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ABSTRACT Detecting weak target is an important and challenging problem in many applications such as
radar, sonar etc. However, conventional detection methods are often ineffective in this case because of low
signal-to-noise ratio (SNR). This paper presents a track-before-detect (TBD) algorithm based on an improved
particle filter, i.e. cost-reference particle filter bank (CRPFB), which turns the problem of target detection to
the problem of two-layer hypothesis testing. The first layer is implemented by CRPFB for state estimation of
possible target. CRPFB has entirely parallel structure, consisting amounts of cost-reference particle filters
with different hypothesized prior information. The second layer is to compare a test metric with a given
threshold, which is constructed from the output of the first layer and fits GEV distribution. The performance
of our proposed TBD algorithm and the existed TBD algorithms are compared according to the experiments
on nonlinear frequency modulated (NLFM) signal detection and tracking. Simulation results show that the
proposed TBD algorithm has better performance than the state-of-the-arts in detection, tracking, and time
efficiency.

INDEX TERMS Track-before-detect, cost-reference particle filter, filter bank, extreme value theory.

I. INTRODUCTION
Detecting weak target with low signal to noise ration (SNR) is
crucial in many applications. However, conventional detect-
before-track (DBT) approach [1], [2] is invalid in this case.
In DBT, firstly raw measurements are compared with a
given threshold to detect signals and reduce data flow,
then the following tracking step operates on these exacted
measurements. As a result, high threshold may lead to loss
of potential information and low threshold may lead to high
rate of false-alarm.

By contrast, track-before-detect (TBD) [3], [4], [5], [6], [7]
is valid for low SNR target detection and tracking. In TBD,
unthresholded or raw measurements are processed for jointly
detection and tracking and thus the potential information of
the possible targets is preserved.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed M. A. Moustafa .

TBD algorithms can be roughly divided into two cate-
gories: recursive algorithms and batch algorithms. In recur-
sive algorithms, the detection or existence probability is
reported at each time step. Then the state estimate of the time
step is given if a target is declared. Particle filter (PF) is one
kind of popular common algorithm to implement recursive
TBD. PF is a class of suboptimal Beyesian filter, in which the
posterior probability distribution function is approximated by
a large number of weighted particles or samples [8], [9], [10],
[11], [12], [13], [14], [15]. Therefore, PF is proper to process
nonlinear/non-Gaussian dynamic system. In PF based TBD
(PF-TBD), a discrete variable is added to state vector to
mimic the presence or absence of a target. Detection and
estimation results are given at each time instant. PF was first
applied to TBD by Salmond in [16] and Boers in [17]. Then it
was extended to multitarget tracking by Ristic and Rutten [2],
[18]. We also proposed a recursive TBD algorithm based on
cost-reference particle filter (CRPF) [19]. CRPF is a new kind
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of PF, requiring none of statistical information of dynamic
system [20].

In this paper, we focus on the batch TBD algorithms. Com-
pared with recursive algorithms, the batch TBD algorithms
accumulate measurements along the possible trajectories of
the possible targets in an observed interval. The cumulated
energy is taken as a test metric to compare with a threshold.
A target is declared if the test metric exceeds the given
threshold. Meanwhile, the corresponding trajectory is output
if a target is declared. Because of cumulating energy in the
whole observed interval, batch TBD algorithms always pro-
vide more accuracy estimation and detection results. Batch
TBD algorithms are generally implemented using Hough
transform [21], [22], [23], dynamic programming [24], [25],
maximum likelihood [6], [26], etc. However,these methods
prohibit or penalize deviations from the straight-line motion,
and in general require enormous computational resources [2].
Shui et al. [27] proposed a batch TBD algorithm based on an
improved CRPF, i.e., forward-backward CRPF (FB-CRPF),
for nonlinear frequency modulated (NLFM) signal detection
in radar.

Although FB-CRPF based TBD (FB-CRPF-TBD) algo-
rithm could detect and track the target with nonlinear
motion, they still suffer from two problems. The first is high
computational load. In FB-CRPF-TBD, forward CRPF and
backward CRPF are sequentially carried out and the number
of particles required by both the CRPFs is large. Furthermore,
the test metric of FB-CRPF-TBD is two dimensional and
implemented in an convex area. The second is the unknown
probability distribution of the test metric. These methods
generally require numerous noisy-only measurements to
estimate the detection threshold with given false alarm
probability. The test metric of FB-CRPF-TBD are two-
dimensional. The statistical properties of both the methods
are unknown, thus numerous noisy only measurements are
required to estimate the detection threshold for given false
alarm rate.

In this paper, we propose a batch TBD algorithm based
on CRPF bank (CRPFB). In proposed TBD algorithm, firstly
CRPFB is designed to estimate the state sequence of possible
target. As an improved particle filter, CRPFB consists of
many paralleled CRPFs using different but precise, hypoth-
esized prior information and the number of particles required
by each CRPF is very small. Therefore, the estimation
accuracy and computational complexity of CRPFB are both
improved. Secondly a total test metric is used to determine
the presence or absence of the target during the observation
time. The total test metric of proposed algorithm fits the
generalized extreme value (GEV) distribution [28], [29], thus
the detection performance of the proposed method can be
analytically estimated by using extreme value theory.

The main contributions of our proposed method comprise
of three aspects. Firstly, the impact of precise initial
information on the performance of particle filtering methods
is illustrated. Secondly, an improved PF, i.e., CRPFB, with
entirely paralleled structure is proposed. We try to reduce

the computational burden of particle filtering methods by
transforming the problem of filtering to the problem of
hypothesis testing. Thirdly, a batch TBD algorithm based
on CRPFB is proposed for low SNR target detection and
tracking, of which the total test metric fits GEV distribution.
We try to explore an effective way to analytically analyze the
detection performance of batch TBD algorithms.

The remainder of the paper is organized as follows.
In Section II, the research background related to the proposed
method is introduced, including the dynamic system state of
the detection and tracking problem, and the brief introduction
of CRPF. In Section III, firstly the impact of initialization
on PF is revealed, and then the CRPFB and the batch
TBD algorithm based on CRPFB are provided. Moreover,
the distribution of the overall test metric is analyzed.
In Section IV, simulations on NLFM signal detection and
tracking in low SNR are shown to illustrate the good
performance of our proposed method. A conclusion is given
in Section V.

II. BACKGROUND
In this section, we show the background of the proposed
algorithm, including the measurement model for multi-frame
target detection, the piecewise constant velocity state space
model for CRPFB, a brief introduction of original CRPF.

A. MEASUREMENT MODEL FOR TARGET DETECTION
The problem of target detection can be summarized as a
binary hypothesis testing [27] as follows:

H1 : ztk = fy(xtk ) + wtk , k = 1, 2, . . . ,K

H0 : ztk = wtk , (1)

where H1 denotes the hypothesis of target existence at time
tk and H0 denotes the hypothesis of target absence at time tk .
Under the hypothesis H1, the observation vector ztk at time
tk depends on the system state xtk and the observation noise
wtk ; under the hypothesis H0, ztk contains noise only. fy is a
transformation of the system state xtk , which can be linear or
nonlinear. The goal of target detection is to test the hypotheses
H0 and H1.

B. STATE-SPACE MODEL FOR TARGET ESTIMATION BY
USING CRPFB
To solve the target detection problem by using TBD algorithm
based on CRPFB, a state-space model under the hypothesis
H1 is necessary. In this paper, we construct a piecewise
constant velocity state-space model for CRPFB, the state
equation for which is shown in Equation 2. For convenience,
target state vector xtk is set as xtk = [xtk , ẋtk , ytk , ẏtk ]

T, where
(xtk , ytk ) denotes the location of the possible target at time tk ,
(ẋtk , ẏtk ) is the velocity of the possible target at time tk . For
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CRPFB, amplitude of echo signal is not necessary.
xtk
ẋtk
ytk
ẏtk

 =


1 △T 0 0
0 1 0 0
0 0 1 △T
0 0 0 1



xtk−1

ẋtk−1

ytk−1

ẏtk−1

 +


△T
2 0
1 0
0 △T

2
0 1

 [
vtk ,1
vtk ,2

]
,

(2)

It can be briefly shown as follows, where vt is the system
noise with zero mean and covariance v and is independent
from target states.

xtk = Ax tk−1 + Bvtk . (3)

With the measurement model in Equation (1) under
hypothesis H1, the state-space model for target estimation by
using CRPFB is constructed.

C. COST-REFERENCE PARTICLE FILTER
Based on the piecewise constant velocity state-space model
in section II-B, a brief introduction of CRPF is present here,
as the basis for CRPFB.

In [20], Míguez and Djurić proposed a new type of particle
filtering method (i.e. CRPF, or generalized particle filter,
GPF) that does not assume explicit mathematical forms of
the probability distributions of the noise in the system. CRPF
has the similar structure to PF. In PF, the distributions of the
system noise and measurement noise are required to calculate
particle weights and approximate the posterior probability
density distribution of the state [14]. Different from PF,
CRPF does not need the statistical information of the state-
space model, in which the particles are measured by the
user-defined cost and the particle with the minimum cost is
considered as the state estimation. The basic principle of state
estimation of CRPF is shown as follows.

particle-cost set : {x itk ,C
i
tk }

N
i=1,

state estimation : x̂tk = x imin
tk , imin = min

i
{C i

tk ,m}
N
i=1,

or, x̂tk =

N∑
i=1

µi
kx

i
tk . (4)

where x itk is the i-th particle at time tk with cost C i
tk . The

calculation of C i
tk does not depend on statistical information

of the system. The state estimation at time tk is the particle
with smallest cost, or the weighted sum of all the particles,
where µi

tk is the weight of particle x itk , and is generally a
inverse proportional function of particle cost C i

tk .

III. PROPOSED ALGORITHM
In this section, we present the batch TBD algorithm based
on CRPFB (CRPFB-TBD) for low SNR target detection and
tracking. The proposed algorithm includes two steps: first,
an improved cost-reference particle filter for estimating the
state sequence of a possible target; second, a total test metric
based on the estimate results of CRPFB for batch detection.

A. FEATURE OF PIECEWISE CONSTANT VELOCITY
STATE-SPACE MODEL
The design of CRPFB is based on the feature of piecewise
constant velocity state-space model. In this part, we show
this feature and compare the hypothesised prior information
based on this feature and the original initial information.

It is readily obtained from the systemmodel in Equation (2)
that the mean ¯̇x of the velocity ẋtk is constant as illustrated in
Equation (5).

ẋtk = ẋtk−1 + vtk−1,1,

E(ẋtk ) = E(ẋtk−1 ) = ¯̇x. (5)

Moreover, based on the approximation of the piecewise
constant velocity signal, ¯̇x can be estimated as follows.

¯̇x =
1
K

K∑
k=1

E(ẋtk−1 )

=
1
K

K∑
k=1

E(xtk − xtk−1)

△T

=
E(xt1 − xt0 + . . . + xtK − xtK−1 )

T

=
E(xtK − xt0 )

T
. (6)

Equation (6) indicates that the mean ¯̇x of velocity can be
estimated from the location at the initial and last time steps
by using the approximation of the piecewise constant velocity
signal.

Because of the field of view (FOV) of observation units,
the possible range of initial information of xtk can be
xtk ∈ [xmin, xmax], where xmin, xmax denotes the minima
and maxima of FOV in x-direction. Therefore, xt0 , xtK ∈

[xmin, xmax], and the possible range of ¯̇x can be estimated as
follows.

xmin − xmax

T
≤ ¯̇x ≤

xmax − xmin

T
. (7)

Moreover, if we set xt0 = xval as an exact value, the
possible range of ¯̇x can be re-estimated as follows.

xmin − xval
T

≤ ¯̇x ≤
xmax − xval

T
. (8)

where xval ∈ [xmin, xmax].
It can be seen from Equation (7) that the possible range

of ¯̇x is 2 |xmax−xmin|
T . By contrast, the possible range of ¯̇x

in Equation (8) is only |xmax−xmin|
T and is half of that in

Equation (7).
It is reasonable to approximate the possible range of ¯̇x as

the possible range of ẋtk . If the possible range of ẋtk is given
as ẋtk ∈ [ẋmin, ẋmax], there are three conditions as follows.

1) |xmax−xmin|
T ≫ max(|ẋmin|, |ẋmax|).

In this case, target returns are close to constant velocity
(CV) signal. Supposed that xt0 = xval, and the
corresponding possible range of xtk can be as follows.
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FIGURE 1. Comparison of original prior information and hypothetical prior information, (a) Condition 1, (b) Condition 2, (c) Condition 3, with TP = 0.5T .

However, we will not pay more attention on this simple
case as CV problem in this paper.

xt0 = xval,

ẋmin ≤ ẋtk ≤ ẋmax,

xval + 1T (k − 1)ẋmin ≤ xtk ≤ xval + 1T (k − 1)ẋmax.

(9)

2) |xmax−xmin|
T ≈ max(|ẋmin|, |ẋmax|).

In this case, target returns can be well modelled as
a piecewise constant velocity signal. Supposed that
xt0 = xval, and the corresponding possible range of xtk
can be as follows.

xt0 = xval,
xmin − xval

T
≤ ẋtk ≤

xmax − xval
T

,

xval + 1T (k − 1)
xmin − xval

T
≤ xtk ≤

xval + 1T (k − 1)
xmax − xval

T
. (10)

3) |xmax−xmin|
T ≪ max(|ẋmin|, |ẋmax|).

In this case, during the observation time, the possible
signal is severely nonlinear and cannot be suitably
approximated as a piecewise constant velocity signal
directly. One of the solutions is to shorten the obser-
vation time. We divide the observation time into equal
length blocks [0,Tp], [Tp, 2Tp], . . . , [(P − 1)Tp,PTp],
PTp = T , xmax−xmin

Tp
≈ max{|ẋmin|, |ẋmax|}. Filtering

is implemented in each block. For the p-th block,
supposed that xp,0 = xval, where p = 1, · · · ,P, fp,0
is the initial frequency of the p-th block,
xval ∈ [xmin, xmax].

xp,0 = xval,
xmin − xval

Tp
≤ ẋp,k ≤

xmax − xval
Tp

,

xval + 1T (k − 1)
xmin − xval

Tp
≤ xp,k ≤

xval + 1T (k − 1)
xmax − xval

Tp
. (11)

where xp,k is the left location in x-direction of the k-th
subsequence of the p-th block.
The similar results can be obtained in y-direction.
Fig. 1 shows the original prior information xtk ∈

[xmin, xmax] (rectangles) and the prior information in Equa-
tions (9), (10), or (11) determined by xt0 = xval or xp,0 = xval
and piecewise constant velocity signal model (shaded parts).
It can be observed from Fig. 1 that the possible range of
target location in Equations (9), (10), and (11) ismuch smaller
than the original prior information. For PFs, the more precise
prior information represented by the shaded parts indicates
fewer number of particles, and much less computational
complexity.

B. STRUCTURE OF CRPFB
Based on analysis in section III. A, CRPFB is presented and
its structure is shown in Fig. 2. In Fig. 2, the process in
the dashed box is CRPFB, xt0,m ∼ U [xmin, xmax] (U [a, b]
means uniform distribution among range [a, b]) is the exact
value assigned to xt0 of the m-th CRPF, CRPF-m dentoes
the m-th CRPF, CRPF denotes the common cost-reference
particle filter. X̂m is the estimated results provided by the
m-th CRPF, Cm

cum is the cumulated cost of the m-th CRPF,
where m = 1, 2, · · · ,M , mmin is the index of the minimum
cumulated cost, X̂mmin is filtering results of CRPFB, Cmin

cum is
the minimum cumulated cost.

It can be seen from Fig. 2 that, besides input, original prior
information and output, CRPFB includes two parts, denoting
by blue rectangle and yellow rectangle respectively. The blue
rectangle is parallel part, consisting of many parallel CPRFs,
for example, M CRPFs, using different and precise prior
information determined by Equations (9), (10), or (11). The
yellow rectangle is global part, meaning to find the minimum
cumulated cost Cmmin

cum among C1
cum,C2

cum, · · · ,CM
cum. Then

the estimated results X̂mmin of the CRPF with this Cmmin
cum is

taken as the filtering results of CRPFB.

C. PSEUDO-CODE OF CRPFB
Taking the m-th CRPF as an exmple, the pseudo-code of
CRPFB is presented as follows.
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FIGURE 2. Structure of CRPFB.

1) Initialization
At initial time instant t0, the particle-cost set of the m-
th CRPF of CRPFB is initialized as {x it0,m,C i

t0,m =

0}Ni=1, where x
i
t0,m = [xval; ẋ it0,m; yval; ẏit0,m], xval ∼

U [xmin, xmax], ẋ it0,m is sampled from the suitable range
in Equations (9), (10), or (11), the similar process can
be used to initialize yt0,m and ẏt0,m. C

i
t0,m is the cost of

the particle x it0,m, and N is the number of particles used
in the m-th CRPF.

2) Resampling
At time instant tk , resample particle-cost set
{x̃ jtk−1,m, C̃ j

tk−1,m}
N
j=1 from updated particle-cost set

{x itk−1,m,C i
tk−1,m}

N
i=1 using ‘‘weight’’ µ(C i

tk−1,m). For

CRPF, C̃ j
tk−1,m = C i

tk−1,m if and only if x̃ jtk−1,m =

x itk−1,m. µ(C
i
tk−1,m) is defined in Equation (12).

µ(C i
tk−1,m) =

(C i
tk ,m)

−q∑N
g=1(C

g
tk ,m)

−q
,

(12)

where q is a positive integer and the choice of q will be
discussed later in simulation parts.

3) Updating
At time instant tk , take updated set {x jtk ,m,C j

tk ,m}
N
j=1

based on the resampled particle-cost set
{x̃ jtk−1,m, C̃ j

tk−1,m}
N
j=1.

x jtk ,m ∼ ℵ(Ax̃ jtk−1,m,Bv),

C j
tk ,m = C̃ j

tk−1,m+ △ C j
tk ,m,

△ C j
tk ,m = ∥ztk−1∥

2
− ⟨ztk−1 , fy(x

j
tk ,m)⟩

2. (13)

where ℵ(Ax̃ jk−1,m,Bv) is Gaussian distribution with

mean Ax̃ jtk−1,m and covariance Bv. △ C j
tk ,m is the

incremental cost of the m-th CRPF at time step tk ,
which is usually defined by users to measure the
mismatch between the true state/observation and the
estimated state/observation. Here we give an example
of △ C j

tk ,m, where ⟨·, ·⟩ denotes inner product.

4) State estimation of the m-th CRPF of the CRPFB
The estimation results of them-th CRPF are denoted as
X̂m = {x̂t1,m, x̂t2,m, . . . , x̂tK ,m}, where

x̂tk ,m = x̂ jmin
tk ,m, jmin = min

j
{C j

tk ,m}
N
j=1. (14)

5) Cumulated cost of the m-th CRPF
The cumulated cost Cm

cum of the m-th CRPF is defined
in Equation (15).

Cm
cum =

K∑
k=1

(
△ Ctk ,m

)
. (15)

6) Comparison of cumulated costs
Compare cumulated costs of M CRPFs and label the
minimum one.

mmin = min
m

{C1
cum,C2

cum, · · · ,CM
cum}. (16)

7) Filtering results of CRPFB
The filtering results X̂CRPFB of CRPFB is the estimated
results of the mmin-th CRPF, which has the minimum
cumulated cost among C1

cum,C2
cum, · · · ,CM

cum.

X̂CRPFB = X̂mmin ,

X̂mmin = {x̂mmin,t1
, · · · , x̂mmin,tK

}. (17)

Because the basic principle of CRPF is to consider the
particle (or sample) with the minimum cost as the state
estimate, the estimated state sequence provided by the CRPF
with the minimum cumulated cost should also be considered
as the estimated results of CRPFB. In the CRPFB, all the
CRPFs use the same parameters except prior information;
hence it can be said that the CRPF with the minimum
cumulated cost in the CRPFB uses the prior information that
is much closer to the true state. Or we can say that the CRPF
using much more precise prior information should provide
the best state estimation results.

D. TBD ALGORITHM BASED ON CRPFB
The structure of the proposed CRPFB based batch TBD
algorithm is shown in Fig. 3, which includes four steps:
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1) estimate the state sequence of a possible signal by using
CRPFB;

2) calculate the test metric 9(ZK , X̂CRPFB) based on the
state estimation provided by the CRPFB;

3) compare 9(ZK , X̂CRPFB) with the given threshold VT ;
4) declare signal presence if 9(ZK , X̂CRPFB) exceeds VT ,

otherwise declare signal absence.
In Fig. 3, the test metric 9(ZK , X̂CRPFB) is defined as

follows.

9(ZK , X̂CRPFB) =

K∑
k=1

⟨zk , fy(x̂mmin,tk
)⟩2, (18)

where ZK = {zt1 , zt2 , · · · , ztK }.
Moreover, ZK−noise,mc denotes the mc-th noise-only obser-

vation, 9mc (ZK , X̂CRPFB) is the test metric computed from
the mc-th noise-only observation, and Mc is the total number
of noise-only observations used to estimate the threshold VT
under the given false alarm probability Pfa.
It can be seen from Fig. 3 that the proposed batch

TBD algorithm includes an online procedure and an offline
procedure. The online procedure is the shaded part to
determine the presence or absence of a target by comparing
the test metric with a given threshold VT . A target is declared
to be present if 9(ZK , X̂CRPFB) exceeds the given threshold
VT , or no target is declared.
In Fig. 3, the offline procedure in the dashed box is

to estimate the threshold VT under the given false alarm
probability Pfa, which can be estimated from the test met-
rics 91(ZK−noise, X̂CRPFB), · · · , 9Mc (ZK−noise, X̂CRPFB) of
the noise-only observations. Traditional numerical methods
such as ranking is available, but requires a large number
of noise-only observations. In next subsection, an analytical
method for estimating the threshold Pfa is introduced, which
needs much less noise-only observations.

E. ANALYTICAL THRESHOLD ESTIMATION OF TEST
STATISTIC FOR PROPOSED METHOD
Generally, the test metrics of the PF based detection
algorithms have unknown probability distributions, because
the probability distributions of state estimation is always
unknown. Usually, numerical method is used to estimate
the threshold in this case. In numerical method, the test
metric calculated from noise-only observations are sorted
in an ascending order and the test metric related to
1− Pfa is considered as the threshold. This method is simple
and requires no statistical information on the test metrics.
However, a large number of observations are required to
obtain an accurate detection threshold. For example, in the
case of Pfa = 10−3, nearly 4 × 107 noise-only observations
are required to estimate the threshold with 95% confidence
and 1% relative error [30].
By contrast, if the distribution of the test metric of the

detector was known, the threshold estimate can be easier.
For our proposed method, it can be seen from Fig. 2 and
Fig. 3 that the test metric 9mc (ZtK , X̂CRPFB) is computed

from the maxima cumulated cost among all the CRPFs of the
CRPFB and thus it obeys GEV distribution [31], [32]. Next,
9mc (ZtK , X̂CRPFB) is briefly denoted as 9mc .

The GEV distribution function G(9mc |κ, ρ, η) with loca-
tion parameter ρ, scale parameter η, and shape parameter κ

is shown in Equation (19), with −∞ < ρ < ∞, −∞ <

κ < ∞, and η > 0. The maximum likelihood estimates of
the three parameters can be obtained from fewer test metrics
in the case of noise-only observations. In this paper, we use
the function ‘‘gevfit’’ in MATLAB2016B to estimate the
three parameters of GEV distribution. Based on the GEV
distribution function, the threshold VT with given false alarm
Pfa can be estimated as illustrated in Equation (20).

G(9mc |κ, ρ, η) = exp
{
−

[
1 + κ

(
9mc − ρ

η

)]}
, (19)

where 1 + κ
9mc−ρ

η
> 0.

VT = G−1(1 − Pfa). (20)

IV. NUMERICAL EXPERIMENTS
In this section, we use two types of test signals to
evaluate the superior performance of the proposed method on
detection capability, estimation accuracy, and computational
complexity. Moreover, we show that the test metric on the
CRPFB based detector fits the GEV distribution and its
detection threshold can be analytically estimated from fewer
noise-only measurements using the GEV theory.

A. TWO TYPES OF TEST SIGNALS
In this subsection, the two types of test signals we used are
shown and the first one is first used in [27]. The first test
signal is as follows.

z1(t) = s1(t) + w(t)
= a(1 + b cos(12π t))·

exp
(
2π j

(
a1t +

a2t2

2
+
a3t3

3
+
a4t4

4

))
,

(21)

where a(1+b cos(12π t)) denotes the time-varying amplitude
which is determined by its SNR, b ∈ [0, 1], a1, a2, a3,
a4 ∈ [−20, 20], and t ∈ [0,T ] s. The measurement noise
w(t) obeys a complex generalized Gaussian distribution with
variance 1 and shape parameter 0.5 [33], and it is assumed to
be unknown. The frequency, chirp rate and SNR of s1(t) are
as follows.

f1(t) = a1 + a2t + a3t2 + a4t3,

f ′

1(t) = a2 + 2a3t + 3a4t2,

SNR = 10 log
(
a2

(
1 +

b2

2

))
(dB). (22)

The second test signal is as follows.

z2(t) = s2(t) + w(t)

= a exp(−jb cos(2π t)) + w(t). (23)
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FIGURE 3. Structure of CRPFB based detector.

where a is determined by its SNR, b ∈ [−40, 40], and
t ∈ [0,T ] s. The frequency, chirp rate and SNR of s2(t) are
as follows.

f2(t) = b sin(2π t),

f ′

2(t) = 2πb cos(2π t),

SNR = 20 log(a)(dB). (24)

B. PERFORMANCE OF CRPFB BASED DETECTOR
In this subsection, the detection performance of the pro-
posed CRPFB based TBD (Proposed) are compared with
the CRPF based TBD method (CRPF-detector) [20], FB-
CRPF based TBD (FB-CRPF-detector) [27] in terms of
detection probability curve, receiver operating characteristic
(ROC) curve, and execution time. Moreover, the impacts
of amplitude fluctuation and subinterval length on the
detection performance of the CRPFB-detector are discussed.
Finally, the reason for the superior performance of the
proposed method is explored. For all the three methods,
the possible signal is approximated as a piecewise LFM
signal and they use the same cost function as shown
in Equation (13).

Fig. 4 shows the detection probability curves provided by
the three methods, where SNR varies from -16dB to -7dB.
In Fig. 4, the sampling time is ts =

1
512 s, △T =

1
16 s, and

the probability of false alarm is Pfa = 10−3. The thresholds
for the three methods are estimated by numerical method
using 105 measurements with noises only. The detection
probabilities of the three methods are estimated by using
2,000 noisy signals.

In Fig. 4(a), the test signal is s1(t), t ∈ [0, 0.5] s, b = 0.6,
which meets the condition in Equation (9). In Fig. 4(b), the
test signal is s1(t), t ∈ [0, 1] s, b = 0.6, which meets the
condition in Equation (10). In Fig. 4(c), the test signal is s2(t),
t ∈ [0, 1] s, which meets the condition in Equation (11).

CRPF-detector uses 200, 400 and 800 particles respec-
tively in Fig. 4(a)-Fig. 4(c), so as FB-CRPF-detector. For
the proposed CRPFB-detectors in Fig. 4(a) and Fig. 4(b),
the proposed CRPFB-detector consists of 2000 CRPFs

TABLE 1. Execution time of the three detection methods for the three
simulations, SNR=−11dB, Pfa = 10−3.

and 1 particle is used in each CRPF. For the proposed
CRPFB-detector in Fig. 4(c), the measurement is divided into
4 blocks [0, 1

4 ] s, [
1
4 ,

1
2 ] s, [

1
2 ,

3
4 ] s, and [ 34 , 1] s. For each

block, the measurement is divided into K = 4 equi-length
subinterval and a CRPFB is used. The number of CRPFs used
in each CRPFB is 2,000 and the number of particles used in
each CRPF is 1. For all the results in Fig. 4, the parameter q
in Equation (12) is 5.
Besides detection probabilities, the ROC curves of the

three methods in Fig. 5 are also used to illustrate the detection
capability of the proposedmethodwith SNR=-11dB. It can be
seen from Fig 4 and Fig. 5 that the CRPFB based detector and
the FB-CRPF-detector performs better in detection.

The execution times of the three methods for the three
simulations are summarized in Table 1, where the execution
time is the average time cost of a method to detect a test
signal. For the proposed method, because of its parallel
architecture, the execution time is the summation of the
estimation time of one CRPF of the CRPFB and the detection
time. Table 1 indicates that the execution time of the proposed
method is far shorter than that of the other methods.

Next, we explore the impacts of several parameters
on CRPF-detector, FB-CRPF-detector, and the proposed
CRPFB-detector. In Fig. 6, the test signal is s1(t),T ∈

[0, 1] s, which satisfies the condition in Equation (10).
Moreover, the numbers of particles used by CRPF-detector
and FB-CRPF-detector, the number of CRPFs in the proposed
method and the number of particles in each CRPF of CRPFB-
detector are the same as that in Fig. 5(b). Fig. 6 shows the
detection performances of the three methods varying with
amplitude fluctuation, subinterval length and the parameter q
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FIGURE 4. Detection probabilities of the test signals provided by the CRPF-detector, the FB-CRPF-detector, and the proposed
method (CRPFB-detector). (a) Detection probabilities of s1(t), T = 0.5 s, b = 0.6, (b) Detection probabilities of s1(t), T = 1 s, b = 0.6,
(c) Detection probabilities of s2(t), T = 1 s.

FIGURE 5. ROC curve of the test signals provided by CRPF-detector, FB-CRPF-detector, and the proposed method
(CRPFB-detector). (a) Detection probabilities of s1(t), T = 0.5 s, b = 0.6, (b) Detection probabilities of s1(t), T = 1 s, b = 0.6,
(c) Detection probabilities of s2(t), T = 1 s.

FIGURE 6. Impacts of amplitude fluctuation, subinterval length and the parameter q on detection performance of
CRPFB-detector, CRPF-detector, and FB-CRPF-detector, SNR=-11dB. (a) Detection probabilities versus b, △T =

1
16 s, q = 5.

(b) Detection probabilities versus △T , b = 0.6, q = 5. (c) Detection probabilities versus q, b = 0.6, △T =
1
16 s.

in Equation (12). In Fig. 6(a), b = 0.1, 0.2, · · · , 0.9 controls
the amplitude fluctuation of s1(t) and large b represents strong
fluctuation, △T =

1
16 , q = 5; in Fig. 6(b), subinterval length

△T =
1
128 ,

1
64 ,

1
32 ,

1
16 ,

1
8 ,

1
4 , b = 0.6, q = 5; in Fig. 6(c),

the parameter in Equation (12) is set as q = 1, 2, · · · , 10,
b = 0.6, △T =

1
16 .
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Fig. 6(a) shows that the impact of amplitude fluctuation
on the proposed method and other two methods is small,
because the amplitude of possible signal in the state-space
model we used is removed. Fig. 6(b) indicates that the three
methods achieve best detection performances with △T =

1
8 ,

which means that a proper subinterval length is necessary and
the piecewise LFM model is suitable with this subinterval
length. Fig. 6(c) reveals that the parameter q has no impact
on the proposed CRPFB-detector, because this parameter is
related with resampling process and the resampling process
is removed in the proposed method with only 1 particle using
in each CRPF of CRPFB. On the other hand, the parameter q
has slightly impact on the other two methods. CRPF-detector
achieves best performance with q = 5, and FB-CRPF-
detector obtains good performance when q ≥ 3.
The aforementioned simulation results illustrate that, the

detection probability of the proposed method is better than
that of CRPF-detector in all the three simulations. Compared
with FB-CRPF-detector, the detection probability of the
proposed method is comparable in the first two simulations
and is better in the third simulation. Moreover, the execution
time of the proposed method is much shorter than that
of CRPF-detector and FB-CRPF-detector. For example, the
execution time of the proposed method is about 1 percent
of that of FB-CRPF-detector. In addition, the impacts of
amplitude fluctuation and parameter q in Equation (12) on the
proposed method are small, and thus the proposed method is
more robust.

C. RESULTS ANALYSIS OF CRPFB BASED DETECTOR
In this part we explore why the proposed method has good
detection performance among the three methods. For CRPF-
detector, the FB-CRPF-detector, and the proposed method,
the test metrics are GLR, bi-feature including GLR and
TV, and GLR. These test metrics are obtained by using
the IF estimations. Therefore, the accuracy of IF estimation
is crucial for detection capability of these methods, and
the execution time of IF estimation is crucial for detection
speed. Fig. 7(a), (b), and (c) shows the root mean square
errors (RMSEs) of the IF estimations of the test signals
corresponding to Fig. 4(a), (b), and (c) respectively, where
the RMSE is calculated in terms of Equation (25),

RMSE =

√√√√T
ts

Ls∑
ls=1

(f − f̂ ). (25)

where f̂ is the estimation of the IF curve, with f̂ =

[f̂1, f̂2, . . . , f̂K ], f̂k = x̂k (1) + x̂k (2)tsL, L = 0, 1, . . . , 31, and
Ls = T/ts. Table 2 shows the execution times of the CRPF,
FB-CRPF, and CRPFB to estimate the IF curve of test signals,
where the execution time is to estimate the IF curve of a test
signal. It can be seen from Fig. 7 and Table 2 that our CRPFB
method achieves the best accuracy of IF estimation using the
shortest execution time. Thus, the CRPFB is the main reason
for the good detection performance of the proposed method.

TABLE 2. Execution time of the three estimation methods for the three
simulations, SNR=−11dB, Pfa = 10−3.

D. PERFORMANCE OF THE CRPFB
In this subsection we discuss the performance of the CRPFB,
because it is the key factor for the good detection performance
and short execution time of the proposed method.

The simulation results in Section IV-B indicate that the
CRPFB based detector obtains good detection performance
with short execution time. The reason is that the proposed
CRPFB has an entirely parallel architecture and uses precise
prior information. Actually, there have been many attempts
for parallel architectures for PFs, which mainly focus on
parallel architectures of resampling procedures for PFs.
These resampling architectures for parallel implementation
mainly include local resampling (LR) [34], resampling with
nonpropotional allocation (RNA) [35], and resampling using
Metropolis Hastings (IMH) sampler [36].

Fig. 8 shows the RMSEs versus SNRs, provided by the
CRPFB, CRPF, CRPF using LR (CRPF-LR), CRPF using
IMH (CRPF-IMH), and CRPF using RNA (CRPF-RNA).
Fig. 9 shows the corresponding RMSEs at each time instant.
Fig. 10 shows the estimated IF of the three kinds of test
signals overlaid on true frequencies (random examples of the
test signals). The test signals in Fig. 8, Fig. 9, and Fig. 10 are
the same as that in Fig. 4.

The parameters used in Fig. 8(a), Fig. 9(a), and Fig. 10(a)
are as follows: the CRPF-RNA uses 200 particles and
50 processing elements; the CRPF-LR uses 200 particles
and 200 processing elements; the CRPF-IMH uses 200 par-
ticles and 100 independent Metropolis Hastings samplers;
and the CRPFB uses 2,000 CRPFs and 1 particle in
each CRPF.

The parameters used in Fig. 8(b), Fig. 9(b), and Fig. 10(b)
are as follows: the CRPF-RNA uses 400 particles and
100 processing elements; the CRPF-LR uses 400 particles
and 400 processing elements; the CRPF-IMH uses 400 parti-
cles and 200 independent Metropolis Hastings samplers; and
the CRPFB uses 2,000 CRPFs and 1 particle in each CRPF.

The parameters used in Fig. 8(c), Fig. 9(c), and Fig. 10(a)
are as follows. the CRPF-RNA uses 800 particles and
200 processing elements; the CRPF-LR uses 800 particles
and 800 processing elements; the CRPF-IMH uses 800 par-
ticles and 400 independent Metropolis Hastings samplers;
and the CRPFB uses 2,000 CRPFs and 1 particle in each
CRPF.

It can be seen from Fig. 8, Fig. 9, and Fig. 10 that the
CRPFB has the best estimation accuracy and the fastest
convergence.

Fig. 11 shows the execution times for the aforementioned
methods to process s1(t) with t ∈ [0, 0.5] s, s1(t) with
t ∈ [0, 1] s, and s2(t) with t ∈ [0, 1] s, where the execution
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FIGURE 7. RMSEs of the test signals provided by CRPF, FB-CRPF, and the proposed CRPFB, (a) s1(t), T = 0.5 s, b = 0.6, (b) s1(t),
T = 1 s, b = 0.6, (c) s2(t), T = 1 s.

FIGURE 8. RMSEs of the two test signals provided by CRPF, CRPF using LS, RNA, IMH, and CRPFB,(a) s1(t), T = 0.5 s, b = 0.6,
(b) s1(t), T = 1 s, b = 0.6, (c) s2(t), T = 1 s.

FIGURE 9. RMSEs of the three types of test signals vary with observation time provided by CRPF, CRPF using LS, RNA, IMH, and
CRPFB, SNR=-11dB, (a) s1(t), T = 0.5 s, b = 0.6, (b) s1(t), T = 1 s, b = 0.6, (c) s2(t), T = 1 s.

time of each method is the time of each method to estimate
the IF curve of a test signal. For these CRPFs using parallel
resampling algorithms, the execution time is approximated as
the total time of estimating a test signal divided by the number
of parallel resamplers. It can be seen that the execution time

of the CRPFs using parallel sampling procedures is greatly
shortened. And CRPF-LR and CRPFB have the shortest
execution time.

The simulation results in Figs. 8, 9, 10 and 11 show
that, compared with the CRPFs using parallel resampling
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FIGURE 10. True frequencies versus estimated IFs provided by CRPF, CRPF using LS, RNA, IMH, and CRPFB, SNR=-11dB, (a) s1(t),
T = 0.5 s, b = 0.6, (b) s1(t), T = 1 s, b = 0.6, (c) s2(t), T = 1 s.

FIGURE 11. Execution time comparison of CRPF-IMH, CRPF-LR,
CRPF-RNA, and CRPFB.

algorithms, the CRPFB achieves best IF estimation accuracy
with shortest execution time.

It is worth to note that there are two important parameters in
the CRPFB, the number of CRPFs used in the CRPFB and the
number of particles used in each CRPF. Next we explore the
impact of these two parameters on the IF estimation accuracy
of the CRPFB. Fig. 12 shows that the RMSEs of s1(t),
t ∈ [0, 0.5] s, s1(t), t ∈ [0, 1] s, and s2(t), t ∈

[0, 1] s vary with the number of particles used in each
CRPF and the number of CRPFs used in the CRPFB. It can
be seen that the proposed CRPFB obtains best estimation
results when the number of particles used in CRPFs of
CRPFB is 1. And the RMSEs of the test signals increase
with the increases of the CRPFs. The reason is that the prior
information provided for the CRPFs of the CRPFB is more
precise with the increases in the number of CRPFs.Moreover,
the principle of determining the number of CRPFs of CRPFB
is unclear. It can be seen from Fig. 12 that, with 1 particle
used in each CRPF, the proposed CRPFB obtains similar
estimation results when the number of CRPFs of CRPFB is
larger than 1000.

It is an important issue to determine the number of CRPFs
used in the CRPFB. Simulation results in Fig. 12 shows
that the number of particles required by each CRPF can be
reduced to 1 with a large enough number of CRPFs. And
the CRPFB can be fully and quickly implemented in parallel.
However, it is hard to determine the proper number of CRPFs
for a special problem. The problem is similar to the problem
of determining the number of particles in PFs. However, the
simulation results shown from Fig. 5 to Fig. 12 indicate that,
for a special problem, the number of CRPFs required by
the CRPFB is nearly 4∼5 times of the number of particles
required by PFs.

E. EVALUATION OF DETECTION THRESHOLD VT VIA
GENERALIZED EXTREME VALUE THEORY
In this subsection, first, we show that the proposed method
under hypothesis H0 fits the GEV distribution. Then the
detection threshold under a given false alarm Pfa is estimated
by using the GEV distribution.

The GEV provides a model for the distribution of
block maxima. In the proposed method, the test metric
9(ZK , X̂CRPFB) is naturally the block maxima. The block
size is the number of CRPFs used in the CRPFB. We will
check the GEV model for the test metrics on H0. Fig. 13
shows the diagnostic plots of the test metric of the second
simulation on H0, where the prior information of the
possible signal is f (t) ∈ [−80, 80] Hz and f ′(t) ∈

[−120, 120] Hz/s, and 2,000 CRPFs and 1 particle for each
CRPF are used. The diagnostic plots can be used to compare
with the probability function, the quantile, the return level,
and the probability density plotted on empirical and the
GEV models. In Fig. 13, the empirical plots are obtained
from 105 test metrics in (18) on H0, and the parameters
for the GEV model are estimated from only 1, 500 test
metrics in (18) on H0.

Fig. 13(a) shows the empirical and GEV model-based
distribution functions. The empirical distribution function
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FIGURE 12. RMSEs of the two test signals provided by the CRPFB using different numbers of particles and CRPFs, SNR=-10dB,
(a) Detection probabilities of s1(t), T = 0.5 s, b = 0.6, (b) Detection probabilities of s1(t), T = 1 s, b = 0.6, (c) Detection probabilities
of s2(t), T = 1 s.

FIGURE 13. Diagnostic plots for GEV fit to the test metrics of the CRPFB based detector, (a) Probability plot, (b) Quantile plot,
(c) Return level plot, (d) Density plot.

is estimated by Monte Carlo simulation from test metrics
9mc (ZK , X̂CRPFB) with mc = 1, . . . ,Mc on H0, and
Mc = 105. The GEV model-based distribution function is
calculated with Equation (18), where the GEV parameters are
estimated from 1,500 test metrics on H0. It can be seen from
Fig. 13(a) that the empirical probabilities and GEV model-
based probabilities are almost equal, and the line consisting
of the two types of probabilities lies close to the unit diagonal.
It means that the GEV model works well.

Fig. 13(b) shows the GEV model-based quantiles and
the empirical quantiles, where Ĝ−1(mc/(Mc + 1)) is the
GEV model-based quantile corresponding to the probability
mc/(Mc + 1), and 9mc (ZK , X̂CRPFB) denotes the empirical
quantile corresponding to the probability mc/(Mc + 1). It can
be seen from Fig. 13(b) that the GEV model-based quantiles
and the empirical quantiles are almost equal, and the line
consisting of the two types of probabilities lies close to the
unit diagonal. It also illustrates that the GEV model works
well.

Fig. 13(c) shows the GEV model-based return level
Ĝ−1(mc/(Mc + 1)) against log(−log(1 − mc/(Mc + 1),
and empirical return level 9mc (ZK , X̂CRPFB) against

log(−log(1 − mc/(Mc + 1). It can be seen from Fig. 13(c)
that the GEV model-based curve and the empirical estimates
are in reasonable agreement. It suggests that the GEV model
is adequate.
Moreover, the density function plot in Fig. 13(d) is a

comparison of an empirical probability density function
based on the histogram of the test metrics on H0 and the
model-based probability density function based on the GEV
model.
Fig. 13 shows that all the diagnostic plots provide support

to the use of the GEV model. It means that the GEV model
with the parameters estimated from fewer test metrics on H0
can be used to describe the distribution of the test metrics
on H0. For example, in Fig. 13, the GEV model is estimated
from only 1,500 test metrics onH0, and the model fits well to
the empirical distribution estimated from 105 test metrics on
H0. By this way, the distribution of the test metrics onH0 can
be estimated from fewer observation data and the detection
threshold can easily be expanded.
Based on the GEVmodel estimated from fewer test metrics

on H0, Fig. 14 compares the GEV model-based thresholds
and the empirical thresholds. The empirical thresholds in

VOLUME 11, 2023 121699



J. Lu et al.: TBD Algorithm Based on CRPFB for Weak Target Detection

FIGURE 14. Comparison of GEV model-based threshold and empirical threshold, (a) Comparison of GEV model-based threshold
and empirical threshold for Pfa = 10−2, (b) Comparison of GEV model-based threshold and empirical threshold for Pfa = 10−3.

Fig. 14 are estimated by Monte Carlo simulations using
105 test metrics on H0. The GEV model-based thresholds in
Fig. 14 are the means of thresholds estimated from a different
number of the test metrics on H0. Each mean of the GEV
model-based thresholds is calculated from 1,000 points.

It can be seen from Fig. 14(a) that, in the case of
Pfa = 10−2, the empirical threshold and the GEV model-
based threshold are very close to each other. And the model-
based thresholds are stable when the parameters of GEV
are estimated from more than 1,500 test metrics on H0. The
results in Fig. 13(a) show that the GEV model fits well with
the test metrics on H0.
However, Fig. 14(b) indicates that, in the case of

Pfa = 10−3, there are some differences between the empirical
threshold and the GEV model-based thresholds. The reason
is that the number of the test metrics onH0 used for empirical
estimation is not large enough. In the case of 95% confidence
level of Pfa = 10−2, the empirical threshold estimated from
105 test metrics onH0 has about 6% relative error. To achieve
a similar confidence level and relative error, the empirical
threshold with Pfa = 10−3 requires about 106 test metrics on
H0. Therefore, the GEV model can help dramatically reduce
the number of the test metrics onH0 for threshold estimation.

V. CONCLUSION
This paper proposes an entirely parallel architecture of CRPF,
i.e., CRPFB, for weak target detection. The problem of weak
target detection is converted to a two-layer hypotheses test.
The first layer of the hypotheses test is to estimate the IF curve
of a possible target, which is implemented by the CRPFB.
In this step, many types of detailed prior information are
hypothesized. The CRPFs using different prior information
are implemented in parallel and the output of the CRPF
with the minimum cumulated cost is taken as the IF curve
estimation results for the CRPFB. The second layer of the
hypotheses test is to determine whether a target is present
or not. In this step, the test metrics proportional to GLR and
based on the IF curve estimation provided by the CRPFB is
obtained and is compared with a given threshold. A target is

declared to be present if the test metrics exceeds the threshold.
Simulation results illustrate that the proposed CRPFB based
detector has high detection capability, superior estimation
capability, and low computational complexity. Moreover, the
proposed method for threshold estimation fits well to the
GEV model. Thus the GEV model estimated from fewer H0
can be used for threshold estimation.
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