
Received 8 October 2023, accepted 25 October 2023, date of publication 1 November 2023, date of current version 6 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3329055

Adaptive Backstepping Stabilization of
Thermoacoustic Instability in a Linearized
ODE-PDE Rijke Tube Model
ELHAM AARABI 1, MOHAMMADALI GHADIRI-MODARRES2, AND MOHSEN MOJIRI 1
1Department of Electrical and Computer Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111, Iran
2Department of Electrical Engineering, Arak University of Technology, Arak, 38181-46763 Iran

Corresponding author: Mohsen Mojiri (mohsen.mojiri@iut.ac.ir)

ABSTRACT This paper proposes an adaptive scheme for the boundary stabilization of thermoacoustic
instability in the Rijke tube system using the backstepping method. The mathematical model of the system
is characterized by a 2 × 2 linear hyperbolic partial differential equation (PDE) coupled with a first-order
ordinary differential equation (ODE) in a non-strict-feedback form. Recently, a full state feedback controller
has been developed to stabilize the system, assuming that the parameters of themodel are known.We take into
account themost common uncertain parameters which result in the coefficients of the first-order ODE system
being unknown parameters. The technique of adaptive identifier is then used along with the normalized
gradient algorithm to achieve the parameter update laws. The adaptive control law is obtained by replacing
the output of the identifier and estimated parameters in the non-adaptive state feedback control law. The
adaptive control law is then manipulated such that it uses a few measurements of the PDE states. According
to the stability analysis of the system, the proposed controller guarantees that all closed-loop system states
are bounded, while the ODE-PDE system states are convergent to zero. Performance of the proposed scheme
is evaluated by the simulation examples.

INDEX TERMS Adaptive stabilization, backstepping method, ODE-PDE system, Rijke tube, thermoacous-
tic instability.

I. INTRODUCTION
A. MOTIVATION
Thermoacoustic instability phenomenon is a serious chal-
lenge affecting the structure of steam and gas turbines, indus-
trial burners, and propulsion systems [1]. This instability
arises from the unstable feedback coupling between the heat
release rate and acoustic pressure [2]. The Rijke tube is an
academic set-up that provides an accessible platform to study
the thermoacoustic instability. Fig. 1 illustrates the basic
Rijke tube apparatus composed of a vertical open-ended glass
tube, with a high length to diameter ratio and a heater coil
placed at the lower half of the tube [2]. The coil transfers heat
to its adjacent air volume, which then expands and results in
acoustic pressure and velocity oscillations [3]. At the heating
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area, the acoustic pressure perturbs the heat release rate,
while the coil feeds energy into the acoustic field, which
can lead to their resonant growth. For some critical value of
the heat power, the tube will begin to hum loudly, which is
the manifestation of instability [2]. A speaker mounted near
the bottom of the tube is used as an actuator to suppress the
oscillations.

A practical example fitting into the Rijke tube model is
the thermoacoustic instability phenomenon happening in the
combustion process of the gas turbine engine. As illustrated
in Fig. 2, the combustor is an area of the gas turbine where the
chemical reaction of fuel and air occurs. The air is supplied
by the compressor which increases the air pressure. The
combustor adds energy to this pressurized air by spraying fuel
and igniting it so that the high-temperature pressurized gas
is released. The products of combustion are then converted
into work by the turbine. The potential coupling between the
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FIGURE 1. Illustration of the main components of the Rijke tube [2].

pressure and heat release rate can generate thermoacoustic
instability, which results in large vibrations and damage to the
components of the turbine [1]. The feedback control issues
appearing in combustion instabilities of gas turbine engine are
also present in the Rijke tube experiment [5]. The injection
of fuel into the flowing air that causes combustion in the
combustor resembles the injection of heat into the air within
the Rijke tube. The heat release is dynamically coupled to
the acoustic in both systems, which causes thermoacoustic
instability.

B. LITERATURE REVIEW
The earliest efforts to stabilize thermoacoustic instability
that relies on the finite-dimensional approximation of the
system include passive controllers [6], linear quadratic
regulator controllers [7], and phase shift controllers [8].
Later, by the continuum backstepping method for the partial
differential equations (PDEs), the boundary stabilization of
thermoacoustic instability in the Rijke tube modeled by a
wave PDE containing a destabilizing term at its uncontrolled
boundary has been addressed in [9] and [10]. These studies
primarily have assumed that the flame front appears at the
boundary. In [11], the Rijke tube with an in-domain heating
element is considered, and the boundary feedback control
law is designed, which exponentially stabilizes the system.
However, the heat release dynamics which models the
interaction between the heating element and the surrounding
air has been neglected.

Recently, a more realistic model of the Rijke tube system
has been taken into account; it considers both the in-domain
heating element and the heat release dynamics. The model
is described by a 2 × 2 linear hyperbolic partial differential
equation (PDE) coupled with a first-order ordinary differen-
tial equation (ODE). The 2×2 PDE acts like a wave equation
and represents the dynamics of the acoustic velocity and
pressure along the tube, and the ODE models the heat release
dynamics. The non-strict-feedback connection between the
PDE and ODE, and the Dirac delta distribution applied to
model the heat release as a point source term make the design

FIGURE 2. Gas-turbine schematic [4].

and analysis more challenging. Assuming the parameters of
the model are known, [5] develops a full state feedback
boundary controller to stabilize the system by introducing
an integral transformation with Volterra and Fredholm terms.
However, in practical applications, the mathematical model
of the system has uncertain parameters; these include the
unknown heat release time constant, the unknown steady-
state velocity, and the unknown wire temperature [5]. This
motivates us to design an adaptive backstepping controller for
the stabilization of the ODE-PDE Rijke tube model.

Adaptive backstepping control of PDEs with uncertain
parameters has also been studied in the recent years
and several constructive approaches which can be broadly
classified as Lyapunov-based design, passivity-based design,
and swapping-based design have been developed [12]. For
hyperbolic PDEs, adaptive control of a single hyperbolic
PDE with a non-local source term has been presented in
[13]. The method has been later extended to second-order
hyperbolic PDEs [10], 2× 2 coupled linear hyperbolic PDEs
[14], [15], n + 1 coupled linear hyperbolic PDEs [16], and
general n+m coupled linear hyperbolic PDEs [17]. Over the
last two decades, the backstepping control of ODEs coupled
to PDEs with both known and unknown parameters has
been extensively investigated in the literature, such as [18],
[19], [20], [21], [22], [23], [24], [25], and [26]. Recently,
adaptive control of linear 2 × 2 hyperbolic PDEs coupled
with an uncertain ODE has been considered in [27] and [28].
However, in these studies, the ODE-PDE connection is in
the strict-feedback form, and the input matrix of the ODE is
assumed to be known.

C. CONTRIBUTIONS
This paper focuses on the linearized ODE-PDE model of
the Rijke tube system wherein the coefficients of the ODE
are unknown. The objective is to design an adaptive control
law for the boundary stabilization of the system using
the infinite-dimensional backstepping approach. The salient
feature of the backstepping method is that it leads to an
explicit control law. To design the controller, we do not
use the finite-dimensional approximation of the plant by
performing spatial discretization. Instead, we develop our
adaptive scheme for the nondiscretized plant in the continuum
domain, which is more elegant as it is independent of the
discretization scheme. Moreover, as mentioned in [12], if
one first obtains the spatially discretized version of the plant
and then applies finite-dimensional adaptive backstepping
methods for ODEs [29], [30], [31], the control gains do not
converge upon grid refinement.
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There are a number of challenges in the adaptive control
of the ODE-PDE Rijke tube model considered in this paper.
First, the model has a discontinuity point in the domain that
is raised by the Dirac delta distribution. As a consequence,
careful attention should be paid when designing the update
laws to ensure the boundedness and square integrability of the
relevant signals. Second, both the state and input coefficients
of the ODE subsystem are unknown and the controller
can have access to them through an infinite-dimensional
dynamics which has infinite eigenvalues on the imaginary
axis [5]. These issues make us follow an identifier-based
adaptive control. The proposed adaptive scheme consists
of two modules, namely, the adaptive identifier and the
controller. The adaptive identifier module has two roles:
(i) providing the update laws for the online estimation of
the unknown parameters, and (ii) reconstructing the ODE
state of the Rijke tube model as the identifier output.
The controller module receives the online estimates of the
unknown parameters, along with the identifier output, and
provides the adaptive control law. This adaptive control law
is reformulated, such that it requires a few measurements of
the PDE states along the tube.

Another challenging task is to show that the proposed
controller-identifier pair guarantees closed-loop stability,
which is carried out with a rigorous perspective. Specifically,
we propose an infinite-dimensional adaptive backstepping
transformation that converts the system alongwith the control
law into a new system called the target system, which is
more convenient for stability analysis. The boundedness
and regulation of the target system are meticulously laid
out with a suitable Lyapunov function. The backstepping
transformation is invertible, which enables us to establish the
norm equivalence between the target system and the original
system. The effects of disturbances, nonlinear heat release
dynamics, and actuator dynamics on the performance of the
proposed scheme are studied using numerical simulations.
For clarity, the comparisons with the recent results are
summarized as follows:

• As compared to the previous results in [32], [33],
[34], and [35], which rely on the finite-dimensional
approximation of the system, the proposed adaptive
scheme takes into account the distributed features of
the system. Moreover, using the continuum version
of the backstepping method, we meticulously laid out
the stability analysis of the complete feedback system
consisting of the ODE-PDE Rijke tube model and the
proposed infinite-dimensional adaptive control law.

• Different from adaptive control designs [9], [10], this
paper focuses on the more realistic model of the
Rijke tube system that takes into account the heat
release dynamics and both the downstream and upstream
parts of the tube. In fact, the plant is extended from
an anti-damped wave PDE to the non-strict-feedback
connection of a PDE and an ODE, which is more
challenging.

TABLE 1. Notation.

• Compared with recent results on the adaptive control of
a 2× 2 coupled hyperbolic PDE cascaded with an ODE
through the boundary [27], [28], this paper solves a more
challenging problem in which the ODE is connected
not at the boundary, but rather, at an interior point of a
2 × 2 system of coupled hyperbolic PDE via a Dirac
delta distribution. In fact, the Rijke tube model falls
into a special class of the so-called sandwich systems
[36]. Moreover, we consider the situation in which the
unknown parameters exist at the state and the input
coefficients of the ODE.

D. ORGANIZATION
The remainder of this paper is organized as follows: Section
II presents the adaptive control problem under consideration
and Section III reviews the non-adaptive scheme. The
proposed adaptive scheme is discussed in Section IV, and
the stability analysis of the closed-loop system is investigated
in Section V. Simulation studies are then presented in
Section VI and conclusions are provided in Section VII.

E. NOTATION
Table 1 shows the notations adopted in this paper.

II. PROBLEM STATEMENT
The linearized ODE-PDE model of thermoacoustic oscilla-
tions in the Rijke tube system is described by [2]

∂tv(x, t) +
1
ρ̄

∂xP(x, t) = 0,

∂tP(x, t) + γ P̄∂xv(x, t) =
γ − 1
A

δ(x − x0)Q(t),

τ Q̇(t) = −Q(t) + f ′(v̄)(Tw − T̄ gas)v(x0, t), (1)
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with the boundary conditions

P(0, t) = U (t), P(l, t) = ZLv(l, t), (2)

where (x, t) ∈ [0, l] × R+ and f (v) = lw(κ + κv
√

|v|). The
parameters of the model (1)-(2) are given in Table 2. The PDE
states v(x, t) and P(x, t) represent the fluctuations of acoustic
velocity and pressure along the tube, respectively. The ODE
stateQ(t) represents the heat power release by the coil located
at x0 ∈ (0, l/2). This ODE state is connected to the PDE states
via the Dirac delta distribution, δ.

The Rijke tube model (1)-(2) can be reformulated through
applying the Riemann coordinates [11]

P(x, t) =
1
2

(
R1(x, t) + R2(x, t)

)
,

v(x, t) =
1

2
√

γ P̄ρ̄

(
R1(x, t) − R2(x, t)

)
, (3)

into a 2× 2 transport PDEs convecting in opposite directions
with a point source term

∂tR1(x, t) + λ∂xR1(x, t) =
γ − 1
A

δ(x − x0)Q(t),

∂tR2(x, t) − λ∂xR2(x, t) =
γ − 1
A

δ(x − x0)Q(t),

Q̇(t) = −ζQ(t) + c
(
R1(x0, t) − R2(x0, t)

)
, (4)

with the boundary conditions

R1(0, t) = −R2(0, t) + 2U (t), R2(l, t) = αR1(l, t), (5)

where ζ = 1/τ , c =
f ′(v̄)(Tw−T̄gas)

2τ
√

γ P̄ρ̄
, λ =

√
γ P̄

ρ̄
and

α =
ZL−ρ̄λ
ZL+ρ̄λ . Assuming that the parameters of the model are

known, a full state feedback boundary controller has been
developed in [5].
From a practical standpoint, there are uncertain parameters

in the mathematical model of the system; these include the
unknown heat release time constant, τ , unknown steady-
state velocity, v̄, and unknown wire temperature, Tw [5].
The uncertainty in these parameters leads to the unknown
coefficients, ζ and c, of the ODE system (4). The goal is
to develop an adaptive control law U (t) that stabilizes the
system (4)-(5) in which ζ and c are treated as unknown
parameters and can be estimated by an adaptive mechanism.

The uncertain parameters τ , v̄ and Tw in the ODE system
of (1) are assumed to belong to some intervals. Therefore,
we consider the following assumption for the coefficients ζ

and c in the ODE system of (4).
Assumption 1: There exist positive and known constants

ζ , ζ̄ and c, c̄ such that ζ ∈ [ζ , ζ̄ ] and c ∈ [c, c̄].

III. OVERVIEW OF THE NON-ADAPTIVE SCHEME
The proposed adaptive stabilization scheme builds upon a
recent effort [5] which considered the boundary stabilization
of (4)-(5) when all parameters of the model are known. As a
foundation for our work, in this section, we briefly review the
design procedure of the non-adaptive scheme of [5].

TABLE 2. The parameters of the Rijke tube model (1)-(2).

At first, the spatial domain of the system is folded at the
discontinuity point, x0, raised by the Dirac delta distribution.
Specifically, by introducing the folding transformation

z =


x
x0

, x ∈ [0, x0]

l − x
l − x0

, x ∈ [x0, l]
(6)

along with the new state variables

R11(x, t) = R1(x, t), x ∈ [0, x0]

R12(x, t) = R2(x, t), x ∈ [0, x0]

R21(x, t) = R1(x, t), x ∈ [x0, l]

R22(x, t) = R2(x, t), x ∈ [x0, l] (7)

the Rijke tube model (4)-(5) is reformulated as

∂tR11(z, t) + λ1∂zR11(z, t) = 0,

∂tR12(z, t) − λ1∂zR12(z, t) = 0,

∂tR21(z, t) − λ2∂zR21(z, t) = 0,

∂tR22(z, t) + λ2∂zR22(z, t) = 0,

Q̇(t) = −ζQ(t) + c
(
R11(1, t) − R22(1, t)

)
, (8)

with the boundary conditions

R11(0, t) = −R12(0, t) + 2U (t),

R12(1, t) = R22(1, t) + c1Q(t),

R21(1, t) = R11(1, t) + c1Q(t),

R22(0, t) = αR21(0, t), (9)

where c1 =
γ−1
λA , λ1 =

λ
x0

and λ2 =
λ

l−x0
.

As the next step, the infinite-dimensional backstepping
method is used to determine the control law. The basic idea of
this method is to use an invertible integral transformationwith
bounded kernels along with a control law to transform the
original system into the so-called target systemwith desirable
stability properties. For this purpose, the stable target system
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is chosen as

∂tS11(z, t) + λ1∂zS11(z, t) = 0,

∂tR12(z, t) − λ1∂zR12(z, t) = 0,

∂tR21(z, t) − λ2∂zR21(z, t) = 0,

∂tR22(z, t) + λ2∂zR22(z, t) = 0,

Q̇(t) = −
(
ζ + c1c

)
Q(t) + c

(
S11(1, t) − R22(1, t)

)
, (10)

with the boundary conditions

S11(0, t) = 0,

R12(1, t) = R22(1, t) + c1Q(t),

R21(1, t) = S11(1, t),
R22(0, t) = αR21(0, t). (11)

This target system has a cascade structure and the boundary
condition S11(0, t) = 0 has a crucial role in the stability of
the system. Notice in particular that the unforced transport
PDE for S11(z, t) drives the transport PDE for R21(z, t),
which subsequently drives the transport PDE for R22(z, t).
Therefore, S11(z, t) = 0, ∀t ≥ λ−1

1 , and then R21(z, t) =

0, ∀t ≥ λ−1
1 + λ−1

2 , and subsequently R22(z, t) = 0, ∀t ≥

λ−1
1 + 2λ−1

2 . For t ≥ λ−1
1 + 2λ−1

2 , we have Q̇(t) = −
(
ζ +

c1c
)
Q(t) and R12(1, t) = c1Q(t). Therefore, Q(t), and then,

R12(z, t) approaches zero.
In order to map (8)-(9) into (10)-(11), the invertible

backstepping transformation is introduced as

S11(z, t) = R11(z, t) −

∫ 1

z
K (z, ξ )R11(ξ, t)dξ

−

∫ 1

0
G(z, ξ )R22(ξ, t)dξ − ϕ(z)Q(t), (12)

where K (z, ξ ) is the kernel of a Volterra-type integral
transformation defined on

T0 =
{
(z, ξ ) ∈ R × R | 0 ⩽ z ⩽ ξ ⩽ 1

}
, (13)

and G(z, ξ ) is the kernel of a Fredholm-type integral
transformation defined on

T1 =
{
(z, ξ ) ∈ R × R| 0 ⩽ ξ ⩽ 1, 0 ⩽ z ⩽ 1

}
. (14)

By matching the system (8)-(9) and the target system (10)-
(11), the kernel equations are obtained as

∂ξK (z, ξ ) + ∂zK (z, ξ ) = 0,

∂ξG(z, ξ ) +
λ1

λ2
∂zG(z, ξ ) = 0,

λ1∂zϕ(z) − ζϕ(z) = 0,

λ1K (z, 1) − cϕ(z) = 0,

λ2G(z, 1) + cϕ(z) = 0,

G(z, 0) = 0. (15)

The well-posedness of (15) is shown in [5], and the explicit
solutions of the kernels are obtained as

ϕ(z) = −c1e
(z−1)ζ

λ1 , z ∈ [0, 1]

K (z, ξ ) =
c
λ1

ϕ(z− ξ + 1),

G(z, ξ ) =


0, ξ ⩽ 1 +

λ2

λ1
(z− 1)

−
c
λ2

ϕ
(
z−

λ1

λ2
(ξ − 1)

)
, ξ > 1 +

λ2

λ1
(z− 1)

(16)

The state feedback control law is obtained by substituting
the boundary conditions S11(0, t) = 0 and R11(0, t) =

−R12(0, t) + 2U (t) into (12) as [5]

U (t) =
1
2

(
R12(0, t) +

∫ 1

0
K (0, ξ )R11(ξ, t)dξ

+

∫ 1

0
G(0, ξ )R22(ξ, t)dξ + ϕ(0)Q(t)

)
. (17)

Experimentally, the control law (17) can not be used for the
boundary stabilization of thermoacoustic oscillations in the
Rijke tube due to the requirement of full state measurement
[5]. Therefore, a full state observer for the Rijke tube using a
single boundary acoustic pressure sensor has been presented
in [37].

In what follows, we develop an adaptive control law using
a few measurements of states, while the coefficients of the
first-order ODE in (4) are unknown.

IV. PROPOSED ADAPTIVE SCHEME
In this section, an adaptive control scheme is proposed for the
stabilization of thermoacoustic instability in the Rijke tube
model (4)-(5) with the unknown parameters ζ and c. The
proposed adaptive scheme is formed by combining an online
parameter estimator with a control law inspired by the known
parameter case.

A. UPDATE LAWS
In this section, we consider the design of the adaptive laws
for online estimation of the unknown parameters. Consider
the heat release dynamics in the Rijke tube model described
by

Q̇(t) = −ζQ(t) + c
(
R11(1, t) − R22(1, t)

)
, (18)

where ζ and c are the unknown parameters to be estimated.
To develop the estimator, we first convert the dynamical
model (18) into the static parametric model where the
unknown parameters appear in a linear form and then
we use the standard gradient algorithm. By taking the
Laplace transform on both sides of (18), ignoring the initial
conditions, we have

sQ(s) = −ζQ(s) + c
(
R11(1, s) − R22(1, s)

)
, (19)
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where s denotes the Laplace variable. Let γ1 be a positive real
number, then

(s+ γ1)Q(s) =
(
γ1 − ζ

)
Q(s) + c

(
R11(1, s) − R22(1, s)

)
,

(20)

which is equivalent to

Q(s) =
(
γ1 − ζ

) Q(s)
s+ γ1

+ c
R11(1, s) − R22(1, s)

s+ γ1
. (21)

Define

q(s) =
Q(s)
s+ γ1

,

r(s) =
R11(1, s) − R22(1, s)

s+ γ1
, (22)

or, in the time domain
q̇(t) = −γ1q(t) + Q(t),

ṙ(t) = −γ1r(t) +

(
R11(1, t) − R22(1, t)

)
. (23)

Then, we can represent (21) in the time domain as

Q(t) = (γ1 − ζ )q(t) + cr(t) + ϵ(t), (24)

where ϵ(t) is due to the initial conditions. According to
Lemma 1 of Appendix A, ϵ(t) is an exponentially decaying
signal. Using ζ̂ (t) and ĉ(t) as the estimates of ζ and c,
respectively, in analogy with (24), we generate the estimated
value Q̂(t) of Q(t) as

Q̂(t) =
(
γ1 − ζ̂ (t)

)
q(t) + ĉ(t)r(t). (25)

We also define the parameter estimation errors as

ζ̃ (t) = ζ − ζ̂ (t), c̃(t) = c− ĉ(t), (26)

and the identifier error as

Q̃(t) = Q(t) − Q̂(t),

= Q(t) +
(
ζ̂ (t) − γ1

)
q(t) − ĉ(t)r(t) + ϵ(t). (27)

Now, using the normalized gradient algorithmwith projection
[39], the update laws of the ODE coefficients are derived as
follows

˙̂
ζ (t) = Proj[ζ ,ζ̄ ]

(
ζ̂ (t), τζ (t)

)
,

˙̂c(t) = Proj[c,c̄]
(
ĉ(t), τc(t)

)
,

τζ (t) = −µ1
Q̃(t)q(t)

1 + q2(t) + r2(t)
,

τc(t) = µ2
Q̃(t)r(t)

1 + q2(t) + r2(t)
, (28)

where the positive constants µ1 and µ2 are the adaptation
gains and the standard projection operator is defined in the
following way

Proj[ζ ,ζ̄ ]
(
ζ̂ (t), τζ (t)

)
= τζ (t)


0 ζ̂ (t) = ζ , τζ (t) ⩽ 0
0 ζ̂ (t) = ζ̄, τζ (t) > 0
1 otherwise.

(29)

The other operator Proj[c,c̄]
(
ĉ(t), τc(t)

)
is defined similar

to the operator (29), both of which are used to keep
the parameter estimates in the intervals of Assumption 1.
According to Theorem 2.4.2 in [39], the identifier (25)
with filters (23), and the update laws (28) with the initial
conditions ζ̂ (0) ∈ [ζ , ζ̄ ] and ĉ(0) ∈ [c, c̄] satisfy the
following properties

ζ̃ (t), c̃(t) ∈ L∞,

Q̃(t)√
1 + q2(t) + r2(t)

∈ L2 ∩ L∞,

˙̂
ζ (t), ˙̂c(t) ∈ L2 ∩ L∞. (30)

B. CONTROL LAW
The proposed adaptive controller is obtained by substituting
the estimation of unknown parameters, i.e., ζ̂ (t) and ĉ(t), and
the identifier output Q̂(t) into the control law (17), as follows

U (t) =
1
2

(
R12(0, t) +

∫ 1

0
K̂ (0, ξ, t)R11(ξ, t)dξ

+

∫ 1

0
Ĝ(0, ξ, t)R22(ξ, t)dξ + ϕ̂(0, t)Q̂(t)

)
, (31)

where

ϕ̂(z, t) = −c1e
(z−1)ζ̂ (t)

λ1 ,

K̂ (z, ξ, t) =
ĉ(t)
λ1

ϕ̂(z− ξ + 1, t),

Ĝ(z, ξ, t) =



0,

ξ ⩽ 1 +
λ2

λ1
(z− 1)

−
ĉ(t)
λ2

ϕ̂
(
z−

λ1

λ2
(ξ − 1), t

)
,

ξ > 1 +
λ2

λ1
(z− 1)

(32)

In the sequel, the control law (31) is revisited such that it does
not require the measurement of the entire distributed states
R11(z, t) and R22(z, t). To this end, from the transport PDEs

∂tR11(z, t) + λ1∂zR11(z, t) = 0,

∂tR22(z, t) + λ2∂zR22(z, t) = 0, (33)

we have

R11(z, t) = R11(0, t −
z
λ1

), (34)

R22(z, t) = R22(0, t −
z
λ2

). (35)

Moreover, from (7), we have

R11(0, t −
z
λ1

) = R1(0, t −
z
λ1

),

R22(0, t −
z
λ2

) = R2(l, t −
z
λ2

), (36)

and

R12(0, t) = R2(0, t). (37)

VOLUME 11, 2023 121771



E. Aarabi et al.: Adaptive Backstepping Stabilization of Thermoacoustic Instability

FIGURE 3. Proposed scheme for adaptive stabilization of the ODE-PDE Rijke tube model. The model parameters are given in

Table 2, and λ1 =
λ
x0

, λ2 =
λ

l−x0
and λ =

√
γ P̄
ρ̄

.

Therefore, the control law (31) can be rewritten as

U (t) =
1
2

(
R2(0, t) +

∫ 1

0
K̂ (0, ξ, t)R1(0, t −

ξ

λ1
)dξ

+

∫ 1

0
Ĝ(0, ξ, t)R2(l, t −

ξ

λ2
)dξ + ϕ̂(0, t)Q̂(t)

)
.

(38)

By substituting the kernels (32), and using the change of
variables σ = t −

ξ
λ1

and θ = t −
ξ
λ2
, we arrive at

U (t) =
1
2

(
R2(0, t) − c1e

−
ζ̂ (t)
λ1 Q̂(t)

− c1ĉ(t)
∫ t

t− 1
λ1

e−(t−σ )ζ̂ (t)R1(0, σ )dσ

+ c1ĉ(t)
∫ t− 1

λ2
+

1
λ1

t− 1
λ2

e
−(t−θ+

1
λ1

−
1

λ2
)ζ̂ (t)

R2(l, θ)dθ

)
,

(39)

where Q̂(t) is given by (25), and from (23), (7) and (3),
we have

q̇(t) = −γ1q(t) + Q(t),

ṙ(t) = −γ1r(t) +
(
R1(x0, t) − R2(x0, t)

)
= −γ1r(t) + 2

√
γ ρ̄P̄v(x0, t). (40)

The block diagram of the proposed scheme for the adaptive
stabilization of the ODE-PDE Rijke tube model system is
depicted in Fig. 3. Note that, we use (3) to express R1(0, t),
R2(0, t), and R2(l, t) in terms of

(
v(i, t),P(i, t)

)
, i = 0, l as

R1(0, t) = P(0, t) +

√
γ ρ̄P̄v(0, t),

R2(i, t) = P(i, t) −

√
γ ρ̄P̄v(i, t), i = 0, l (41)

It can be seen that the proposed scheme requires only the
measurements of P(0, t), P(l, t), v(0, t), v(l, t), v(x0, t) and
Q(t), rather than the entire distributed states of the system.

V. STABILITY ANALYSIS
Theorem 1: Consider the closed-loop system consisting of

the plant (4)-(5), identifier (25) and (40), update laws (28)
and the control law (39). Let Assumption 1 hold and the
initial conditions satisfy

(
R1(x, 0),R2(x, 0)

)
∈ L2([0, l]) ×

L2([0, l]), Q(0) ∈ R, ζ̂ (0) ∈ [ζ , ζ̄ ] and ĉ(0) ∈ [c, c̄]. Then

∥Ri(t)∥,Q(t), q(t), r(t) ∈ L2 ∩ L∞, i = 1, 2

lim
t→∞

∥Ri(t)∥ = 0,

lim
t→∞

Q(t) = 0, lim
t→∞

Q̂(t) = 0,

lim
t→∞

q(t) = 0, lim
t→∞

r(t) = 0. (42)

Proof: We consider the dynamical system governing(
R1(x, t),R2(x, t), Q̂(t), q(t), r(t)

)
and establish the bound-

edness and regulation results stated in Theorem 1 for ∥R1(t)∥,
∥R2(t)∥, Q̂(t), q(t), r(t). The boundedness and regulation of
Q(t) can then follow from (24). The proof is carried out using
the following four steps.
Step 1: System equations and folding transformation: In

this step, we derive the governing equations of the system(
R1(x, t),R2(x, t), Q̂(t), q(t), r(t)

)
, and use the folding trans-

formation to translate the discontinuity point of the system to
the boundary conditions. From (25) and (40), we have

˙̂Q(t) = −
˙̂
ζ (t)q(t) + ˙̂c(t)r(t)

+
(
γ1 − ζ̂ (t)

)(
− γ1q(t) + Q(t)

)
+ ĉ(t)

(
− γ1r(t) +

(
R1(x0, t) − R2(x0, t)

))
= −

˙̂
ζ (t)q(t) + ˙̂c(t)r(t) +

(
γ1 − ζ̂ (t)

)
Q(t)︸︷︷︸

Q̂(t)+Q̃(t)

− γ1

( (
γ1 − ζ̂ (t)

)
q(t) + ĉ(t)r(t)︸ ︷︷ ︸
Q̂(t)

)

+ ĉ(t)
(
R1(x0, t) − R2(x0, t)

)
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= −
˙̂
ζ (t)q(t) + ˙̂c(t)r(t) +

(
γ1 − ζ̂ (t)

)
Q̃(t)

− ζ̂ (t)Q̂(t) + ĉ(t)
(
R1(x0, t) − R2(x0, t)

)
. (43)

Therefore, the
(
R1(x, t),R2(x, t), Q̂(t), q(t), r(t)

)
-system

is governed by

∂tR1(x, t) + λ∂xR1(x, t) =
γ − 1
A

δ(x − x0)Q̂(t),

∂tR2(x, t) − λ∂xR2(x, t) =
γ − 1
A

δ(x − x0)Q̂(t),

˙̂Q(t) = −ζ̂ (t)Q̂(t) + ĉ(t)
(
R1(x0, t) − R2(x0, t)

)
−

˙̂
ζ (t)q(t) + ˙̂c(t)r(t) +

(
γ1 − ζ̂ (t)

)
Q̃(t),

q̇(t) = −γ1q(t) + Q̂(t) + Q̃(t),

ṙ(t) = −γ1r(t) +
(
R1(x0, t) − R2(x0, t)

)
, (44)

with the boundary conditions

R1(0, t) = −R2(0, t) + 2U (t),

R2(l, t) = αR1(l, t), (45)

where the control law U (t) is given by (39).
Now, we use the folding transformation (6) along with the

state variables (7) and rewrite (44)-(45) as

∂tR11(z, t) + λ1∂zR11(z, t) = 0,

∂tR12(z, t) − λ1∂zR12(z, t) = 0,

∂tR21(z, t) − λ2∂zR21(z, t) = 0,

∂tR22(z, t) + λ2∂zR22(z, t) = 0,
˙̂Q(t) = −ζ̂ (t)Q̂(t) + ĉ(t)

(
R11(1, t) − R22(1, t)

)
−

˙̂
ζ (t)q(t) + ˙̂c(t)r(t) +

(
γ1 − ζ̂ (t)

)
Q̃(t),

q̇(t) = −γ1q(t) + Q̂(t) + Q̃(t),

ṙ(t) = −γ1r(t) +
(
R11(1, t) − R22(1, t)

)
, (46)

with the boundary conditions

R11(0, t) = −R12(0, t) + 2U (t),

R12(1, t) = R22(1, t) + c1Q̂(t) + c1Q̃(t),

R21(1, t) = R11(1, t) + c1Q̂(t) + c1Q̃(t),

R22(0, t) = αR21(0, t), (47)

where the control law U (t) is given by (31).
Step 2: Backstepping transformation and target system: In

this step, we propose an infinite-dimensional backstepping
transformation that converts the system (46)-(47) along with
the control law (31) into the new system called the target
system, which is more convenient for stability analysis.
The backstepping transformation is invertible, enabling the
establishment of the norm equivalence between the target
system and the original system.

Consider the infinite-dimensional backstepping transfor-
mation

S11(z, t) = R11(z, t) −

∫ 1

z
K̂ (z, ξ, t)R11(ξ, t)dξ

−

∫ 1

0
Ĝ(z, ξ, t)R22(ξ, t)dξ − ϕ̂(z, t)Q̂(t), (48)

where the kernels K̂ (z, ξ, t), Ĝ(z, ξ, t) and ϕ̂(z, t) satisfy

∂ξ K̂ (z, ξ, t) + ∂zK̂ (z, ξ, t) = 0,

∂ξ Ĝ(z, ξ, t) +
λ1

λ2
∂zĜ(z, ξ, t) = 0,

λ1∂zϕ̂(z, t) − ζ̂ (t)ϕ̂(z, t) = 0,

λ1K̂ (z, 1, t) − ĉ(t)ϕ̂(z, t) = 0,

λ2Ĝ(z, 1, t) + ĉ(t)ϕ̂(z, t) = 0,

Ĝ(z, 0, t) = 0. (49)

The transformation (48) and the kernel equations (49) are
adaptive versions of (12) and (15), respectively, where the
unknown parameters ζ and c are replaced by the adaptive
identifier estimates ζ̂ (t) and ĉ(t), and the ODE state Q(t)
is replaced by the adaptive identifier output Q̂(t). Similar
to (15), the kernel equations (49) are well-posed and by
replacing ζ and c with ζ̂ (t) and ĉ(t) in (16) the explicit
solutions of the kernels are obtained as (32). The inverse
transformation of (48) is [38]

R11(z, t) = S11(z, t)

+

∫ 1

z
N (z, ξ, t)S11(ξ, t)dξ + χ (z, t), (50)

where

χ (z, t) = Ψ (z, t) +

∫ 1

z
N (z, ξ, t)Ψ (ξ, t)dξ,

Ψ (z, t) = ϕ̂(z, t)Q̂(t) +

∫ 1

0
Ĝ(z, ξ, t)R22(ξ, t)dξ,

N (z, ξ, t) = K̂ (z, ξ, t) +

∫ ξ

z
K̂ (z, σ, t)N (σ, ξ, t)dσ. (51)

As shown in Lemma 2 of Appendix A, the backstepping
transformation (48) maps the system (46)-(47) along with the
control law (31) into the target system

∂tS11(z, t) + λ1∂zS11(z, t)

= −

∫ 1

z
∂t K̂ (z, ξ, t)R11(ξ, t)dξ

−

∫ 1

0
∂t Ĝ(z, ξ, t)R22(ξ, t)dξ − ∂t ϕ̂(z, t)Q̂(t)

+
˙̂
ζ (t)ϕ̂(z, t)q(t) − ˙̂c(t)ϕ̂(z, t)r(t)

−
(
γ1 − ζ̂ (t)

)
ϕ̂(z, t)Q̃(t),

∂tR12(z, t) − λ1∂zR12(z, t) = 0,

∂tR21(z, t) − λ2∂zR21(z, t) = 0,

∂tR22(z, t) + λ2∂zR22(z, t) = 0,
˙̂Q(t) = −

(
ζ̂ (t) + c1ĉ(t)

)
Q̂(t) + ĉ(t)

(
S11(1, t) − R22(1, t)

)

−
˙̂
ζ (t)q(t) + ˙̂c(t)r(t) +

(
γ1 − ζ̂ (t)

)
Q̃(t),
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q̇(t)

= −γ1q(t) + Q̂(t) + Q̃(t),

ṙ(t)

= −γ1r(t) − c1Q̂(t) +

(
S11(1, t) − R22(1, t)

)
, (52)

with the boundary conditions

S11(0, t) = 0,

R12(1, t) = R22(1, t) + c1Q̂(t) + c1Q̃(t),

R21(1, t) = S11(1, t) + c1Q̃(t),

R22(0, t) = αR21(0, t). (53)

Step 3: Boundedness and regulation of the target system: In
this step, we establish the boundedness and regulation of the
target system (52)-(53). In other words, we prove

∥S11(t)∥, ∥R12(t)∥, ∥R21(t)∥, ∥R22(t)∥ ∈ L2 ∩ L∞,

Q̂(t), q(t), r(t) ∈ L2 ∩ L∞, (54)

and

lim
t→∞

∥S11(t)∥ = 0, lim
t→∞

∥R12(t)∥ = 0,

lim
t→∞

∥R21(t)∥ = 0, lim
t→∞

∥R22(t)∥ = 0,

lim
t→∞

Q̂(t) = 0, lim
t→∞

q(t) = 0, lim
t→∞

r(t) = 0. (55)

The main idea is to consider a Lyapunov function candidate
and show that it satisfies the differential inequality (A27). The
boundedness and regulation results (54) and (55) can then
follow from Lemma 5 of Appendix A.

To begin with, consider the Lyapunov functional

V (t) = b1

∫ 1

0
e−zS211(z, t)dz+

∫ 1

0
ezR212(z, t)dz

+ b2

∫ 1

0
ezR221(z, t)dz+ b3

∫ 1

0
e−zR222(z, t)dz

+
b4
2
Q̂2(t) +

b5
2γ1

q2(t) +
b6
2γ1

r2(t), (56)

where bi, i = 1, . . . , 6, are the positive parameters that will
be determined later. The time derivative of (56) along the
solutions of (52)-(53), is

V̇ (t) = −2b1λ1

∫ 1

0
e−zS11(z, t)∂zS11(z, t)dz

− 2b1

∫ 1

0
e−zS11(z, t)

∫ 1

z
∂t K̂ (z, ξ, t)R11(ξ, t)dξdz

− 2b1

∫ 1

0
e−zS11(z, t)

∫ 1

0
∂t Ĝ(z, ξ, t)R22(ξ, t)dξdz

− 2b1

∫ 1

0
e−zS11(z, t)∂t ϕ̂(z, t)Q̂(t)dz

+ 2b1

∫ 1

0
e−zS11(z, t)

˙̂
ζ (t)ϕ̂(z, t)q(t)dz

− 2b1

∫ 1

0
e−zS11(z, t) ˙̂c(t)ϕ̂(z, t)r(t)dz

− 2b1
(
γ1 − ζ̂ (t)

) ∫ 1

0
e−zS11(z, t)ϕ̂(z, t)Q̃(t)dz

+ 2λ1

∫ 1

0
ezR12(z, t)∂zR12(z, t)dz

+ 2λ2b2

∫ 1

0
ezR21(z, t)∂zR21(z, t)dz

− 2λ2b3

∫ 1

0
e−zR22(z, t)∂zR22(z, t)dz

− b4
(
ζ̂ (t) + c1ĉ(t)

)
Q̂2(t)

+ b4ĉ(t)
(
S11(1, t) − R22(1, t)

)
Q̂(t)

− b4
˙̂
ζ (t)q(t)Q̂(t) + b4 ˙̂c(t)r(t)Q̂(t)

+ b4
(
γ1 − ζ̂ (t)

)
Q̃(t)Q̂(t) − b5q2(t)

+
b5
γ1
q(t)Q̂(t) +

b5
γ1
q(t)Q̃(t) − b6r2(t)

−
b6c1
γ1

r(t)Q̂(t) +
b6
γ1
r(t)

(
S11(1, t) − R22(1, t)

)
.

(57)

Applying the Cauchy-Schwartz and Young inequalities to the
inverse transformation (50) yields

∥R11(t)∥2 ≤ α1∥S11(t)∥2 + α2∥R22(t)∥2 + α3Q̂2(t), (58)

where the positive constants α1, α2 and α3 depend on the
bounded kernels ϕ̂(z, t), K̂ (z, ξ, t) and Ĝ(z, ξ, t). Using (A8)-
(A17) in Lemma 3 of Appendix A along with (57) and (58),
we have

V̇ (t) ⩽
(
1 + b24c̄

2
+ 2λ2b2e1 − λ1b1e−1

)
S211(1, t)

− λ1R212(0, t) +

(
λ2b3α2

− λ2b2
)
R221(0, t)

+

(
1 + b24c̄

2
+ 3λ1e1 − λ2b3e−1

)
R222(1, t)

+

(
6 − λ1b1

) ∫ 1

0
e−zS211(z, t)dz

− λ1

∫ 1

0
ezR212(z, t)dz− λ2b2

∫ 1

0
ezR221(z, t)dz

− λ2b3

∫ 1

0
e−zR222(z, t)dz+ b21∥∂t ϕ̂(t)∥

2Q̂2(t)

+ b21

∫ 1

0

∫ 1

0

(
∂t K̂ (z, ξ, t)

)2dξdz
(

α1∥S11(t)∥2

+ α2∥R22(t)∥2 + α3Q̂2(t)
)

+ b21

∫ 1

0

∫ 1

0

(
∂t Ĝ(z, ξ, t)

)2dξdz∥R22(t)∥2

+ b21∥ϕ̂(t)∥
2 ˙̂
ζ 2(t)q2(t) + b21∥ϕ̂(t)∥

2 ˙̂c2(t)r2(t)

+

(1
2

+ 3λ1e1c21 + 2λ2b2e1c21

+ (γ1 + ζ̄ )2(
1
2
b24 + b21∥ϕ̂(t)∥

2)
)

×

( 1
1 + q2(t) + r2(t)

+
q2(t) + r2(t)

1 + q2(t) + r2(t)

)
Q̃2(t)
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+

(
3 + 3λ1e1c21 − b4

(
ζ̂ (t) + c1ĉ(t)

))
Q̂2(t)

+
1
2
b24

˙̂
ζ 2(t)q2(t) +

1
2
b24 ˙̂c

2(t)r2(t)

+
(
(
b5
γ1

)2 − b5
)
q2(t) +

(1 + c21
2

(
b6
γ1

)2 − b6
)
r2(t).

(59)

Choosing the positive parameters bi as

b6 <
2γ 2

1

1 + c21
,

b5 < γ 2
1 ,

b4 ⩾
3 + 3λ1e1c21

ζ + c1c
,

b3 ⩾
1 + b24c̄

2
+ 3λ1e1

λ2e−1 ,

b2 ⩾ α2b3,

b1 ⩾ max
{1 + b24c̄

2
+ 2λ2b2e1

λ1e−1 ,
6
λ1

}
, (60)

we have

V̇ (t) ⩽ −µV (t) + ℓ1(t)V (t) + ℓ2(t), (61)

where

µ=min
{λ1b1 − 6

b1
, λ1, λ2,

2
(
b4(ζ +c1c)− 3 − 3λ1e1c21

)
b4

,

2γ1(1 −
b5
γ 2
1

), 2γ1(1 −
(1 + c21)b6

2γ 2
1

)
}
,

ℓ1(t) = ρ

(
(α1 + α2 + α3)b21

∫ 1

0

∫ 1

0

(
∂t K̂ (z, ξ, t)

)2dξdz

+ b21

∫ 1

0

∫ 1

0

(
∂t Ĝ(z, ξ, t)

)2dξdz+ b21∥∂t ϕ̂(t)∥
2

+ b21∥ϕ̂(t)∥
2 ˙̂
ζ 2(t) + b21∥ϕ̂(t)∥

2 ˙̂c2(t)

+ 2
(1
2

+ 3λ1c21e
1
+ 2λ2b2e1c21

+ (γ1 + ζ̄ )2(
1
2
b24 + c21)

) Q̃2(t)
1 + q2(t) + r2(t)

+
1
2
b24

˙̂
ζ 2(t) +

1
2
b24 ˙̂c

2(t)
)

,

ρ =
1

min
{
b1e−1, b2, b3e−1, b42 ,

b5
2γ1

,
b6
2γ1

} , (62)

and

ℓ2(t) =

(1
2

+ 3λ1e1 + 2λ2b2e1c21

+ (γ1 + ζ̄ )2(
1
2
b24 + c21)

) Q̃2(t)
1 + q2(t) + r2(t)

. (63)

Using (61), along with Lemma 4 and Lemma 5 of Appendix
A, we conclude that

V (t) ∈ L1 ∩ L∞, lim
t→∞

V (t) = 0. (64)

TABLE 3. The simulation parameters of the Rijke tube.

FIGURE 4. Basic performance of the proposed scheme when the coil is
located at x0 =

l
8 = 0.175: (a) the open-loop response of the heat power

release, (b) the closed-loop response of the heat power release. It can be
seen that the proposed adaptive scheme accelerates the state
convergence to zero.

By V (t) ∈ L1 ∩ L∞, we have

∥S11(t)∥2, ∥R12(t)∥2, ∥R21(t)∥2, ∥R22(t)∥2 ∈ L1 ∩ L∞,

Q̂2(t), q2(t), r2(t) ∈ L1 ∩ L∞, (65)

which gives the boundedness properties (54). Also,
by lim

t→∞
V (t) = 0, the regulation properties (55) are obtained.

Step 4: Boundedness and regulation of the system (4)-(5):
In this step, we establish the boundedness and regulation

of the closed-loop system given by (42). The boundedness
and regulation of Q̂(t), q(t) and r(t) are previously obtained
in (54)-(55). Using (24), we get Q(t) ∈ L2 ∩ L∞ and
lim
t→∞

Q(t) = 0. From (6) and (7), we have∫ l

0
R21(x, t)dx =

∫ x0

0
R21(x, t)dx +

∫ l

x0
R21(x, t)dx

=

∫ 1

0
R211(z, t)dz+

∫ 1

0
R221(z, t)dz, (66)

therefore,

∥R1(t)∥2 = ∥R11(t)∥2 + ∥R21(t)∥2. (67)

In a similar manner, we get

∥R2(t)∥2 = ∥R12(t)∥2 + ∥R22(t)∥2. (68)
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FIGURE 5. Open-loop responses of the PDE states when the coil is located at x0 =
l
8 = 0.175: (a) the evolution of the

acoustic velocity v (x, t), (b) the evolution of the acoustic pressure P(x, t). Note that the spatial domain x in (a) and (b)
is broken into two intervals, before and after the discontinuity point x0 = 0.175. It can be seen that the open-loop
system has oscillating responses that converge to zero after a relatively long time.

Using (58) and the results of (54)-(55), we get ∥R11(t)∥ ∈

L2 ∩ L∞ and lim
t→∞

∥R11(t)∥ = 0. Therefore, with the help of
(67)-(68) along with (54)-(55), we arrive at ∥Ri(t)∥ ∈ L2 ∩

L∞ and lim
t→∞

∥Ri(t)∥ = 0, for i = 1, 2. This completes the
proof of Theorem 1. ■

VI. SIMULATION RESULTS
In this section, we numerically illustrate the basic perfor-
mance of the proposed scheme along with its ability to handle
the additive disturbances, nonlinearities of the model, and
the actuator dynamics. To this end, we select the model
parameters of the Rijke tube according to Table 3. The initial
conditions of the plant are Q(0) = 2,

(
R1(x, 0),R2(x, 0)

)
=(

70 sin(x), −20 sin(x)
)
for x < x0, and

(
R1(x, 0),R2(x, 0)

)
=(

10 sin(x), 50 sin(x)
)
for x > x0.

A. BASIC PERFORMANCE
In this section, a simulation example is presented to evaluate
the basic performance of the proposed adaptive scheme. The
simulation is performed for two cases of the heater coil
positions. The adaptive identifier parameters are set to γ1 =

2, µ1 = 500 and µ2 = 100. The initial conditions of the
identifier are q(0) = 0.1 and r(0) = 0.2, and the initial
estimates are ζ̂ (0) = 1300 and ĉ(0) = 3700. The simulation
study cases are as follows.

Case 1: The heater coil is located at x0 =
l
8 = 0.175,

which results in λ1 = 1951.8 and λ2 = 278.82. The open-
loop response and the closed-loop response of the ODE state
Q(t) are shown in Figs. 4 (a) and (b), respectively. It can be

seen that the open-loop system has oscillating behavior that
converges to zero after a relatively long time. However, the
proposed adaptive scheme accelerates the state convergence
to zero. The responses of the PDE states v(x, t) and P(x, t) for
the open-loop system and the closed-loop system are shown
in Figs. 5 and 6, receptively. Note that the spatial domain x is
broken into two intervals, before and after the discontinuity
point x0 = 0.175. It can be seen that the proposed adaptive
scheme effectively cancels the oscillating behavior of the
open-loop system and accelerates the PDE states convergence
to zero. Figs. 7 (a) and (b) show the evolution of the control
law and the identifier error Q̃(t) = Q(t) − Q̂(t), receptively.
It can be seen that the proposed method is successful and
the identifier error converges to zero. The online estimates
of the unknown parameters ζ and c, and the parameter
estimation errors ζ̃ (t) and c̃(t) are shown in Figs. 8 (a) and
(b), respectively. As expected, the parameter estimates do
not converge to the true values, since the adaptive regulation
problem does not ensure the persistence of excitation for
parameter convergence. However, the parameter estimation
errors are bounded according to (30).

Case 2: The position of the heater coil is x0 =
3l
8 =

0.525, which results in λ1 = 650.6 and λ2 = 390.36.
The open-loop response and the closed-loop response of the
ODE state Q(t) are shown in Figs. 9 (a) and (b), respectively.
It can be seen that the open-loop system is unstable and the
proposed adaptive scheme effectively stabilizes the system.
The results of the simulations for the PDE states v(x, t) and
P(x, t) of the open-loop system and the closed-loop system
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FIGURE 6. Closed-loop responses of the PDE states when the coil is located at x0 =
l
8 = 0.175: (a) the evolution of

the acoustic velocity v (x, t), (b) the evolution of the acoustic pressure P(x, t). Note that the spatial domain x in (a)
and (b) is broken into two intervals, before and after the discontinuity point x0 = 0.175. Compared with Fig. 5,
it can be seen that the proposed adaptive scheme effectively reduces oscillations along the tube and accelerates
the state convergence to zero.

FIGURE 7. Basic performance of the proposed scheme when the coil is located at x0 =
l
8 = 0.175: (a) the evolution of the

control law U(t), (b) the identifier error Q̃(t). The proposed method is successful and the identifier error converges to zero.

are presented in Figs. 10 and 11, receptively. We can see
that the PDE states of the uncontrolled plant quickly grow,
however, with the proposed adaptive scheme, the instability
is quickly suppressed and the PDE states converge to the
zero equilibrium. The control effort U (t) and the identifier
error Q̃(t) are shown in Figs. 12 (a) and (b), respectively.
One can see that the identifier error is quickly brought to
zero. The estimates of the unknown parameters and the
parameter estimation errors are shown in Figs. 13 (a) and (b),
respectively. Due to the lack of persistency of excitation in
the adaptive regulation problem, the estimation of parameters
do not converge to the true values. However, the parameter
estimation errors are bounded according to (30).

B. ROBUSTNESS PERFORMANCE
To present the control design and its stability analysis more
clearly, this paper only deals with the parametric uncertainties
of the Rijke tube model under the assumption that the plant
is free of disturbances and nonlinearities. In this section,

we numerically illustrate the ability of the proposed scheme
to handle the additive disturbances, nonlinearities of the
model, and the actuator dynamics.

1) DISTURBANCE ATTENUATION
In this section, we numerically demonstrate the disturbance
attenuation property of the proposed adaptive scheme. To this
end, we assume that the heat release dynamics of the Rijke
tube model is affected by an additive disturbance d(t). In this
case, the system is described by

∂tR1(x, t) + λ∂xR1(x, t) =
γ − 1
A

δ(x − x0)Q(t),

∂tR2(x, t) − λ∂xR2(x, t) =
γ − 1
A

δ(x − x0)Q(t),

Q̇(t) = −ζQ(t) + c
(
R1(x0, t) − R2(x0, t)

)
+ d(t), (69)

with the boundary conditions

R1(0, t) = −R2(0, t) + 2U (t), R2(l, t) = αR1(l, t). (70)
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FIGURE 8. Basic performance of the proposed scheme when the coil is located at x0 =
l
8 = 0.175: (a) the online estimates of the

unknown parameters ζ and c whose true values are ζ = 1060 and c = 4550, (b) the parameter estimation errors ζ̃ (t) and c̃(t).
As expected, the parameter estimates do not converge to the true values, since the adaptive regulation problem does not ensure
the persistence of excitation for parameter convergence. However, the parameter estimation errors are bounded according to
(30).

FIGURE 9. Basic performance of the proposed scheme when the coil is
located at x0 =

3l
8 = 0.525: (a) the open-loop response of the heat power

release, (b) the closed-loop response of the heat power release. It can be
seen that the open-loop system is unstable, and the proposed adaptive
scheme effectively stabilizes the system.

The disturbance d(t) is assumed to have a uniform distribu-
tion in the range [−5, 5]. The adaptive identifier parameters
are set to γ1 = 2, µ1 = 500 and µ2 = 100. The initial
conditions of the identifier are q(0) = 0.1 and r(0) = 0.2,
and the initial estimates are ζ̂ (0) = 1300 and ĉ(0) = 3700.
The simulation results are presented in Figs. 14–16. The
results confirm the desirable disturbance attenuation of the
proposed adaptive scheme with a high degree of immunity to
the additive disturbance.

2) EFFECT OF NONLINEARITIES AND UNMODELED
DYNAMICS
In this section, we study the effectiveness of the proposed
scheme when it applies to a more complex model with
nonlinear heat release dynamics. To this end, we assume the
heat release power is described by the nonlinear ODE [2]

τ Q̇(t) = −Q(t) + lw(Tw − T̄gas)(κ + κv
√

|v(x0, t)|). (71)

Moreover, we take into account the actuator dynamics which
can be regarded as a source of uncertainty in practice. To this
end, we assume the control law takes the form of

U (t) = H (s)
{
1
2
R2(0, t) −

1
2
c1e

−
ζ̂ (t)
λ1 Q̂(t)

−
1
2
c1ĉ(t)

∫ t

t− 1
λ1

e−(t−σ )ζ̂ (t)R1(0, σ )dσ

+
1
2
c1ĉ(t)

∫ t− 1
λ2

+
1

λ1

t− 1
λ2

e
−(t−θ+

1
λ1

−
1

λ2
)ζ̂ (t)

R2(l, θ)dθ

}
,

(72)

where s denotes the Laplace variable, and the notationH (s){·}
represents the time domain output of a system with the
transfer function H (s). In fact, we assume the proposed
control law (39) goes through a linear ODE with transfer
function H (s) acting as an actuator dynamics. We set the
model parameters to τ = 0.94 × 10−3 sec, lw = 1.1 m,
Tw = 993 K, T̄gas = 287.35 K, κ = 0.026, κv = 0.005 and
x0 =

3l
8 = 0.525. It is assumed that the actuator dynamics is

described by the transfer function H (s) =
5
s+5 . The adaptive

identifier parameters are set to γ1 = 200,µ1 = 500 andµ2 =

100. The initial conditions of the identifier are q(0) = 1 and
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FIGURE 10. Open-loop responses of the PDE states when the coil is located at x0 =
3l
8 = 0.525: (a) the evolution of the

acoustic velocity v (x, t), (b) the evolution of the acoustic pressure P(x, t). Note that the spatial domain x in (a) and (b) is
broken into two intervals, before and after the discontinuity point x0 = 0.525. It can be seen that the PDE states of the
uncontrolled plant quickly grow.

FIGURE 11. Closed-loop responses of the PDE states when the coil is located at x0 =
3l
8 = 0.525: (a) the evolution of the

acoustic velocity v (x, t), (b) the evolution of the acoustic pressure P(x, t). Note that the spatial domain x in (a) and (b) is
broken into two intervals, before and after the discontinuity point x0 = 0.525. Compared with Fig. 10, it can be seen that with
the proposed adaptive scheme, the instability is quickly suppressed and the PDE states converge to the zero equilibrium.
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FIGURE 12. Basic performance of the proposed scheme when the coil is located at x0 =
3l
8 = 0.525: (a) the evolution of the

control law U(t), (b) the identifier error Q̃(t). The proposed method is successful and the identifier error is quickly brought to
zero.

FIGURE 13. Basic performance of the proposed scheme when the coil is located at x0 =
3l
8 = 0.525: (a) the online estimation of

the unknown parameters ζ and c whose true values are ζ = 1060 and c = 4550, (b) the parameter estimation errors ζ̃ (t) and c̃(t).
Due to the lack of the persistency of excitation in the adaptive regulation problem, the estimation of parameters do not converge
to the true values. However, the parameter estimation errors are bounded according to (30).

r(0) = 2, and the initial estimates are ζ̂ (0) = 1300 and ĉ(0) =

3700. The simulation results are presented in Figs. 17–19.
It is worth mentioning that the steady state solution of (71)
is Q∗

= lw(Tw − T̄gas)κ = 18.46, and we plot the deviation
ofQ(t) fromQ∗ in Fig. 17 (a). It can be seen that the proposed
adaptive controller successfully stabilizes the system despite
the coexistence of the nonlinear heat release dynamical model
and actuator dynamics.

VII. CONCLUSION AND FUTURE WORKS
In this paper, we have presented an adaptive control design
for stabilizing the thermoacoustic instability of the Rijke
tube described by an ODE-PDE system with the most
common uncertain parameters in practice. The stability
analysis based on the backstepping method ensures the
boundedness and regulation to zero of the ODE-PDE states.
The proposed adaptive scheme can be easily implemented
since it requires only a few measurements of velocity and
pressure along the tube. The numerical simulations illustrate
the effectiveness of the proposed scheme when it applies
to a more complex model including additive disturbances,

nonlinear heat dynamics, and actuator dynamics. To conclude
this paper, we briefly highlight some limitations and future
opportunities for extending the results of this article.

• In this paper, the adaptive controller is designed based
on the linearized ODE-PDE Rijke tube model. In future
work, the control design would be extended for a more
accurate model including nonlinearities.

• In this paper, the effects of actuator dynamics and exter-
nal disturbances are studied via simulation examples.
However, the stability proof of such cases remains open
which can be investigated for future research.

• In this paper, the adaptive stabilization of the ODE-
PDE Rijke tube model is achieved by a continous-in-
time control law. It would be desirable to design a
suitable sampling scheme which ensures the closed-loop
stability.

APPENDIX A
Lemma 1: The signal ϵ(t) in (24) exponentially converges

to zero.
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FIGURE 14. Disturbance attenuation property of the proposed scheme
when the heat release dynamics is affected by an additive disturbance
according to (69); the time responses of: (a) the heat power release Q(t),
(b) the spatial L2-norm of R1(x, t), (c) the spatial L2-norm of R2(x, t). The
results confirm the desirable disturbance attenuation of the proposed
adaptive scheme with a high degree of immunity to the additive
disturbance.

Proof: From (24), we have ϵ(t) = Q(t) − (γ1 − ζ )q(t) +

cr(t). By taking the time derivative of ϵ(t) and substituting
dynamics of ODE system (18) and filters (23), we obtain

ϵ̇(t) = Q̇(t) − (γ1 − ζ )q̇(t) − cṙ(t)

= −γ1Q(t) + γ1(γ1 − ζ )q(t) + γ1cr(t)

= −γ1ϵ(t), (A1)

which is an exponentially stable system, meaning that ϵ(t) ∈

L2 ∩ L∞ and ϵ(t) tends to zero as t tends to ∞.
Lemma 2: The backstepping transformation (48) maps the

system (46)-(47) along with the control law (31) into the
target system (52)-(53).
Proof: By taking the time derivative of (48), inserting (46)

and using integration by parts, we obtain

∂tS11(z, t) = ∂tR11(z, t) −

∫ 1

z
∂t K̂ (z, ξ, t)R11(ξ, t)dξ

+ λ1K̂ (z, 1, t)R11(1, t) − λ1K̂ (z, z, t)R11(z, t)

− λ1

∫ 1

z
∂ξ K̂ (z, ξ, t)R11(ξ, t)dξ

−

∫ 1

0
∂t Ĝ(z, ξ, t)R22(ξ, t)dξ

+ λ2Ĝ(z, 1, t)R22(1, t) − λ2Ĝ(z, 0, t)R22(0, t)

− λ2

∫ 1

0
∂ξ Ĝ(z, ξ, t)R22(ξ, t)dξ

− ∂t ϕ̂(z, t)Q̂(t) − ϕ̂(z, t)
(

− ζ̂ (t)Q̂(t)

+ ĉ(t)
(
R11(1, t) − R22(1, t)

)
−

˙̂
ζ (t)q(t) + ˙̂c(t)r(t) +

(
γ1 − ζ̂ (t)

)
Q̃(t)

)
.

(A2)

By taking the spatial derivative of (48), we get

∂zS11(z, t) = ∂zR11(z, t) + K̂ (z, z, t)R11(z, t)

−

∫ 1

z
∂zK̂ (z, ξ, t)R11(ξ, t)dξ

−

∫ 1

0
∂zĜ(z, ξ, t)R22(ξ, t)dξ − ∂zϕ̂(z, t)Q̂(t).

(A3)

By using

∂ξ K̂ (z, ξ, t) + ∂zK̂ (z, ξ, t) = 0,

∂ξ Ĝ(z, ξ, t) +
λ1

λ2
∂zĜ(z, ξ, t) = 0,

λ1∂zϕ̂(z, t) − ζ̂ (t)ϕ̂(z, t) = 0, (A4)

and

λ1K̂ (z, 1, t) − ĉ(t)ϕ̂(z, t) = 0,

λ2Ĝ(z, 1, t) + ĉ(t)ϕ̂(z, t) = 0,

Ĝ(z, 0, t) = 0, (A5)

along with

∂tR11(z, t) + λ1∂zR11(z, t) = 0, (A6)

we have

∂tS11(z, t) + λ1∂zS11(z, t)

= −

∫ 1

z
∂t K̂ (z, ξ, t)R11(ξ, t)dξ

−

∫ 1

0
∂t Ĝ(z, ξ, t)R22(ξ, t)dξ − ∂t ϕ̂(z, t)Q̂(t)

+
˙̂
ζ (t)ϕ̂(z, t)q(t) − ˙̂c(t)ϕ̂(z, t)r(t)

−
(
γ1 − ζ̂ (t)

)
ϕ̂(z, t)Q̃(t). (A7)

The remainder equations of (52)-(53) are obtained by
substituting S11(1, t) = R11(1, t) + c1Q̂(t) and the control
law (31) into (46)-(47). This completes the proof of Lemma
2.
Lemma 3: For the time-derivative of the Lyapunov func-

tion given by (57), the following holds:

2
∫ 1

0
e−zS11(z, t)∂zS11(z, t)dz

= e−1S211(1, t) +

∫ 1

0
e−zS211(z, t)dz, (A8)
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FIGURE 15. Disturbance attenuation property of the proposed scheme when the heat release dynamics is affected by an
additive disturbance according to (69): (a) the evolution of the control law U(t), (b) the identifier error Q̃(t). The proposed
method is successful in attenuating the disturbance and the identifier error is brought to zero.

FIGURE 16. Disturbance attenuation property of the proposed scheme when the heat release dynamics is affected by an
additive disturbance according to (69): (a) the online estimation of the unknown parameters ζ and c whose true values are
ζ = 1060 and c = 4550, (b) the parameter estimation errors ζ̃ (t) and c̃(t). The errors are bounded according to (30).

2
∫ 1

0
e−zR22(z, t)∂zR22(z, t)dz

= e−1R222(1, t) − α2R221(0, t) +

∫ 1

0
e−zR222(z, t)dz, (A9)

2
∫ 1

0
ezR12(z, t)∂zR12(z, t)dz

⩽ 3 e1
(
R222(1, t) + c21Q̂

2(t) + c21Q̃
2(t)

)
− R212(0, t) −

∫ 1

0
ezR212(z, t)dz, (A10)

2
∫ 1

0
ezR21(z, t)∂zR21(z, t)dz

⩽ 2 e1
(
S211(1, t) + c21Q̃

2(t)
)

− R221(0, t) −

∫ 1

0
ezR221(z, t)dz, (A11)

− 2b1

∫ 1

0
e−zS11(z, t)

∫ 1

z
∂t K̂ (z, ξ, t)R11(ξ, t)dξdz

⩽
∫ 1

0
e−zS211(z, t)dz

+ b21

(∫ 1

0

∫ 1

0

(
∂t K̂ (z, ξ, t)

)2dξdz
)

∥R11(t)∥2, (A12)

− 2b1

∫ 1

0
e−zS11(z, t)

∫ 1

0
∂t Ĝ(z, ξ, t)R22(ξ, t)dξdz

⩽
∫ 1

0
e−zS211(z, t)dz

+ b21

(∫ 1

0

∫ 1

0

(
∂t Ĝ(z, ξ, t)

)2dξdz
)

∥R22(t)∥2, (A13)

− 2b1

∫ 1

0
e−zS11(z, t)∂t ϕ̂(z, t)Q̂(t)dz

⩽
∫ 1

0
e−zS211(z, t)dz+ b21∥∂t ϕ̂(t)∥

2Q̂2(t), (A14)

2b1

∫ 1

0
e−zS11(z, t)ϕ̂(z, t)

˙̂
ζ (t)q(t)dz

⩽
∫ 1

0
e−zS211(z, t)dz+ b21∥ϕ̂(t)∥

2 ˙̂
ζ 2(t)q2(t), (A15)

− 2b1

∫ 1

0
e−zS11(z, t)ϕ̂(z, t) ˙̂c(t)r(t)dz

⩽
∫ 1

0
e−zS211(z, t)dz+ b21∥ϕ̂(t)∥

2 ˙̂c2(t)r2(t), (A16)
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FIGURE 17. Effect of the nonlinearities and actuator dynamics on the
performance of the proposed scheme; the time responses of: (a) the heat
power release Q(t), (b) the spatial L2-norm of R1(x, t), (c) the spatial
L2-norm of R2(x, t). It can be seen that the proposed adaptive controller
successfully stabilizes the system despite the coexistence of the
nonlinear heat release dynamical model and actuator dynamics.

− 2b1
(
γ1 − ζ̂ (t)

) ∫ 1

0
e−zS11(z, t)ϕ̂(z, t)Q̃(t)dz

⩽
∫ 1

0
e−zS211(z, t)dz+ b21(γ1 + ζ̄ )2∥ϕ̂(t)∥2Q̃2(t). (A17)

Proof: (A8) is verified using integration by parts alongwith
S11(0, t) = 0. Similarly, for (A9), we use integration by parts
along with R22(0, t) = αR21(0, t). (A10) is verified using
integration by parts along with the inequality

R212(1, t) ≤ 3
(
R222(1, t) + c21Q̂

2(t) + c21Q̃
2(t)

)
, (A18)

which is obtained by expanding R212(1, t) =
(
R22(1, t) +

c1Q̂(t)+ c1Q̃(t)
)2 and using the Young inequality. Similarly,

(A11) is verified using integration by parts along with the
inequality

R221(1, t) ≤ 2
(
S211(1, t) + c21Q̃

2(t)
)
, (A19)

which is obtained by expanding R221(1, t) =
(
S11(1, t) +

c1Q̃(t)
)2 and using the Young inequality.

The inequality (A12) is obtained with the help of the Cauchy-
Schwartz and Young inequalities as follows

− 2b1

∫ 1

0
e−zS11(z, t)

∫ 1

z
∂t K̂ (z, ξ, t)R11(ξ, t)dξdz

= −2b1

∫ 1

0
e−

z
2 S11(z, t)

∫ 1

z
e−

z
2 ∂t K̂ (z, ξ, t)R11(ξ, t)dξdz

≤

∫ 1

0
e−zS211(z, t)dz

+ b21

∫ 1

0
e−z

( ∫ 1

z
∂t K̂ (z, ξ, t)R11(ξ, t)dξ

)2
dz

≤

∫ 1

0
e−zS211(z, t)dz

+ b21

∫ 1

0

∫ 1

0

(
∂t K̂ (z, ξ, t)

)2dξ

∫ 1

0
R211(ξ, t)dξdz

≤

∫ 1

0
e−zS211(z, t)dz

+ b21

∫ 1

0

∫ 1

0

(
∂t K̂ (z, ξ, t)

)2dξdz∥R11(t)∥2. (A20)

The inequality (A13) is obtained in a similar manner. The
inequality (A14), is obtained with the help of the Cauchy-
Schwartz and Young inequalities as follows

− 2b1

∫ 1

0
e−zS11(z, t)∂t ϕ̂(z, t)Q̂(t)dz

= −2b1

∫ 1

0
e−

z
2 S11(z, t)e−

z
2 ∂t ϕ̂(z, t)Q̂(t)dz,

≤

∫ 1

0
e−zS211(z, t)dz+ b21

∫ 1

0
e−z

(
∂t ϕ̂(z, t)

)2Q̂2(t)dz

≤

∫ 1

0
e−zS211(z, t)dz+ b21∥∂t ϕ̂(t)∥

2Q̂2(t). (A21)

The inequalities (A15)-(A17) are obtained in a similar
manner.

Lemma 4: For the functions ℓ1(t) and ℓ2(t) in (62)-(63),
we have

ℓ1(t), ℓ2(t) ≥ 0 ∀t ⩾ 0,

ℓ1(t), ℓ2(t) ∈ L1, (A22)

Proof: The positiveness of ℓ1(t) and ℓ2(t) is obvious. From
(30), we have Q̃(t)

√
1+q2(t)+r2(t)

∈ L2 ∩ L∞. This means that

Q̃2(t)
1+q2(t)+r2(t)

∈ L1; subsequently, ℓ2(t) ∈ L1. To prove ℓ1(t) ∈

L1, we first show the following inequalities

∥∂t ϕ̂(t)∥2 ⩽ (
c1
λ1

)2 ˙̂
ζ 2(t),

∥∂t K̂ (t)∥2 ⩽ 2(
c1
λ1

)2 ˙̂c2(t) + 2(
c̄c1
λ2
1

)2 ˙̂
ζ 2(t),

∥∂t Ĝ(t)∥2 ⩽ 2(
c1
λ2

)2 ˙̂c2(t) + 2(
c̄c1

λ1λ2
)2 ˙̂

ζ 2(t). (A23)

To this end, by (32), we have

∂t ϕ̂(z, t) = −c1
z− 1
λ1

e
(z−1)ζ̂ (t)

λ1
˙̂
ζ 2(t), (A24)

therefore,

∥∂t ϕ̂(t)∥2 =

∫ 1

0

(
∂t ϕ̂(z, t)

)2
dz
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FIGURE 18. Effect of the nonlinearities and actuator dynamics on the performance of the proposed scheme: (a) the evolution of
the control law U(t), (b) the identifier error Q̃(t). The proposed scheme is successful and the identifier error Q̃(t) converges to
zero despite the presence of the nonlinearities and actuator dynamics.

FIGURE 19. Effect of the nonlinearities and actuator dynamics on the performance of the proposed scheme: (a) the online
estimation of the unknown parameters ζ and c whose true values are ζ = 1060 and c = 4550, (b) the parameter estimation errors
ζ̃ (t) and c̃(t). The errors are bounded according to (30).

≤
( c1
λ1

)2 ˙̂
ζ 2(t). (A25)

In a similar manner, other inequalities of (A23) are obtained.
Moreover, from (30), we have ˙̂

ζ (t), ˙̂c(t) ∈ L2 ∩ L∞. This
means that

˙̂
ζ 2(t), ˙̂c2(t) ∈ L1. (A26)

Using the expression of ℓ1(t) in (62), along with (A23) and
(A26), we conclude that ℓ1(t) ∈ L1. This completes the proof
of Lemma 4.
Lemma 5 ([40]): Let V (t), ℓ1(t) and ℓ2(t) be real-valued

functions defined for t ⩾ 0. Suppose

V (t), ℓ1(t), ℓ2(t) ⩾ 0 ∀t ⩾ 0,

ℓ1(t), ℓ2(t) ∈ L1,

V̇ (t) ⩽ −µV (t) + ℓ1(t)V (t) + ℓ2(t), (A27)

where µ is a positive constant. Then

V (t) ∈ L1 ∩ L∞, lim
t→∞

V (t) = 0. (A28)
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