depending
on the F2 score and mse value once the best fold model
from individual split executions is selected. The fine-tuned FS
model algorithm can also be applied to choose the best model
from both the FS-based executions once the corresponding
best model from all splits of individual FS-related executions
is completed.

F. FINE-TUNED FOLD MODEL ALGORITHM
To identify the best fold of a specific split of a classifier for
input, assume accuracy (Acc) and recall (Rcl) have similar
values. If n is the number and split [] the list of splits, P []
the list of precisions, F1 [] the list of F1, R [] the list of
Rcl’s for all the splits, Ri the Rcl for ith split, then the fold
k is chosen for each split based on Fig. 4. For various splits
of the classifier, choose model’s fold with the leading Rcl
value. Compare the absolute difference between the current
and prior F values with the current Rcl value when more than
one fold element seems to have an identicalmost considerable
Rcl value. Choose the fold number with the most enormous
difference. Compare the absolute difference between the cur-
rent and prior precision (Pr) value with the recent recall (Rcl)
value whenmore than one fold value does have a similar most

122764 VOLUME 11, 2023



A. Abraham et al.: Tabular Variational Auto Encoder-Based Hybrid Model

FIGURE 4. Fine-tuned fold model algorithm.

incredible F value. Pick the fold value well with the most
remarkable difference next.

G. FINE-TUNED FS MODEL ALGORITHM
To choose the best model among j no of splits for one partic-
ular FS-based classification and then among the best of each
FS execution, F2 score (F2) and mse were considered. If M []
is the list of models, F2 [] is the list of F2, mse [] is the list of
mse for all the models, F2i is the F2 for the ith model, then
the model m is chosen for a particular FS based on Fig. 5.
Best models from each FS based classification for the input.

FIGURE 5. Fine-tuned FS model algorithm.

Compare the models and, if any, pick the one with the highest
F2 value. Choose the model with a lower mse score if many
models have the identical most outstanding F2.

H. PERFORMANCE MEASURES
The decision about which model to consider can be taken
based on performance measures. The key performance indi-
cators used by the work are Acc, Pr, Rcl, F1 score (F1), F2,
and Mean squared error (mse). They are evaluated depending
on the notions of False Negatives (FN), False Positives (FP),
True Negatives (TN), and True Positives (TP). The appro-
priately recognized estimate for each class is the TP. The
properly rejected prediction of a group is the TN. FP means
wrongly picked out calculations for a group. FN means mis-
takenly excluded data for a class. The sum of precise forecasts
divided by the total quantity of the databank is the Acc
(Eq. (10)). In case of imbalanced data with many dissimilar-
ities among different class counts, Acc may mislead. Under
such scenarios, low Acc may give a good prediction for all
classes compared to high Acc. The F-measure (F) strikes a
good compromise between Pr and Rcl. When there is a mod-
erate or substantial disparity between two groups, Pr - Rcl
becomes beneficial. i.e., the emphasis must be on accurately
classifying the minority class. In medical situations, Rcl is
crucial because it should not miss the TP instances while not
caring if we trigger a false alert. A measure of a model’s
performance is its Rcl or sensitivity, defined as the fraction of
TP predictions out of all TP predictions (Eq. (11)). With an
Rcl of 0.75, the system correctly predicted 75 % of the TPs.
Furthermore, Pr or positive predictive value accounts for the
correctness of predictions (Eq. 12). F1 is a harmonic mean
of Pr and Rcl (Eq. (13)). F1 works well for imbalanced data.
When a prediction about a class turns out to be TP, it indicates
the forecast was accurate. An FP is a prediction of a type that
did not occur. Proper identification of ‘‘not-there’’ as ‘‘not-
there’’ is a TN. The actual category was incorrectly labeled
as a FN. When discussing cancer prognosis, a ‘‘FP’’ refers to
a healthy individual incorrectly identified as having cancer,
whereas a ‘‘FN’’ denotes the opposite.

A variant of the F that emphasizes Rcl is beneficial when
dipping FN is of more importance than reducing false pos-
itives [13], [24]. F-beta score (Fβ ) is a generalized form
of F1(β = 1’). The Fβ is a simplification of the F in
which a coefficient named beta (β) is cast-off to adjust the
trade-off between Pr and Rcl in determining the harmonic
mean (Eq. (14)). Fβ where beta equals ‘2.0’ gives less weight
on Pr, more weight on Rcl [29], [30].

Acc =
TP

(TP + TN)
(10)

Rcl =
TP

(FN + TP)
(11)

Pr =
TP

(FP + TP)
(12)

F1 =
2PR

(P + R)
(13)
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Fβ =

(
1 + β2

)
PR

(β2P+ R)
(14)

Assuming Rcj holds the recall values of HGSOC, LGSOC,
endometrioid, mucinous, and clear cell, the average Rcl for
EOC and n=5, i.e., avgREOC can be calculated as in Eq. (15)

avgREOC =

∑n
j=1 Rcj
n

(15)

Assuming Pcj holds the precision values of HGSOC,
LGSOC, endometrioid, mucinous, and clear cell, the average
Pr for EOC, i.e., avgPEOC ,can be calculated as follows in
Eq. (16).

avgPEOC =

∑n
j=1 Pcj
n

(16)

More priority for Rcl than Pr is given by substituting β

as 2 in Eq. (14). Hence, Eq. (14) is replaced with the average
values of recall in Eq. (15) and precision in Eq. (16) and F2
for EOC. i.e., F2EOC is given in Eq. (17).

F2EOC =
n×avgPEOC × avgREOC

(n − 1)×avgPEOC+avgREOC
(17)

A high deviation of the predicted target value from the
actual one or poor performance can cause high bias in the
model. The model’s variance is increased when there is
too much variation between train and test accuracies. The
appropriate bias and variance scales control the overfitting
and underfitting issues. A model is described as an overfit,
underfit, and balanced fit based on a bias-variance trade-off.
Class balancing, fine-tuned hyperparameters, and relevant
features are required to keep the model proportional to fit
adequate samples. Including the mentioned characteristics in
the model will improve its performance and reduce error.
The model that makes fewer errors generates more accurate
predictions [31].

IV. EXPERIMENTAL ANALYSIS
The experiment was initially done by classifying with actual
data, including all the available features. Initial performance
was improved with grid search parameter optimization, fol-
lowed by Optuna optimization. For further enhancement,
disease-specificmarkers or genes were selected. Based on the
chosen features, classification with the FS methods Boruta
and Lasso was conducted to avoid overfitting. Synthetic
data were generated with TVAE data synthesizer to prevent
underfitting issues and boost achievements. The synthe-
sized data classes were balanced by applying the SMOTE
technique. A dictionary and list-oriented stratified k-fold
cross-validation of the balanced data were conducted using
both FS methods after finding the fine-tuned values for the
hyperparameters utilizingOptuna optimization. Optimization
was performed after splitting the data into test and train based
on t-he split value for SKCV. Ensuing SKCV, based on the
performance measures and error value, the best model for
each split, the best model for each FS method, and the best
FS method are also chosen.

A. DATASET DESCRIPTION
Epithelial OC-based gene expression data is retrieved from
CCLE [32], [33] and is sorted to isolate information specific
to EOC with its subtypes HGSOC, LGSOC, endometrioid,
clear cell, and mucinous carcinomas. Sixteen thousand three
hundred eighty-three gene columns with forty-four sample
sizes were there before preprocessing. The data gets normal-
ized by removing the gene rows with row sums of zero, less
than ten, NAN, and then identical genome fields. The feature
size became 13399 after preprocessing. Gene names of the
repository act as attributes or table headers.

B. OPTUNA-BASED ML IMPLEMENTATION
Initially, a simple data classification with 13399 features was
done with a Random Forest algorithm with an accuracy of
60%. Later, the parameters of RF, especially (n_estimators
and max_depth), were fine-tuned initially with Grid search
and later with Optuna optimization methods. With both opti-
mization methods, classification performance improved to an
accuracy of 86%. However, the execution time of Optuna was
much less than the Grid search, as mentioned in Table. 1.
So, for the remaining work done with synthesized data and
with the data balancing technique, Optuna optimization was
chosen for fine-tuning the parameter values of the classifier.

TABLE 1. Time comparisons for parameter optimizations.

C. FEATURE SELECTION ON ACTUAL DATA
There are disease-specific pathways for each type of dis-
ease. Selecting features based on pathways can lead to
correctly classifying and identifying disease-causing fea-
tures. To facilitate this, 1123 OC-related genes were taken
from Cancermine (an article-extracted dataset of cancer
drivers, oncogenes, and tumor suppressors, which contains
genes associated with malignancy from various OC onco-
genic signaling pathways allied articles as well) [34], Cancer
Gene Census [35] and National Comprehensive Cancer Net-
work(NCCN) guidelines(24 genes) [36] depending on EOC
subtypes [High-Grade Serous OC(HGSOC), endometrioid,
Low-Grade Serous OC(LGSOC), clear cell, mucinous, and
control data]. Among 1123 OC genes, 941 were present in
the EOC data from CCLE.

TABLE 2. FS on actual data.

Lasso and Boruta FS were done on the 941 genes of
the actual data. RF classification was performed based on

122766 VOLUME 11, 2023



A. Abraham et al.: Tabular Variational Auto Encoder-Based Hybrid Model

76 features selected by Lasso FS and 200 by the Boruta
algorithm. Based on FS, accuracy and recall have improved
for both algorithms {87.5 %, 88.8 % for Boruta-RF, Lasso-
RF}, but have high error values {25.26 %, 42.6 % for
Boruta-RF, Lasso-RF} as given in Table 2, [11], [17]. This
is an indication of more sample requirements.

D. TVAE DATA SYNTHESIS, SMOTE DATA BALANCING
Considering the reduction of error and improving perfor-
mance as the aim, with the aid of the TVAE method from
Python’s ‘sdv.tabular’ package generated 200 synthetic data
consuming the 44 actual samples. The evaluation quality
score of synthetic data with actual data was 99 %. The unbal-
anced synthetic data were balanced with the SMOTEmethod,
improving to a count of 455 samples.

E. FS AND DICT_SKCV ON SYNTHESIZED DATA
FS applied for the 455 samples originating 220 Lasso
and 452 Boruta features. The samples with the Lasso and
Boruta selected features underwent dict_SKCV with RF as
the classifier. The result of the execution with different split
values {3, 5, 7, and 10} is given in Table 3. For both FS-
oriented classifications, split 10 has high-performance values.
Boruta-based category outperformed Lasso with {Acc, Pr,
Rcl, F1, F2, and mse} as {98.5, 98.6, 98.5, 98.5, 98.5, and
06}.

TABLE 3. Performance measures from synthesized data.

TABLE 4. Execution time of synthesized data.

Regarding the execution time, it can be noticed from
Table 4 that, generally, computational complexity is a bit
complex for Boruta FS classification in comparison to Lasso.
As the number of trees increases (n_estimator) or the depth

of the tree, a hike in computational time is observed. If either
n_estimator or max_depth is a low value or both have some
medium value, the execution timewill be less. A slight depen-
dency on Google Colab’s internet speed was also observed.

The SHAP summary plot, which shows the main features
of each class and the class-vise importance level of the fea-
tures in classification, is in Fig. 6. The top 10 features from the
SHAP summary plot of each category are provided in Table 5.

Some article-related information about the genes was
noticed in the molecular biology techniques-based articles

FIGURE 6. Fine-tuned FS model algorithm.

TABLE 5. Top 5 SHAP features of individual subtypes.
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published afterward. In their OC pathway-related studies,
Agustriawan et al. [37] stated that the part of NDN inOC poor
survival. Tayama et al. [38] verified that EpCAM-positive
cells resist cisplatin-related apoptosis and may lead to recur-
rent disease, though EpCAM-negative cells get eliminated
after chemotherapy in EOC cases. Meel et al. [39] wrote
about the role of differentially expressed genes ZEB1, ZEB2,
and NOTCH in different cancers like OC, breast cancer,
etc., in the epithelial to mesenchymal transition (EMT).
This process leads to cancer progression as metastasis and
chemoresistance.

Dong et al. [40] reported the detection of ROS1 mutation
for HGSOC patients, followed by improved recovery after
administering Crizotinib treatment. Li et al. [41] conveyed
that up-regulation of ZEB2 in HGSOC patients has seen
results in the metastasis state of the disease. Wang et al. [42],
through experiments with western blotting and RT-qPCR,
found the overexpression of FSCN1 and CRNDE in OC cells.
Bajwa et al. [43], with their investigations, explained the role
of STC1 and ANGPTL4 in initiating OC metastasis.

F. PERFORMANCE ANALYSIS
Performance comparison of baseline and proposed mod-
els are given in Table 6. Good performance measure of
{98.5, 97.8} percent accuracy, recall achieved for syn-
thetic TVAESBRF, TVAESLRF proposed models (Fig. 7,9).
Low mse values of {06, 7.6} were obtained in the case
of proposed models (Fig. 11). The result shows that the
TVAE_dict_SKCV model performs well and can be used
for synthetic data generation of similar small datasets since
it generated data with good quality score, less error, high
accuracy and having contributing features from molecular
biology related articles.

FIGURE 7. Accuracy comparison of actual, synthesized data.

TABLE 6. Performance measures of actual, synthesized data.

FIGURE 8. Precision comparison of actual, synthesized data.

FIGURE 9. Recall the comparison of actual, synthesized data.

Thus, the proposed system achieved improved accuracy,
precision, recall, F1 score, F2 score, and MSE of {98.5, 98.6,
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FIGURE 10. F1 score comparison of actual, synthesized data.

FIGURE 11. F2 score comparison of actual, synthesized data.

98.5, 98.5, 98.5, and 06} percentages with Boruta Feature
Selection.

The paper contributes a method to generate more related
patterns with good quality scores in case of a shortage of
research data. Further, the framework provides a mechanism
to avoid bias in identification due to irregularities. The usage
of the optimizer drastically improved performance. The FS
technique removes insignificant features, thereby narrowing
down to the proper classification and interpretations of dif-
ferentially expressed characteristics.

The presented work can be improved by incorporating
some other type of data. The disease’s stages, recurrence,
and metastasis details can be combined with this work.
Other types of cancer information can also be incorporated

FIGURE 12. MSE comparison of actual, synthesized data.

to find commonly occurring gene transformations and their
relationships.

V. CONCLUSION AND FUTURE ENHANCEMENT
Applying RNA-seq and ML techniques together may pave
the road to targeted therapy, which speeds up the healing
process by pinpointing the mutated genes that cause can-
cer. The research is carried out by classifying mRNA-based
EOC data from the CCLE into subtypes using the pro-
posed TVAE_dict_SKCV. The usage of the Optuna optimizer
improved the performance. Application of TVAE to the actual
data produced synthetic data with good quality scores. The
new data aided in accomplishing reasonable performance
measures of {98.5, 98.6, 98.5, 98.5, 98.5, and 6} % accu-
racy, precision, recall, F1 score, F2 score, and mse values.
Compared to the accuracy of Boruta and Lasso models with
actual data {87.5, 88.8} %, accuracy has been improved to
{98.5, 97.8}%with TVAE-based synthesized data. The novel
method paves the way for increasing data size and finding
possible biomarkers for similar data. As the interpretable
features from the SHAP summary plot are found to be men-
tioned in the molecular biology experiments-based articles
as biomarkers for OC, TVAE_dict_SKCV can be used for
similar other small datasets. In the future, the work can be
extended with more data from similar and different disease
types. Also, adding standard data to the subtypes can clarify
the classification and identification of biomarkers.
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