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ABSTRACT Facedwith increasingly complex industrial data, standardmachine learning algorithms struggle
to effectively extract both linear and nonlinear features. In this study, an improved residual network (ResNet)
called Residual network with Independent Multi-Channel Weighting (RMCW) to tackle the nonlinear,
temporally uncertain, and unevenly distributed fault. Firstly, a strategy for constructing the multi-channel
vibration intrinsic mode function (IMF) images is designed to obtain the primary features by combing the
empirical mode decomposition (EMD) and the gramian angular field (GAF). Secondly, a dynamic receptive
field (DRF) with independent channel weighting is utilized to adaptively fuse the multi-channel features.
This renders both initialization parameters for each individual channel and DRF parameters mutually
independently adaptive to the fault features in the different batch. Thirdly, the RMCW model is built by
inputting the fused features to the network of 9 residual building blocks. Two experimental cases verify
that the propose method is effective for the machinery fault diagnosis and is superior to the comparing
methods.

INDEX TERMS Feature fusion, fault diagnosis, deep learning, vibration signal.

I. INTRODUCTION
Bearings diagnosis is an important technical means of ensur-
ing the healthy operation of rotating machinery. Due to
the complex working environment and prolonged loading,
bearings are prone to damage, which can have severe conse-
quences. Therefore, it is crucial to promptly detect any faults
in the bearings to prevent further damage [1], [2], [3].
In recent years, there has been extensive and multi-

dimensional research conducted by scholars in the field of
bearing fault diagnosis [4]. Signal processing was commonly
used in relevant industries for bearing fault diagnosis, with
methods such as Fourier transform, wavelet transform, varia-
tionalmode decomposition (VMD) [5], [6], [7], and empirical
mode decomposition (EMD) [8], [9], [10], being the most
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prevalent. Given the complexity of vibration signals and
the diverse operating conditions, relying solely on a single
method for analysis is insufficient. Therefore, it is valuable
to focus on researching the processing of multiple signals in
order to achieve a more comprehensive analysis of vibration
signals under complex operating conditions. In addition, sup-
port vector machines (SVMs) [11], [12], [13] and Artificial
neural networks (ANNs) [14] were widely utilized in various
applications as machine learning algorithms. For the fault
diagnosis of automotive intelligent steering systems, Shi et al.
[15] used a data-based SVM algorithm. They then com-
bined a grey wolf optimizer with an undersampling procedure
to optimize the original SVM and enhance the diagnostic
performance. This approach proved effective in improving
the accuracy and effectiveness of fault diagnosis in these
systems. Movsessian et al. [16] proposed a new structural
inspection framework within a traditional ANN to improve
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the reliability of flaw detection and validated it with metrics
such as accuracy, F1 score, and Matthews correlation coeffi-
cient with good results. Despite the remarkable advancements
in fault diagnosis achieved by machine learning, the net-
work’s simplistic structure and shallow mechanism make it
difficult to capture deeper hidden features in higher dimen-
sions. This limitation often requires heavy reliance on prior
feature engineering and expert experience for fault feature
extraction [17].

Fault diagnosis has seen extensive research on deep learn-
ing methods [18], [19], [20], [21], including deep belief
networks (DBNs) [22], [23], [24], stacked autoencoders
(SAEs) [25], convolutional neural networks (CNNs) [26],
[27], [28] [29], and recurrent neural networks. Deep neural
networks compensate for the limitations of shallow learning
machines in feature extraction and can adaptively identify
hidden features, reducing the reliance of fault diagnosis algo-
rithms on data preprocessing. For both 1D and 2D data with
multiple channels, convolutional neural networks (CNNs)
demonstrate outstanding performance in visual image anal-
ysis and artificial intelligence tasks. Their abilities to effec-
tively process such datamake them highly suitable for various
applications [30]. The high performance of CNNs in various
data forms has resulted in numerous variants with specialities
such as the visual geometry group (VGG), GoogLeNet, and
residual networks (ResNets). Zhao et al. [31] presented an
improved ResNet by incorporating a systolic module that
integrates the soft threshold denoising joint from traditional
signal processing. They conducted experiments with different
signal-to-noise ratios to compare the performance of the pro-
posed model with traditional CNNs and the original ResNet.
Zhao et al. [32] tackled this challenge by employing multi-
mode jump fusion of fault features. They incorporated the
inception module to enable seamless network connectivity
without modifying the CNN module, thereby enhancing the
extraction of fault feature information. The past experimental
results have demonstrated that the proposed method main-
tained a diagnostic accuracy above 90% even under different
solid noise conditions.

Using convolutional operations to adapt to neural networks
is a more effective approach. To secondarily process the orig-
inal data features before engaging the network model, some
scholars have utilized joint processing of feature information
[33], [34], [35]. Dong et al. [36] presented a fault diagnosis
method for rolling bearings that combined multilayer noise
reduction technology with an improved CNN. By applying
singular value decomposition (SVD) to process the training
samples, they obtained the intrinsic mode function (IMF).
Subsequently, the IMF was superimposed on the original
signal to obtain the final signal and then handed over to the
improved CNN for fault diagnosis. Wu et al. [37] proposed a
dual-wavelet denoising method that can retain more details
of the original signal, and comparison tests showed that
dual-wavelet denoising has a better performance in obtain-
ing details of the original fault features. The experimental
results showed that a small amount of feature engineering

can improve the performance of network training and bring
the diagnostic effect of network models with traditional or
simple structures closer to that of more advanced network
structures. Signal preprocessing combined with neural net-
work diagnosis focuses on raw sequences noise reduction
and feature extraction using 1D CNNs [38], [39]. However,
CNNs are primarily used for image feature extraction, and 1D
CNNs cannot fully exploit the capabilities of image feature
extraction [40], [41], [42].

Enlightened by feature extraction and data fusion the-
ory, we propose an improved deep learning model RMCW,
residual network with multi-channel feature weighting, for
fault detection of bearings or similar objects. Specifically,
a feature fusion layer with three independent channels is
designed to balance the density of features from different
modalities. Each independent channel deals with features
via the adjustable dynamic receptive field (DRF). Using
the DRF is to balance the feature density based on the
adjustable parameters. With shock signal from the intrinsic
mode function (IMF), the kurtosis-based feature selection is
designed to select the useful features for the feature fusion
layer with DRF. Furthermore, the gramian angular field
(GAF) algorithm is employed to transform the data dimen-
sion for the purpose of temporally encoding the sequences
while mitigating computational complexity. For performance
evaluation, we apply the RMCW model to CWRU bear-
ing dataset for a simulation experiment and further testify
it with a practical bearing dataset. Compared with similar
deep learning-based methods CNN and ResNet. Experimen-
tal results show that the proposed RMCW can improve
fault classification performance effectively and outperform
its competitors significantly.

To summarize, the RMCW model has its unique advan-
tages over existing methods: 1) In contrast with the
neural models with traditional multi-channel, the inde-
pendent weighting multi-channel with DRF is utilized
in RMCW can address more features from the differ-
ent modalities via independent DRF parameters adjust-
ment. 2) Comparing with extant multi-channel feature
extractions, nearly all of which are focused on low abstrac-
tions such as raw signals themselves, some statistical fea-
tures, and so on. Independent multi-channel with DRF can
pay higher level attention to address the specific features
such as numerous IMFs or others from any other modal-
ities, leading to the acquisition of higher quality feature
fusion.

Our contributions in this article are mainly listed as the
following.

1) The shock degree of the IMF signals is utilized to
describe the feature density in different frequency
bands. Independent channel weights based on the cal-
culated kurtosis coefficients are designed to address
the problem of widely varying feature densities across
channels.

2) Inspired by the color gamut adaptation of biological
vision, the independent DRF in different channels is
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proposed to accomplish weight adjustment of modality
signals.

3) An improved deep learning-based model RCMW is
built for the purpose of utilizing different independent
channels with adjustable DRFs to improve model fea-
ture extraction.

The rest of this article is organized as follows. We describe
related method about data processing in Section II. The
RMCW network structure is expatiated in Section III. We
conduct detailed discussions for simulation and practical
experiment results on CWRU bearing datasets and practi-
cal slewing bearing datasets in Section IV and Section V,
respectively. Finally, we conclude this article in Section VI.

II. DATA PROCESSING
Data processing is closely related to dimension reconstruc-
tion, time sequences distribution, and modalities decomposi-
tion. The most related works are described here.

A. EMPIRICAL MODE DECOMPOSITION
A complex signal can be seen as the sum of multiple different
IMFs, any modal function can be linear or nonlinear, and any
modes are independent. Assuming the original signal is x(t),
the steps of EMD are as follows:

h1(t) = x(t)− m1(t) (1)

c1(t) = h1k (t) = hk−1(t)− m1k (t) (2)

r1(t) = x(t)− c1(t) (3)

x(t) =
n∑
ci(t)+ rn(t) (4)

where m1(t) is the mean magnitude; h1(t) is the difference
between x(t) and m1(t); repeat (1) to obtain h1(t); r1(t) is
the residual variable obtained by separation; the final residual
component rn(t) is a monotonic function.

B. POLAR COORDINATES CODING
The denoised vibration signal is still a random variable in
the time domain, and each sampling point corresponds to a
timestamp. Assuming x(t) = [x1, x2, . . . , xi], xi is the mag-
nitude of the corresponding timestamp. In vibration signals,
the variable value at any time point xi is meaningless when
detached from time. Hence, it is essential to ensure that the
reconstructed variable values correspond to new valid time
sequences.

To ensure the timing of information, this paper maps 1D
data timing to angle values through polar coordinate coding.
The information involved in the encoding is the amplitude of
the signal. The specific steps are as follows:

a) To increase the timing of sampling and reduce the
influence of eigenvalue variation. This paper adopts the
method of piecewise aggregation approximation (PAA)
for coding. In this step, take the average time sequences
value of kadjacent sampling points to reduce the ampli-
tude of the fault feature, and get new sequences xk (t).

xk (t) =


k∑
1
xi

k
,

2k∑
k+1

xo

2k
, · · ·

nk∑
(n−1)k+1

xp

nk

 (5)

where xi, x0 and xp are the characteristic amplitudes of
the original series corresponding to the time series interval.
Then the new series after PAA coding can be expressed as
xk (t) = [xk1, xk2, . . .xkn].

b) Perform normalization processing, scale the time
sequences value to the [0, 1], and standardize the
importance of the feature. The normalization method
in this paper is as follows.

xk (t) = [e−|xk1|, e−|xk2|, · · · , e−|xkn|] (6)

Let δkn = e−|xkn|, then the new sequences after normaliza-
tion processing can be expressed as xk(t) =[δk1, δk2, . . .δkn].

c) Perform polar coordinate processing. Generate polar
coordinates by taking the new time sequences kn as the
polar radius and the arc cosine of the normalized value.

xk (t) = [δk1, δk2, · · · δkn]

⇓

xk (t) = {[arccos(δk1), k1], [arccos(δk2), k2],

× · · · , [arccos(δkn), kn]} (7)

C. GAF DIMENSION RECONSTRUCTION
The sequences xk (t) is imported into GAF to get a 2D
sequences diagram. GAFmethods divide into Gramian angu-
lar summation field (GASF) and Gramian angular difference
field (GADF). This paper uses the GASF method to upgrade
the data dimension, and the obtained GASF can be expressed
as in (8) and (9), shown at the bottom of the next page.

III. RESIDUAL NEURAL METWORK WITH
MULTI-CHANNEL FEATURE WEIGHTING
An enhanced ResNet model named RMCW is proposed in
this paper. Unlike usingmultilinear CNNs, RMCW integrates
the features from multiple channels of 2D images through a
default convolution layer. Each channel is assigned different
convolution kernels based on the proportion of the feature
information, enabling comprehensive extraction of crucial
features within the image.

A. DATA EXPANSION
The residual model requires data samples of sufficient scale,
and the scale of IMF channel images is smaller than the orig-
inal data. Data expansion is performed through overlapping
sampling as shown in Fig. 1 [43].
When the total length of the signal is L, the length of the

interception target is l and the interception compensation is n.
Subsequently, the calculation formula for the number Z of
sub-signals can be expressed as follows:

Z =
⌊
L − l
l − n

+ 1
⌋

(10)

where ⌊⌋ is the round-down operator.
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FIGURE 1. The method of data expansion.

The original signal is decomposed by EMD to obtain IMFs
with different shock features. Figure 3 shows that the first
three IMFs have obvious impulsive characteristics, while
kurtosis decreases in order. The reasons for using the first
three IMFs will be explained in Section III, Part B. Then time
sequences signals are saved by polar coordinate encoding,
and the generated 2D time sequences diagram distributes the
time sequences from the upper left to the lower right.

B. FRAMEWORK OF RMCW
The feature fusion layer in this approach utilizes kurtosis
to determine the fusion proportion of each channel’s infor-
mation, emphasizing the crucial features while avoiding the
omission of secondary information. The framework of diag-
nostic method is illustrated in Fig. 2. The detailed RMCW
algorithm is illustrated in Algorithm 1.

C. MULTI-CHANNEL VIBRATION IMF IMAGE
We utilized EMD to decompose the raw signals to obtain
IMFs that are not correlated and have prominent shock fea-
tures. Besides, these shock features are distributed on various
scale details. As shown in Fig. 3 [43], we select a single
sample for the Hilbert analysis, and the vibration sequences
is 0-0.16 s, the x-axis represents chronological information,
while the y-axis represents frequency. To express the homeo-
pathic atlas of each IMF, grayscale processing of the original
atlas can represent the energy relationship of the IMFs under
each detail at different scales. The IMFs in the different
bands exhibit high-energy features and are independent of
each other. However, an IMF signal containing the features
required for fault diagnosis requires manual analysis.

Hilbert time-frequence spectrum of the IMF signal com-
ponents in each band manually screened as shown in Fig. 4
[43]. The first three IMFs express the shock features of the
vibration signal. In the forth IMF, the signal frequency fluc-
tuates significantly at 0.11325(s), proving that is abnormal.
By comparing time-frequency features, the first three IMF

images highlight the shock features to verify the correctness
of IMFs screened for the multi-channel input.

D. NETWORK STRUCTURE
The first convolution layer in the RMCW is a multi-channel
feature fusion layer, followed by 9 residual building blocks
(RBB). Each RBB contains 2 convolution layers: a batch
normalization (BN) layer and pooling layer. Connecting the
layers and classifiers, we obtain 40 layers in total. The sheer
size of the data requires deeper models that would otherwise
cause gradients to disappear or make it difficult to fit complex
features with diversity. Hence, the size and complexity of the
dataset determine the number of residual modules.

1) DYNAMIC RECEPTIVE FIELD
Due to the variations in feature density across different image
channels, the feature fusion layer employs DRFs to capture
impactful features at various scale details. The primary design
concept of the DRF is to allow independent parameter adjust-
ments for each channel, with each channel receiving its own
data. This way, each channel possesses its distinct field, and
its parameters adapt as its internal subparameters, such as the
convolution kernel size, change.

As previously described, the source data received by the
three channels are derived from IMF-converted temporal
images in different frequency bands. It is predictable that the
information received by each channel is necessarily uneven.
If the traditional RGB channel is used for feature extraction,
it is inevitable that one will lose sight of the other. Similar
to the reception of light by the eye in biology, humans, for
example, have different sensitivities to different color bands,
so the visual system adjusts its perception of different color
differences and transmits them uniformly to the nerve centres
to obtain visual information [44], [45], [46]. Thus the adjust-
ment can be considered to be dynamic, and it is precisely this
biological phenomenon that is analogous to the independent
adjustment of the parameters of each channel in a DRF to the
different bands of information.

The range in which the output of the convolution layer is
mapped onto the input is defined as the receptive field. The
mathematical relationship between the convolution kernel
size and the receptive field can be expressed by the following
function.

RFi = (RFi+1 − 1)× Si + Ki (11)

Gsummation =

cos(arccos(δk1)+ arccos(δk1)) · · · cos(arccos(δk1)+ arccos(δkn))
...

. . .
...

cos(arccos(δkn)+ arccos(δk1)) · · · cos(arccos(δkn)+ arccos(δkn))

 (8)

Gdifference =

cos(arccos(δk1)− arccos(δk1)) · · · cos(arccos(δk1)− arccos(δkn))
...

. . .
...

cos(arccos(δkn)− arccos(δk1)) · · · cos(arccos(δkn)− arccos(δkn))

 (9)
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FIGURE 2. The framework of fault diagnosis based on RMCW.

FIGURE 3. IMF Hilbert spectrum of gearbox vibration signal.

where RFi is the size of the receptive field of the ith layer,
RFi+1 is the size of the receptive field of the (i−1)th layer, Si
is the convolution step size of the ith layer convolution kernel,
and Ki is the size of the ith layer convolution kernel.
The DRF parameters are controlled by the convolution ker-

nels in each independent channel, and they remain unaffected
by other channels. The combination of channel weighting
coefficients enhances the adaptation and the fault tolerance
of model. As the IMF image is obtained from the original
signal, the IMF at different frequency bands still belong
to the same time domain. The IMF shock features can be
seen as the components of the features in different frequency
bands. Additionally, the GAF images quantize the original
features into pixel values so that the relationship between
multi-channel images can be approximated as that of the RGB
channel images. The difference is that the feature density
of the multi-channel images in this paper is measured by
the kurtosis and requires different feature fields to balance.
We utilized the same way as RGB to output fusion features,

namely element weighted summation. Output of the feature
fusion layer can be expressed as follows.

X lj =
k∑
i=1

(x l−1ij × w
l−1
ij ) (12)

where X lj is the output of the lth layer convolution of the jth
channel, x l−1ij is the input of the ith feature of the (l − 1)th
layer channel, and wl−1ij is the weight of the ith feature of the
lth layer of the jth channel. There are k features in total.

2) MULTI-CHANNEL FEATURE WEIGHTED FUSION
The vibration signal image contains distinct impact charac-
teristics of defects within different frequency bands. In order
to fuse the channel image features of different importance,
we utilized the signal kurtosis coefficient to determine the
weighting coefficient. The kurtosis coefficient measures the
regularity of the signal vibration. Therefore, the kurtosis
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FIGURE 4. IMF 1-4 Hilbert time-frequency band.

coefficient directly affects the failure probability.

Kv =

N
N∑
i=1

(ki − µ)4

(
N∑
i=1

(ki − µ)2)2
(13)

where Kv is the signal kurtosis of length N , ki is the kurtosis
coefficient of the ith sampling point, and µ is the mean
kurtosis.

The fusion weight of each channel is given by (14).
After calculating the fusion weights, we perform the feature
weighted fusion.

λj = exp

 mKj
m∑
j=1

Kj

 (14)

X last = f

 m∑
j=1

(λj × X
(last−1)
j + b(last−1)j )

 (15)

TABLE 1. The design of RMCW hyperparameters.

where X last is the output of the feature fusion layer, X (last−1)
j

is the feature output of the jth fusion channel, λj is the weight-
ing coefficient, m is the number of channels, and f (x) is the
activation function of the feature fusion layer.

3) RMCW HYPERPARAMETER SETUP
The hyperparameter settings for the RMCW are listed in
Table 1 [43].
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Algorithm 1 Residual Network with Independent Multi-
Channel Weighting Algorithm

Input: Original input
{
XE ,Y E

}
∈ RN×(M+1)

1: // Assuming {XE } is one-dimension data; {XE } is label.
2: The original input is processed via EMD
3: for i = 1; i < k do
4: for j = 1; j + + do
5: while r1(t) = XE (t)−H1(t) do
6: //H1(t) is the 1st obtained IMF and r1(t) is the

1st residual signal
7: rj(t) = Hj(t)− rj−1(t);
8: end while
9: CalculateHj(t) = 1

k

∑k
i=1 E1(rj−1(t)+

Hj−1(δj−1(t)));
10: // E(.) is the EMD decomposition operation
11: end for
12: Calculate Kv(Hj(t)) = N

∑N
i=1(Hj(t))4/(

∑N
i=1

(Hj(t))2)2;
13: // Kv(.) is the kurtosis calculation.
14: ChooseHE

1 ,HE
2 ,HE

3 by K1,K2,K3← Kv
(
Hj(t)

)
;

15: // Return three parallel IMFs by Eq. (13)
16: end for
17: return (HE

1 ∥H
E
2 ∥H

E
3 ),Y

E ) ∈ RN×(M+1);
18: Three groups of IMF are generated as two-dimensional
images via GAF;
19: whileHE

1 ,HE
2 ,HE

3 is acquired do
20: for L = 1;L ++ do
21: Calculate (HE

L )m =
HT
L
m ,m = 1, 2, . . . , π by

Eq. (5) and (10);
22: // (HE

L )m is all sets of IMFs by screened.
23: Generate GELm by Eq.(9);
24: // GELm is all sets of generated GAFs.
25: end for
26: end while
27: return GELm
28: while The data (GELm,Y E ) ∈ RN×(M+1) is acquired do
29: Initialize RMCW with residual mapping nodes n;
30: for n = 1; n ≤ 3 do
31: // n is the number of channels.
32: for i = 1; i ≤ k do
33: RandomWij, βij; //Wij, βij are the weighting

and bias, respectively.
34: Calculate Zk ⇐

∏
i=1ϕ1ϕ2,...ϕi

(GELm, {Wij, βij}), i = 1, 2, . . . , k;
35: // Zk is the current residual feature mapping.
36: end for
37: Calculate Znk
38: // Znk is all sets of residual feature mappings.
39: end for
40: if above steps finished then
41: Update Zξ (t) by Eq. (13)
42: // Feature fusion through weighted coefficients.
43: end if
44: end while
Output: Zξ (t)

The feature-fusion layer adopts a DRF by adjusting the
receptive field range. The feature output is shown in (12).
Owing to the residual structure, we added no regularization
term to the RBB. The channel weights of the feature fusion
layer are calculated by (14). The kurtosis and related weights
for each channel are listed in Table 2 [43].

TABLE 2. The channel weighting factors of the feature fusion layer.

IV. FAULT DIAGNOSIS MODEL APPLICATION CASE 1:
CWRU BERING DATASET
This section demonstrates the efficacy of the RMCW pro-
posed in this paper using a bearing dataset.

A. DESIGN OF SIMULATION EXPERIMENTS
In this case, both the types of CWRU deep-groove ball
bearings are SKF6205-2RS and SKF6203-2RS, respectively.
One cycle contains 406 sampling points. We set the sample
length to 800 sampling points to ensure the feature density.
Seven different fault types are labeled, each type contains
500 samples, and the training set and the test set are divided
according to the ratio of 4:1. The specific distribution of
bearing fault samples is shown in Table 3 [43].

TABLE 3. The describtion of datasets.

B. EXPERIMENTAL RESULTS ANALYSIS
The RMCW model was trained 100 times. The accuracy and
loss during the training process are shown in Fig. 5. The
confusion matrix for the test results is shown in Fig. 6.

The experimental results from simulations demonstrate
that the proposedmethod achieved an average test accuracy of
99.72% on the CWRU bearing datasets when using RMCW.
The confusion matrix confirms that RMCW exhibits high
diagnostic accuracy in effectively identifying various types
of faults.

Experiments were conducted on a computer with an
i7-10750H central processing unit and an NVIDIA GeForce
GTX 1660Ti GPU. The training efficiency of the model is
dependent on the hardware. The main device condition in this
study is the performance of the GPU.
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FIGURE 5. Training and testing results of RMCWIMF.

FIGURE 6. Confusion matrix of the test results (%).

C. VISUAL ANALYSIS
We utilized visualization technology to characterize the data
features in the network due to the difficulty of model expla-
nation. As shown in Fig. 7, the 2D time-sequences image of
the inner raceway fault was selected into the RMCW, and the
shape of the health state was observed. That can be summa-
rized as follows: while the data dimension is continuously
improving, the images become increasingly abstract and the

features become sparse. The yellow block of RBB_9, namely
output_1 before the fully connected layer indicates that the
feature has been activated.

FIGURE 7. The output visualization of each residual module in RMCW for
inner raceway fault.

To further explore feature extraction, the data dimension-
ality reduction technology is utilized to map data of different
dimensions into a 3D space. Moreover, principal component
analysis (PCA) combined with t-distributed stochastic neigh-
bor embedding (T-SNE) was used to reduce data dimension-
ality to reduce the time cost. As shown in Fig. 8, an interval
display is performed to reflect the difference in the feature
distribution in each RBB. After 9 RBBs, the classification
features of the data are pronounced. Softmax is the final
classification layer.

FIGURE 8. Feature visualization of RMCW by T-SNE and PCA.

V. FAULT DIAGNOSIS MODEL APPLICATION CASE 2:
SLEWING BEARING DATASET
This section describes the slewing bearing fault diagno-
sis experiments to verify the effectiveness of RMCW.
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As shown in Fig. 9, the slewing bearing test stand is loaded
by a hydraulic station and the data is output by 3 sensors
(vibration, temperature and torque) and collected by a data
acquisition card. The datasets are provided by the Key Lab-
oratory of Digital Manufacturing and Control Technology
for Industrial Equipment in Jiangsu Province, Nanjing Tech
University.

A. DESIGN OF EXPERIMENTS
The experimentation involved monitoring the vibration sig-
nals of a QNA-730-22 single-row ball slewing ring bearing
using a ULT2001 low frequency capacitive accelerometer. To
mitigate the interference caused by local resonance during
signal acquisition, the accelerometers were positioned near
the raceway surface at 90◦ intervals using magnetic holders,
as depicted in Figure 10 [43].

FIGURE 9. The diagram of slewing bearing test platform.

The experimental loading procedure is shown in Table 4.
The slewing ring bearing was tested under full load for
10.58 days (89,520 circles) with an abnormal rattling noise
and finally a stalling of the slewing bearing. The type of fault
was obtained as shown in Fig. 11.
The vibration signal is obtained as shown in Fig. 12. The

vibration signal data from the four measurement points fur-
ther ensures the diversity and the data scale as well as prevents
overfitting during the training process. The 2D multi-channel
input image is acquired according to the signal processing
described previously. The specific operation steps are shown
in Fig. 13. The basic model parameter settings are the same
as in the simulation experiment.

B. MODEL PERFORMANCE COMPARISON
We compare RMCW with the SVM, CNN and ResNet. The
comparison of accuracy results for different signal-to-noise
ratios (SNR) are shown in Fig. 14. The network models par-
ticipating in the comparison, except for RMCW, are trained

FIGURE 10. Mounting position of acceleration sensors.

TABLE 4. The experimental loading procedure.

FIGURE 11. Fault types for accelerated bearing damage.

using the RGB channel images (reconstruction of the original
signal using GAF only). The experimental results show that
the classification accuracy of RMCW is better than others.

Table 5 presents the comprehensive outcomes of SVM,
CNN, ResNet, and RMCW when tested with different types
of noise at varying signal-to-noise ratios (SNRs). Further-
more, we utilized several evaluation metrics including pre-
cision, recall, and F1 score to assess the performance of the
models. Figure 15 illustrates that RMCW exhibits excep-
tional performance in terms of the metrics, achieving lower
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TABLE 5. Performance of experimental results under different Snrs.

FIGURE 12. The vibration signals of slewing bearings.

FIGURE 13. The diagram of the model experiment.

rates of missed detections and false alarms compared to
ResNet.

The detailed results of the SVM, CNN, ResNet and
RMCWwith different types of noise under different SNRs are
provided in Table 5. Moreover, we introduced various metrics
such as precision, recall, and F1 score to evaluate the model
performance, as shown in Fig. 15. The metrics of RMCW
demonstrate superior performance, with lower miss and false
detection rates compared to ResNet.

FIGURE 14. Comparison of classifier performance.

FIGURE 15. Radar plot for model performance comparison.

As shown in Fig. 14, RMCW has significant accuracy
superiority over several other mainstream diagnostic algo-
rithms under different SNRs, and becomes more apparent
as the SNR increases. Accordingly, the average diagnostic
accuracy of RMCW is improved by 3.45% over ResNet.

Average computation time of 1671.97s (27.866 min) was
obtained after multiple sets of trials, based on the computer
configuration described previously. It can be seen that the
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difference in calculation time costs is not significant com-
pared to other methods.

VI. CONCLUSION
In our study, a fault diagnosis framework RMCW is con-
structed, which is based on residual network, includes an
improved method for independent multi-channel weighting
optimization, and a dynamic receptive field mechanism for
real bearing from a machinery system. The EMD algorithm
and the GAF algorithm are utilized to obtain 2D time series
fault samples with different shock degrees filtered by the
kurtosis. Subsequently, CWRU bearing data are presented to
illustrate the implementation procedure and validity (99.72%
average accuracy achieved) of the RMCW diagnosis frame-
work for fault classification. In addition, a real slewing
bearing dataset is adopted to testify to superior fault diag-
nosis performance (Higher accuracy and stability at different
SNRs, 3.45% higher than before improvement) of the pro-
posed RMCW diagnosis framework.

However, it should be mentioned that there is still room
for improvement in the current work. For instance, the EMD
algorithm is used in our data pre-processing part, which
works well but may not be the best option. Another potential
improvement is to adopt the different modal information
(e.g. temperature, torque) into the proposed RMCW model
to get better performance.
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