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ABSTRACT This study’s major purpose is to highlight circular spherical fuzzy sets, that happens to be
a prolongation of spherical fuzzy sets. The primary purpose of this research is to demonstrate the basic
operations and theorems of circular spherical fuzzy structures (C-SFS), which give an effective way for
dealing with data ambiguity. Aggregation operators (AOs) play a significant role in decision-making,
particularly in situations where conflicting interests need to be taken into account. The Sugeno-Weber
(SW) t-conorm and t-norm are employed in the C-SFS operating rules. The study describes in detail the
fundamental operating criteria for C-SFS utilizing SW t-norms and t-conorms, as well as their crucial
features. Furthermore, this research presents and fully investigates two novel operators, C-SFS SugenoWeber
weighted averaging (C-SFSWWA) and C-SFS Sugeno-Weber weighted geometric (C-SFSWWG), as well
as their distinct applications and desired properties. A novel approach based on the C-SFSWWA and C-
SFSWWG operators is suggested to address multiple attribute decision-making (MADM) problems utilizing
C-SF information. A numerical example shows how this approach may be used to adapt a programming
language for social media platform analytics, followed by a comparison study to highlight its advantages.
The advised approach is successful, according to an investigation of authenticity and a comparison study.
In reality, the recommended aggregation operators and decision-making approach are quite useful for
decision analysis.

INDEX TERMS Fuzzy set, circular intuitionistic fuzzy set, sugeno weber, decision making.

I. INTRODUCTION
The 21st century has witnessed a dramatic transformation
in communication and information dissemination, largely
driven by the rise of social media. A bunch of online
communities and web pages together referred to as ‘‘social
media’’ enables people to produce, collaborate, and interact
with content in a fake social environment. These platforms
enable communication, networking, and information sharing
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among individuals, groups, enterprises, and communities all
over the world. By providing businesses and brands with
previously unheard-of opportunities to interact and engage
with their target population, social media has fundamentally
altered the marketing sector. Utilizing a number of social
media platforms, social media marketing works to build
client relationships while promoting products, services, and
content. Businesses have the opportunity to interact with a
huge global audience on social media, which has billions
of active users across a number of platforms, and increase
their visibility. It is now a vital part of modern marketing
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strategies, giving businesses unparalleled opportunities to
engage, communicate with, and influence their target market.
As social media matures, society must navigate its challenges
in order to fully realize its promise of connection and positive
impact.

A social media analytics platform is required for a number
of reasons, including the fact that it provides important
insights and data-driven information that may tremendously
benefit individuals, businesses, and organizations. It is a
helpful tool that helps businesses and individuals to utilize
the enormous volumes of data available on social media
networks. It offers useful knowledge, facilitates decision-
making, enhances marketing strategies, and strengthens
customer relationships, all of which help firms to grow
and succeed. Individuals and organizations interested in
harnessing the potential of social media data may profit
from a software company that offers a social media analytic
platform application. The problem arises from the high
volume of data and traffic on the application, which is causing
issues. The firm wanted to transition from programming lan-
guage of application i.e. Python to GoLang and considering
some alternatives over some specific criterions. Compared
to interpreted languages like Python, GoLang’s execution
speeds is faster since it immediately compiles to machine
code. Thanks to the speed optimization of the compilation
process, GoLang is a viable option for performance-critical
applications. GoLang’s sophisticated memory management
and garbage collection system, which helps keep the memory
footprint low, enable applications to handle a high number of
concurrent connections and expand more successfully. Due
to its low memory usage, it is particularly scalable.

The firm has taken into consideration some parameters
over specific criterions, thus the problem can be tackle by
decision making. Making choices with the parameters of
fuzzy sets refers to the act of picking options or outcomes
based on fuzzy logic principles. Fuzzy logic is highly
useful in decision-making scenarios involving ambiguous,
imprecise, or confusing facts. It provides more flexible and
human-like decision-making by including language phrases
and coping with ambiguity. Companies establish from DM
opinions collects and ranks a range of view points ranging
from great towards the most adverse possibilities on a regular
basis. As a result, we may choose, categorize, develop, and
conduct a thorough inquiry.

Multi-attribute decision-making (MADM) is the most
effective technique for obtaining a significantly better result
by considering all relevant aspects or criteria. The funda-
mental goal of overcoming the dilemmas in evaluation and
taking decisions is to categorize and collect data for indices
of judgment. But, because of the complexity of real-world
systems, humans need to cope with a wide range of MADM
challenges when the assessment information is ambiguous.
The problem is coped by Zadeh [1], he introduced fuzzy sets
in 1965 that deals with ambiguous information. Elements
have degree of belonging-ness that range from [0,1]. Later

on, Atanassov [2] gave the more extended idea on FS i.e.
IFS. He added the concept of non-belonging-ness in FS.
Xu [3] investigated aggregation operators, while Luo [4], [5]
contributed to the concept of distance in his study. Other
fuzzy concepts like q-rung fuzzy logic in optimizing urban
parcel delivery strategies are explored in [6] and logarithmic
bipolar fuzzy in [7].

Another genuine expansion of IFSs is suggested, whereby
a circular region is allocated with a straightforward represen-
tation rather than a rectangle. It goes by the name Circular
IFS (C-IFS). Atanassov [8] suggested the Circular IFS (C-
IFS). A circle depicts the ambiguity of the belonging as well
as non-belonging grades in a C-IFS. In other words, a circle
with pair of non-negative real numbers in the center, given
that their sum is less than one, represents the belonging and
non-belonging grades of all parts to a C-IFS. C-IFSs provide
more diplomatic management of modifications to both
belonging and non-belonging degrees to indicate ambiguity.
He also presented distances measures for C-IFSs [9]. Boltrk
[10] proposed idea of interval valued in it and Cakir [11]
proposed DM in it. As a result, circular intuitionistic fuzzy
environments have been used with a variety of MCDM
approach types [12], [13]. Oaty and Kahraman [14] extended
AHP and VIKOR methods for C-IFSs and utilized them in
the multi-expert supplier evaluation problem [15]. Chen [16],
[17] explored distance in C-IFS. Khan and Kumam presented
divergence measure for C-IFS and their application [18].

Despite the widespread interest in Atanassov’s devel-
opment of IFSs, decision-makers encounter constraints in
assigning degrees of membership and non-membership.
These restrictions complicated the decision-making process.
Because, according to certain real-life choice theories,
decision makers deal with scenarios involving distinct
characteristics where the sum of their belonging degrees
exceeds 1. In such a case, IFS will be unable to deliver an
appropriate result. Then to tackle this hurdle, idea of PyFS
is given by Yager [19] and some results [20], [21]. It meets
the constraint that the value of the square sum of its grades
is below or equal to one.i.e.0 ≤ ϑ2

+ κ2
≤ 1. Olgun

introduced PyF points [22], Peng presented PyFS results [23],
Einstein operations [24] and norms were explored [25], and
an extended TOPSIS method was proposed [26]. The study
also covered TODIM [27], similarity measures [28], [29],
and Biswas’ work on TOPSIS with entropy [30]. Rahman
investigated interval values in PyF [31] and Pythagorean
vague normal operators are discussed in [32] by Palanikumar.
These works have advanced decision-making approaches.

Just as PyFS are the elongation of IFS concept, similarly
Murat and Bozyigit [33] proposed the notion of circu-
lar in PyFS. He represented the idea of belonging and
non-belonging grades in term of cricle with condition 0 ≤

ϑ2
+ κ2

≤ 1. He proposed T-norms and T-conorms, which
are utilized for describing numerous algebraic procedures
for C-PFVs. A number of weighted averaging and geomet-
ric aggregation operations have been devised using these
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approaches. Khan and Kumam [34] expanded C-PyFS to disc
PyFS in 2023.

Ashraf et al. [35] presented the more broader concept of
SFS, taken into account of beloning degree, non- belonging
degree and abstinence and the criteria 0 ≤ ϑ2

+ ι2 +

κ2
≤ 1. This framework developed by Ashraf is significantly

more in line with the traits of people than previous
theories, resulting in one of a great deal of active fields
in academia right now. Aggregation operators (AOs) play a
big part in decision-making problems (DMPs). A number of
academics have made rather significant contributions to the
development of AOs for SF sets. Riaz investigated supply
chain management in [36]. In his work, Ashraf explored
t-conorms and t-norms, presented aggregation techniques
[37] and its representation [38]. The WASPAS [39] and
TOPSIS [40] techniques were introduced by Gundogdu.
Mahmood’s study [41] centered on making choices regarding
diagnoses in medicine. While Ozceylan conducted a survey
on SF information [42] and Peng concentrated on the subject
of IIoT [43]. The concept of similarity and distance in SFS
was developed by Khan [44].

This paper’s main goal is to introduce a more generic
representation of SFSs in order to enhance decision-making.
Utilizing exact points, pairs of points, or triples of points from
the closed interval [0, 1] is a common practice when working
with fuzzy sets. While offering a rigid decision-making
process, these techniques are in need that decision-makers
(DMs) assign exact numerical values. Contrarily, Interval
Valued (IV) SFSs provide for the flexible assignment of
intervals for degrees of membership, non-membership, and
abstention, but managing their representation can be difficult.
A true extension of spherical fuzzy sets (SFSs) that uses
circles and a more straightforward representation is proposed
in this study to solve this.

We put forward the framework of circle in spherical fuzzy
sets in this work. In this innovative fuzzy set concept, the
degrees of membership, abstention, and non-membership for
an element are represented by circles with centers (ϑ, ι, κ)
unlike integers, and with a more flexible state 0 ≤ ϑ2

+

ι2 + κ2
≤ 1. By employing this approach, we expand both

the concept of C-IFS and C-PFS, in addition to enhancing
the understanding of SFS concepts. Decision-making has
grown more difficult as DMs can now acquire circles with
certain characteristics rather than precise numbers. Instead
of using exact numerical values, this feature enables DMs
to design circles with certain attributes. In turn, this makes
the decision-making process more sensitive and flexible,
enabling DMs to handle uncertainties and difficult.

Sugeno introduced a class of nilpotent t-conorms in his
PhD study [45], featuring the asymptotic components drastic,
probabilistic sum. Weber [46], on the other hand, suggested a
class of nilpotent t-norms with parametric elements product
and drastic product. Both the Sugeno τ -CN with parameter λ

and Weber τ -N with parameter ξ are identical to each other
in the perspective of families τ -N and τ -CN. Both families
are known as Sugeno-Weber t-norms and t-conorms (SW τ -

N and τ -CN) in honor of Sugeno and Weber because of this
duality. In his paper, Sarkar et al. [47] employed SW norms to
define T-SFHySSs. When employing the variable parameter
ξ in the SW τ -N and τ -CN, decision-makers (DM) have
greater capacity since it enables them to accurately modify
the parameter’s value. As a consequence, the SW τ -N and τ -
CN appear to be ideal for generating C-SFS operations and
eliminating blunders and unnecessary information.

An AO is a methodical mathematical representation that is
used in data analysis to integrate numerous pieces of evidence
into a single data format, enabling rational decision-making
in a variety of situations. Sugeno-Weber (SW)-based AOs
are highly rated among the well-known classical AOs. The
use of these AOs in decision-making processes poses a few
challenges though, as they might not always yield the precise
result that the decision-makers are looking for. In order
to better meet the demands of certain decision-making
processes, various AOs must be adapted and updated to solve
these issues. In order to assess if SW AOs will motivate
the continuing research and limits of C-SFSs mentioned
previously, we shall offer SW AOs based on early data. The
primary objectives of the article are as follows:

• Introduce the concept of circular spherical fuzzy sets (C-
SFSs) to broaden the scope of the present framework for
spherical fuzzy sets.

• To enhance the management of uncertainty, develop a
technique for converting spherical fuzzy information
into a circular spherical fuzzy structure.

• Establish basic operations of C-SF information using the
Sugeno-Weber norms to lay the groundwork for further
research.

• Sugeno-Weber norm is used to suggest novel C-SF
aggregation techniques, and their properties are exam-
ined to see how useful they are in decision-making
settings.

• Demonstrate a Multiple-Attribute Decision Making
(MADM) method using the SW aggregation operators
in the context of the C-SF information framework.

• To handle uncertainty and ambiguity in decision-
making, compare the recommended SW aggregating
operators to other existing aggregation operators.

By achieving these objectives, the project seeks to enhance
decision making for addressing uncertainty in real-world.

The following serves as a basis for this paper’s superfluity:
The research starts with an introductory section (Section I)

that outlines context and creates the tone for the rest of the
investigation. In Section II, basic definitions are given to help
with the following topics. The third section gives important
premise and supporting evidence while introducing Circular
Spherical Fuzzy Sets (C-SFS), exploring different C-SFS
operations. The scoring and accuracy measures that may be
used to compare C-SFSs are also covered in this section.
The computation of C-SFS radii is thoroughly discussed
in section IV. Section V of the research examines Sugeno
Weber (SW) norm operations and related identities and

124922 VOLUME 11, 2023



S. Ashraf et al.: Circular Spherical Fuzzy Sugeno Weber Aggregation Operators

proofs. Section VI and VII discuss SW weighted geometric
aggregation and weighted averaging methods.

AMultiple-AttributeDecision-Making (MADM) approach
is also shown in section VIII, providing an algorithm that
efficiently completes C-SFS aggregating operations. To help
with comprehension, a real-world example is provided.
A thorough comparison of all the methods is done in
section IX. Finally, section X highlights the important
conclusions and contributions of the study.

II. PRELIMINARIES
This section describes several important concepts related
to C-IFS, C-PFS and S-IFS. These concepts lay a solid
foundation for further exploration and analysis in the
research and are essential for comprehending the complexity
of the three fuzzy set frameworks. By examining these
essential concepts, we establish a full framework, which
lays the foundation for insightful discussions and informed
interpretations.

A. CONCEPT OF C-IFS AND C-PFS
Definition 1 ([8]): The set χ be the subset of ℑ. Then C-

IFS is

χ = {(z̈, ϑχ (z̈), κχ (z̈); r)|z̈ ∈ ℑ} (1)

where ϑχ : ℑ → [0, 1], κχ : ℑ → [0, 1] indicating MG,
NMG and condition 0 ≤ ϑχ (z̈) + κχ (z̈) ≤ 1 and r ∈ [0, 1] is
the radius of every element’s circle.
Every element in demonstrated by a circle with a center

(ϑχ (z̈), κχ (z̈)) and radius r as opposed to the normal every
point in the IFS indicates an element in the intuitionistic fuzzy
interpretation triangle.
Definition 2 ([33]): Let ℑ be the universal set and r ∈

[0, 1]. The C-PFS in ℑ is given by

χ = {(z̈, ϑχ (z̈), κχ (z̈); r)|z̈ ∈ ℑ}

often referred as a spherical fuzzy set, where ϑχ : ℑ →

[0, 1], κχ : ℑ → [0, 1] are MG, NMG respectively, satisfying
the condition below

0 ≤ (ϑχ (z̈))2 + (κχ (z̈))2 ≤ 1

The point (ϑχ (z̈), κχ (z̈)) on the plane is the radius of circle r.

B. OPERATIONS OF C-PFS
Consider two C-PFS αr̆1 and βr̆2 in ℑ:

αr̆1 =
{
(z̈, ϑα(z̈), κα(z̈); r̆1|z̈ ∈ ℑ)

}
βr̆2 =

{
(z̈, ϑβ (z̈), κβ (z̈); r̆2|z̈ ∈ ℑ)

}
Given below are the definitions of different operations on C-
PFSs:

1) αcr̆1
=
{
(z̈, κα(z̈), ϑα; r̆1|z̈ ∈ ℑ)

}
.

2) αr̆1 ⊂ βr̆2 iff r̆1 ≤ r̆2 and ϑα ≤ ϑβ and κα ≥ κβ .

3) αr̆1 = βr̆2 iff r̆1 = r̆2 and ϑα = ϑβ , and κα = κβ .

4) αr̆1 ∪min βr̆2 =
{
(z̈,max(ϑα, ϑβ ),min(κα, κβ );

min(r̆1, r̆2)|z̈ ∈ ℑ)
}
.

5) αr̆1 ∪max βr̆2 =
{
(z̈,max(ϑα, ϑβ ),min(κα, κβ );

max(r̆1, r̆2)|z̈ ∈ ℑ)
}
.

6) αr̆1 ∩min βr̆2 =
{
(z̈,min(ϑα, ϑβ ),max(κα(z̈), κβ );

min(r̆1, r̆2)|z̈ ∈ ℑ)
}
.

7) αr̆1 ∩max βr̆2 =
{
(z̈,min(ϑα, ϑβ ),max(κα, κβ );

max(r̆1, r̆2)|z̈ ∈ ℑ)
}
.

Definition 3 ([35]): If ℑ is the universe of discourse, then

χ =
{
(z̈, ϑχ (z̈), ιχ (z̈), κχ (z̈))|z̈ ∈ ℑ

}
(2)

often referred as a spherical fuzzy set and ϑχ , ιχ , κχ : ℑ →

[0, 1] are MG, Abstinenace, NMG respectively, fulfilling the
criteria below

0 ≤ (ϑχ (z̈)2 + ιχ (z̈)2 + κχ (z̈))2 ≤ 1 (3)

For {(z̈, ϑχ (z̈), ιχ (z̈), κχ (z̈))|z̈ ∈ ℑ}, SFN are
(ϑχ (z̈), ιχ (z̈), κχ (z̈)).

C. SUGENO-WEBER τ -N AND τ -CN [47]
During the early 1970s τ -CNs are developed by Michio
Sugeno and in the early of 1980s, SW τ -Ns family are
developed by Seigfried Weber.
Definition 4: The part T ξ

SW of SW τ -Ns is given by

T ξ
SW (a, b)=


TD̄(a, b), if ξ =−1,

max
(
0,
a+b− 1+ξab

1+ξ

)
, if − 1<ξ <+∞,

TP̄(a, b), if ξ =+∞,

where TD̄(a, b) denote the drastic τ -N and TP̄(a, b) denote the
product τ -N (or, algebraic product).

Sξ
SW (a, b)=


SD̄(a, b), if ξ = −1,

min
(
1, a+b−

ξab
1 + ξ

)
, if − 1 < ξ < +∞,

SP̄(a, b), if ξ = +∞,

where SD̄(a, b) denote the drastic τ -CNs and SP̄(a, b) denote
the probabilistic sum (or, algebraic sum).

III. FORMATION OF CIRCULAR SPHERICAL FUZZY SETS
In this section, we will elaborate on the extended concept
of SFS, namely Circular Spherical Fuzzy Set (C-SFS). This
enhancement enhances the representation and management
of uncertainty in fuzzy collections by introducing circularity
to the traditional SFS framework. The C-SFS concept offers
a more complete and flexible way for modeling complex
and uncertain information, providing insightful data for
decision-making and problem-solving in a range of sectors.
Definition 5: Let χ denote a subset of ℑ, a universe of

discourse.

χ =
{
(z̈, ϑχ (z̈), ιχ (z̈), κχ (z̈); r̆)|z̈ ∈ ℑ

}
(4)

will be described as CFS where ϑχ : ℑ → [0, 1], ιχ : ℑ →

[0, 1]κχ : ℑ → [0, 1] are basically MG, Abstinence, NMG.
And ϑχ , ιχ , κχ satisfy the criteria

0 ≤ (ϑχ (z̈))2 + (ιχ (z̈))2 + (κχ (z̈))2 ≤ 1. (5)
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The radius of circle is r̆ the point (ϑχ (z̈), ιχ (z̈), κχ (z̈)) on
the plane. The circle demonstrate the membership grade,
abstinence and non-membership grade of z̈ ∈ ℑ.

In the triangular fuzzy interpretation, each element in SFS is
depicted as a point, but all element in C-SFS is expressed as
a circle with a center (ϑχ (z̈), ιχ (z̈), κχ (z̈)) and a radius r̆ .
Each typical SFS has a standard form, hence this new type

of sets are a modification to the standard SFS

χ = {(z̈, ϑχ (z̈), ιχ (z̈), κχ (z̈); 0̆)}

but the C-SFS with r̆ > 0 is not in accordance with a normal
SFS.
Figure 1 shows some spherical fuzzy values (SFVs) where

as Figure 2 represent some points in C-SF environment.

FIGURE 1. Graphical representation of SFSVs.

FIGURE 2. Comparison chart.

Example 1: Consider ℑ = {z̈1, z̈2, z̈3, z̈4}. The CFS is be
given as follows
χ =

{
(z̈1, 0.7, 0.2, 0.4; 0.6), (z̈2, 0.6, 0.8, 0.1; 0.5),

(z̈3, 0.2, 0.4, 0.5; 0.1), (z̈4, 0.2, 0.9, 0.3; 0.5)
}

A. OPERATIONS ON C-SFS
In this section, our focus will be on developing specific
relations and operations on C-SFSs. In order to demonstrate
the mathematical basis of these processes, we shall rigorously
prove the required theorems. Additionally, we will explore
methods for ranking C-SFS, enabling us to effectively
compare and prioritize different C-SFS instances.

Consider two C-SFS αr̆1 and βr̆2 in ℑ:

αr̆1 =
{
(z̈, ϑα, ια, κα; r̆1|z̈ ∈ ℑ)

}
βr̆2 =

{
(z̈, ϑβ , ιβ , κβ; r̆2|z̈ ∈ ℑ)

}
Given below are the definitions of different operations on C-
SFSs:
1) αcr̆1

=
{
(z̈, κα, ια, ϑα; r̆1|z̈ ∈ ℑ)

}
.

2) αr̆1 ⊂ βr̆2 iff r̆1 ≤ r̆2 and ϑα ≤ ϑβ ,

ια ≤ ιβ and κα ≥ κβ .

3) αr̆1 = βr̆2 iff r̆1 = r̆2 and ϑα = ϑβ ,

ια = ιβ and κα = κβ .

4) αr̆1 ∪min βr̆2 =
{
(z̈,max(ϑα, ϑβ ),min(ια, ιβ ),

min(κα, κβ );min(r̆1, r̆2)|z̈ ∈ ℑ)
}
.

5) αr̆1 ∪max βr̆2 =
{
(z̈,max(ϑα, ϑβ ),min(ια, ιβ ),

min(κα, κβ );max(r̆1, r̆2)|z̈ ∈ ℑ)
}
.

6) αr̆1 ∩min βr̆2 =
{
(z̈,min(ϑα, ϑβ ),min(ια, ιβ ),

max(κα, κβ );min(r̆1, r̆2)|z̈ ∈ ℑ)
}
.

7) αr̆1 ∩max βr̆2 =
{
(z̈,min(ϑα, ϑβ ),min(ια, ιβ ),

max(κα, κβ );max(r̆1, r̆2)|z̈ ∈ ℑ)
}
.

Definition 6: The normalized Euclidean distance for two
C-SFSs αr̆1 and βr̆2 in aℑ is given as:

d(αr̆1 , βr̆2 )

=
|r̆1 − r̆2|

√
2

+


√√√√1
h

h∑
z̈=1

(
(ϑα − ϑβ )2 + (ια − ιβ )2 + (κα − κβ )2

)
Theorem 1: Consider α = (ϑα, ια, κα; r̆α) and β =

(ϑβ , ιβ , κβ; r̆β ) be two C-SFSs in ℑ.
Then De-Morgan’s law is given as:

1) (α ∩min β)c = αc ∪min βc

2) (α ∩max β)c = αc ∪max βc

3) (α ∪min β)c = αc ∩min βc

4) (α ∪max β)c = αc ∩max βc

Proof: For proof, see appendix A. □

B. RANKING OF C-SFSS
We have described the process for ranking C-SFSs in this
section. The ranking process enables us to compare and
prioritize different C-SFS instances based on their respective
properties and characteristics.
Definition 7: Assume α = (ϑα, ια, κα; r̆α) be any C-SFSs.
1) Score Function:

δ(α) =
1
4

(
ϑα − ια − κα +

√
2r̆(2q− 1)

)
where δ(α) ∈ [−1, 1] and q ∈ [0, 1].

2) Accuracy Function: ς (α) = ϑ2
α + ι2α + κ2

α and
ς (α) ∈ [0, 1].
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Now,assume α and β be two C-SFSs then,

• If δ(α) > δ(β), then α > β.

• If δ(α) < δ(β), then α < β.

If δ(α) = δ(β), then

• If ς (α) > ς(β), then α > β.

• If ς (α) < ς(β), then α < β.

• If ς (α) = ς (β), then α ≈ β.

Example 2: Consider collection of SFSs on ℑ =

{x̄1, x̄2, x̄3, x̄4} is given as,
{x̄1, (0.3, 0.5, 0.2), (0.6, 0.2, 0.6), (0.4, 0.4, 0.7)}
{x̄2, (0.6, 0.3, 0.2), (0.4, 0.3, 0.2), (0.8, 0.2, 0.6)}
{x̄3, (0.8, 0.5, 0.3), (0.6, 0.6, 0.4), (0.9, 0.3, 0.5)}
{x̄4, (0.5, 0.2, 0.4), (0.3, 0.3, 0.4), (0.5, 0.3, 0.4)}

Now, we’ll convert this collection into C-SFS.{
(x̄1, 0.5, 0.4, 0.5; 0.4), (x̄2, 0.6, 0.3, 0.4; 0.3),

(x̄3, 0.8, 0.5, 0.4; 0.2), (x̄4, 0.4, 0.3, 0.4; 0.1)
}

IV. DEVELOPMENT OF CIRCULAR SPHERICAL FUZZY
SETS
We will talk about the computation process of the radius of
C-SFS for the conversion of SFS to C-SFS in this section.
To find the radius of SFS, we will use equations (6) and (7).

In an SFS 𭟋m, suppose spherical fuzzy pairs possess a
shape {(ϑm,1, ιm,1, κm,1), (ϑm,2, ιm,2, κm,2), (ϑm,3, ιm,4, κm,5),
. . .}, where m is a numeric value of SFS 𭟋m each containing
5m, which is the number of spherical fuzzy pairs 𭟋m.
The formula for calculating the spherical fuzzy pairs’

arithematic average is as follows:

(ϑ(𭟋m), ι(𭟋m), κ(𭟋m))

=

√∑5m
n=1 ϑ2

m,n

5m
,

√∑5m
n=1 ι2m,n

5m
,

√∑5m
n=1 κ2

m,n

5m

 (6)

The highest value of Euclidean distance is the radius of
(ϑ(𭟋m), ι(𭟋m), κ(𭟋m)).

r̆ = max
1≤m≤5m√
(ϑ𭟋m − ϑm,n)2 + (ι𭟋m − ιm,n)2 + (κ𭟋m − κm,n)2 (7)

thus, SFS is being changed into C-SFS.

V. SUGENO-WEBER OPERATIONS ON C-SFSS
In this part, we will talk about operations of Sugeno-
Weber(SW) and its types in certain basic operations.
Let us assume that τ -Ns T ξ

SW denote the SW sum
and τ -CNs Sξ

SW denote the SW product. The general-
ization of union and intersection of SWCSFSs is SW
sum α

⊕
β and the SW product α

⊗
β, stated as:

1. α
⊕

min β =

(
Sξ
SW (ϑα, ϑβ ),T

ξ
SW (ια, ιβ ),

T ξ
SW (κα, κβ ),T

ξ
SW (r̆α, r̆β )

)
.

2. α
⊕

max β =

(
Sξ
SW (ϑα, ϑβ ),T

ξ
SW (ια, ιβ ),

T ξ
SW (κα, κβ ), S

ξ
SW (r̆α, r̆β )

)
.

3. α
⊗

min β =

(
T ξ
SW (ϑα, ϑβ ),T

ξ
SW (ια, ιβ ),

Sξ
SW (κα, κβ ),T

ξ
SW (κα, κβ )

)
.

4. α
⊗

max β =

(
T ξ
SW (ϑα, ϑβ ),T

ξ
SW (ια, ιβ ),

Sξ
SW (κα, κβ ), S

ξ
SW (κα, κβ )

)
.

Definition 8: Consider α = (ϑα, ια, κα; r̆α) and β =

(ϑβ , ιβ , κβ; r̆β ) be any two C-SFSs and µ be a positive real
number. Then, certain fundamental operations of C-SFSs
on the basis of SW τ -N and τ -CNs are provided as:

1. α
⊕

min β =



√
ϑ2

α + ϑ2
β −

ξ
1+ξ

ϑ2
αϑ2

β ,√
ι2α+ι2β−1+ξ ι2α ι2β

1+ξ
,√

κ2α+κ2β−1+ξκ2ακ2β
1+ξ

,√
r̆α2+r̆β 2

−1+ξ r̆α2 r̆β 2

1+ξ


.

2. α
⊕

max β =



√
ϑ2

α + ϑ2
β −

ξ
1+ξ

ϑ2
αϑ2

β ,√
ι2α+ι2β−1+ξ ι2α ι2β

1+ξ
,√

κ2α+κ2β−1+ξκ2ακ2β
1+ξ

,√
r̆α

2
+ r̆β

2
−

ξ
1+ξ

r̆α
2r̆β

2


.

3. α
⊗

min β =



√
ϑ2

α+ϑ2
β−1+ξϑ2

αϑ2
β

1+ξ
,√

ι2α+ι2β−1+ξ ι2α ι2β
1+ξ

,√
κ2
α + κ2

β −
ξ

1+ξ
κ2
ακ2

β ,√
r̆α2+r̆β 2

−1+ξ r̆α2 r̆β 2

1+ξ


.

4. α
⊗

max β =



√
ϑ2

α+ϑ2
β−1+ξϑ2

αϑ2
β

1+ξ
,√

ι2α+ι2β−1+ξ ι2α ι2β
1+ξ

,√
κ2
α + κ2

β −
ξ

1+ξ
κ2
ακ2

β ,√
r̆α

2
+ r̆β

2
−

ξ
1+ξ

r̆α
2r̆β

2


.

5. µ
⊙

min α =



√
1+ξ
ξ

(
1 −

(
1 − ϑ2

α(
ξ

1+ξ
)
)µ)

,√(
(1 + ξ )

(
ξ ι2α+1
1+ξ

)µ

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξκ2α+1
1+ξ

)µ

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξ r̆α2+1
1+ξ

)µ

− 1
)

1
ξ


.

6. µ
⊙

max α =



√
1+ξ
ξ

(
1 −

(
1 − ϑ2

α(
ξ

1+ξ
)
)µ)

,√(
(1 + ξ )

(
ξ ι2α+1
1+ξ

)µ

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξκ2α+1
1+ξ

)µ

− 1
)

1
ξ
,√

1+ξ
ξ

(
1 −

(
1 − r̆α

2( ξ
1+ξ

)
)µ)


.
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7. α
µ
min =



√
1
ξ

(
(1 + ξ )

(
ξϑ2

α+1
1+ξ

)µ

− 1
)
,√

1
ξ

(
(1 + ξ )

(
ξ ι2α+1
1+ξ

)µ

− 1
)
,√

1+ξ
ξ

(
1 −

(
1 − κ2

α(
ξ

1+ξ
)
)µ)

,√
1
ξ

(
(1 + ξ )

(
ξ r̆α2+1
1+ξ

)µ

− 1
)


.

8. α
µ
max =



√
1
ξ

(
(1 + ξ )

(
ξϑ2

α+1
1+ξ

)µ

− 1
)
,√

1
ξ

(
(1 + ξ )

(
ξ ι2α+1
1+ξ

)µ

− 1
)
,√

1+ξ
ξ

(
1 −

(
1 − κ2

α(
ξ

1+ξ
)
)µ)

,√
1+ξ
ξ

(
1 −

(
1 − r̆α

2( ξ
1+ξ

)
)µ)


.

Theorem 2: Suppose three C-SFSs areα = (ϑα, ια, κα; r̆α)
and β = (ϑβ , ιβ , κβ; r̆β ) γ = (ϑγ , ιγ , κγ ; r̆γ ) and x̄ ≥ 1.
Then following properties are satisfied.

1) α ⊕ β = β ⊕ α

2) α ⊗ β = β ⊗ α

3) (α ⊕ β) ⊕ γ = α ⊕ (β ⊕ γ )
4) (α ⊗ β) ⊗ γ = α ⊗ (β ⊗ γ )
5) x̄α ⊕ x̄β = x̄(α ⊕ β), x̄ ≥ 0;
6) x̄αα ⊕ x̄βα = (x̄α ⊕ x̄β )α, x̄α and x̄β ≥ 0;
7) (α ⊗ β)x̄ = αx̄ ⊗ β x̄ , x̄ ≥ 0
8) αx̄α ⊗ αx̄β = αx̄α⊕x̄β , x̄α and x̄β ≥ 0

Proof: The proof is given in appendix B. □

VI. AVERAGING AGGREGATION OPERATORS FOR C-SFS
This section introduces the averaging aggregation operators
for C-SFSs. We’ll go through the operator’s mathematical
formulation and several key characteristics it satisfies.
We will also provide thorough justifications for the accu-
racy and reliability of the operators in compiling C-SFS
information.

A. C-SF SUGENO-WEBER WEIGHTED AVERAGING
AGGREGATION OPERATORS
Definition 9: Assume αi = (ϑi, ιi, κj; r̆i) be an assembely

of C-SFNs, where i = 1, 2, . . . , n.
If C-SFSWWA : 3n

→ 3, then C-SFSWWA is given as:

C − SFSWA(α1, α2, . . . , αn) =

n∑
i=1

ϖiαi (8)

where ϖi > 0,
∑n

i=1 ϖi = 1 denotes the weights of
attributes.
Theorem 3: Assume αi = (ϑi, ιi, κi; r̆i) be an assembely of

C-SFNs, where i = 1, 2, . . . , n. Then, aggregated values are

also C-SFN and

C − SFSWAmin(α1, α2, . . . , αn) =

n∑
i=1

ϖiαi

=



√
1+ξ
ξ

(
1 −

∏n
i=1

(
1 − ϑ2

i (
ξ

1+ξ
)
)ϖi

)
,√(

(1 + ξ )
∏n

i=1

(
ξ ι2i +1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏n

i=1

(
ξκ2i +1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏n

i=1

(
ξ r̆i2+1
1+ξ

)ϖi
− 1

)
1
ξ


C − SFSWAmax(α1, α2, . . . , αn) =

n∑
i=1

ϖiαi

=



√
1+ξ
ξ

(
1 −

∏n
i=1

(
1 − ϑ2

i (
ξ

1+ξ
)
)ϖi

)
,√(

(1 + ξ )
∏n

i=1

(
ξ ι2i +1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏n

i=1

(
ξκ2i +1
1+ξ

)ϖi

− 1
)

1
ξ
,√

1+ξ
ξ

(
1 −

∏n
i=1

(
1 − r̆i

2( ξ
1+ξ

)
)ϖi

)


Proof: See appendix C. □

B. PROPERTIES
1) IDEMPOTENCY:

Consider αi = α = (ϑi, ιi, κi, r̆i) where i = 1, 2 . . . , n
be a C-SFSNs, then

C − SFSWWAmax(α1, α2, . . . , αn) = α

Proof: See appendix D. □
2) HOMOGENITY:

Consider τ be any positive real number, then

C − SFSWWAmax(τα1, τα2, . . . , ταn)

= τC − SFSWWAmax(α1, α2, . . . , αn)

Proof: See appendix E. □
3) BOUNDEDNESS: Assume α = (ϑi, ιi, κi, r̆i) be

class of C-SFSNs where i = 1, 2, . . . , n and α+

i =

(max
i
(ϑi),min

i
(ιi),min

i
(κi),max

i
(r̆i))

α−

i = (min
i
(ϑi),min

i
(ιi),max

i
(κi),max

i
(r̆i)). Then,

α−

i ≤ C − SFSWWAmax(α1, α2, . . . , αn) ≤ α+

i

Proof: See appendix F. □

C. C-SF SUGENO-WEBER ORDERED WEIGHTED
AVERAGING AGGREGATION OPERATORS
Definition 10: Assume αi = (ϑi, ιi, κj; r̆i) be an assembely

of C-SFNs, where i = 1, 2, . . . , n. If C-SFSWOWA : 3n
→
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3, then C-SFSWOWA is given as:

C − SFSSOWA(α1, α2, . . . , αn) =

n∑
i=1

ϖiαδ(i) (9)

where ϖi > 0,
∑n

i=1 ϖi = 1 denotes the weights of
attributes. Also δ(k) is the permutation as δ(1), δ(2), . . . , δ(k).
Theorem 4: Assume αi = (ϑi, ιi, κi; r̆i) be an assembely of

C-SFNs, where i = 1, 2, . . . , n. Then, aggregated values are
also C-SFN and

C − SFSWOWAmin(α1, α2, . . . , αn) =

n∑
i=1

ϖiαδ(i)

=



√
1+ξ
ξ

(
1 −

∏n
i=1

(
1 − ϑ2

δ(i)(
ξ

1+ξ
)
)ϖi

)
,√(

(1 + ξ )
∏n

i=1

(
ξ ι2δ(i)+1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏n

i=1

(
ξκ2δ(i)+1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏n

i=1

(
ξ ˘rδ(i)

2
+1

1+ξ

)ϖi

− 1
)

1
ξ


C − SFSWOWAmax(α1, α2, . . . , αn) =

n∑
i=1

ϖiαδ(i)

=



√
1+ξ
ξ

(
1 −

∏n
i=1

(
1 − ϑ2

δ(i)(
ξ

1+ξ
)
)ϖi

)
,√(

(1 + ξ )
∏n

i=1

(
ξ ι2δ(i)+1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏n

i=1

(
ξκ2δ(i)+1
1+ξ

)ϖi

− 1
)

1
ξ
,√

1+ξ
ξ

(
1 −

∏n
i=1

(
1 − ˘rδ(i)

2( ξ
1+ξ

)
)ϖi

)


Proof: The proof is analogous to Theorem 3. □

D. C-SF SUGENO-WEBER HYBRID WEIGHTED
AVERAGING AGGREGATION OPERATORS
Definition 11: Assume αi = (ϑi, ιi, κj; r̆i) be an assembely

of C-SFNs, where i = 1, 2, . . . , n.
If C-SFSWHWA : 3n

→ 3, then C-SFSWHWA is given
as:

C − SFSSHWA(α1, α2, . . . , αn) =

n∑
i=1

ωiα
′

δ(i) (10)

where ωi > 0,
∑n

i=1 ωi = 1 is the associated weight and
ϕi > 0,

∑n
i=1 ϖi = 1 denotes the weights of attributes. Also

δ(k) is the permutation as δ(1), δ(2), . . . , δ(k).
Theorem 5: Assume αi = (ϑi, ιi, κi; r̆i) be an assembely of

C-SFNs, where i = 1, 2, . . . , n. Then, aggregated values are

also C-SFN and

C − SFSWHWAmin(α1, α2, . . . , αn) =

n∑
i=1

ωiα
′

δ(i)

=



√
1+ξ
ξ

(
1 −

∏n
i=1

(
1 − ϑ

′2
δ(i)(

ξ
1+ξ

)
)ωi
)
,√(

(1 + ξ )
∏n

i=1

(
ξ ι

′2
δ(i)+1
1+ξ

)ωi

− 1
)

1
ξ
,√(

(1 + ξ )
∏n

i=1

(
ξκ

′2
δ(i)+1
1+ξ

)ωi

− 1
)

1
ξ
,√√√√((1 + ξ )

∏n
i=1

(
ξ ˘r ′δ(i)

2
+1

1+ξ

)ωi

− 1

)
1
ξ


C − SFSWHWAmax(α1, α2, . . . , αn) =

n∑
i=1

ωiα
′

δ(i)

=



√
1+ξ
ξ

(
1 −

∏n
i=1

(
1 − ϑ

′2
δ(i)(

ξ
1+ξ

)
)ωi
)
,√(

(1 + ξ )
∏n

i=1

(
ξ ι

′2
δ(i)+1
1+ξ

)ωi

− 1
)

1
ξ
,√(

(1 + ξ )
∏n

i=1

(
ξκ

′2
δ(i)+1
1+ξ

)ωi

− 1
)

1
ξ
,√

1+ξ
ξ

(
1 −

∏n
i=1

(
1 − ˘r ′

δ(i)
2
( ξ
1+ξ

)
)ωi

)



Proof: The proof is analogous to Theorem 3. □

VII. WEIGHTED GEOMETRIC AGGREGATION OPERATORS
This section introduces the weighted geometric aggregation
operator for C-SFSs. In this section, we’ll go through the
operator’s mathematical definition and a thorough discussion
of its key characteristics.

A. C-SF SUGENO-WEBER WEIGHTED GEOMETRIC
AGGREGATION OPERATORS
Definition 12: Assume αi = (ϑi, ιi, κj; r̆i) be an assembely

of C-SFNs, where i = 1, 2, . . . , n.
If C-SFSWWG : 3n

→ 3, then C-SFSWWG is given as:

C − SFSWG(α1, α2, . . . , αn) =

n∏
i=1

α
ϖi
i (11)

where ϖi > 0,
∑n

i=1 ϖi = 1 denotes the weights of
attributes.
Theorem 6: Assume αi = (ϑi, ιi, κi; r̆i) be an assembely

of C-SFNs, where i = 1, 2, . . . , n. Then, aggregated values
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are also C-SFN and

C − SFSWWGmin(α1, α2, . . . , αn) =

n∏
i=1

α
ϖi
i

=



√
1
ξ

(
(1 + ξ )

∏n
i=1

(
ξϑ2

α+1
1+ξ

)ϖi
− 1

)
,√

1
ξ

(
(1 + ξ )

∏n
i=1

(
ξ ι2α+1
1+ξ

)ϖi
− 1

)
,√

1+ξ
ξ

(
1 −

∏n
i=1

(
1 − κ2

α(
ξ

1+ξ
)
)ϖi

)
,√

1
ξ

(
(1 + ξ )

∏n
i=1

(
ξ r̆α2+1
1+ξ

)ϖi
− 1

)


C − SFSWWGmax(α1, α2, . . . , αn) =

n∏
i=1

α
ϖi
i

=



√
1
ξ

(
(1 + ξ )

∏n
i=1

(
ξϑ2

α+1
1+ξ

)ϖi
− 1

)
,√

1
ξ

(
(1 + ξ )

∏n
i=1

(
ξ ι2α+1
1+ξ

)ϖi
− 1

)
,√

1+ξ
ξ

(
1 −

∏n
i=1

(
1 − κ2

α(
ξ

1+ξ
)
)ϖi

)
,√

1+ξ
ξ

(
1 −

∏n
i=1

(
1 − r̆α

2( ξ
1+ξ

)
)ϖi

)


Proof: The proof is analogous to Theorem 3. □

B. PROPERTIES
1) IDEMPOTENCY:

Consider αi = α = (ϑi, ιi, κi, r̆i) where i = 1, 2 . . . , n
be a C-SFSNs, then

C − SFSWWGmax(α1, α2, . . . , αn) = α

Proof: The proof is on the same manner as of
appendix D.

2) HOMOGENITY:
Consider τ be any positive real number, then

C − SFSWWGmax(τα1, τα2, . . . , ταn)

= τ C − SFSWWAmax(α1, α2, . . . , αn)

Proof: The proof is comparable to appendix E.
3) BOUNDEDNESS:

Assume α = (ϑi, ιi, κi, r̆i) be class of C-SFSNs where i =

1, 2, . . . , n and
α+

i = (max
i
(ϑi),min

i
(ιi),min

i
(κi),max

i
(r̆i))

α−

i = (min
i
(ϑi),min

i
(ιi),max

i
(κi),max

i
(r̆i)). Then,

α−

i ≤ C − SFSWWGmax(α1, α2, . . . , αn) ≤ α+

i

Proof: The proof resembles to appendix F. □

C. C-SF SUGENO-WEBER ORDERED WEIGHTED
GEOMETRIC AGGREGATION OPERATORS
Now, we’ll present the C-SFSWOWG aggregation operator
in C-SFSs.

Definition 13: Assume αi = (ϑi, ιi, κj; r̆i) be an assembely
of C-SFNs, where i = 1, 2, . . . , n.
If C-SFSWOWG : 3n

→ 3, then C-SFSWOWG is given as:

C − SFSWOWG(α1, α2, . . . , αn) =

n∏
i=1

α
ϖi
δ(i) (12)

where ϖi > 0,
∑n

i=1 ϖi = 1 denotes the weights of
attributes. Also δ(k) is the permutation as δ(1), δ(2), . . . , δ(k).
Theorem 7: Assume αi = (ϑi, ιi, κi; r̆i) be an assembely of

C-SFNs, where i = 1, 2, . . . , n. Then, aggregated values are
also C-SFN and

C − SFSWOWGmin(α1, α2, . . . , αn) =

n∏
i=1

α
ϖi
δ(i)

=
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
C − SFSWOWGmax(α1, α2, . . . , αn) =

n∏
i=1

α
ϖi
δ(i)

=
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
Proof: The proof resembles to Theorem 3. □

D. C-SF SUGENO-WEBER HYBRID WEIGHTED
GEOMETRIC AGGREGATION OPERATORS
Now, we’ll present the C-SFSWHWG aggregation operator
in C-SFSs.
Definition 14: Assume αi = (ϑi, ιi, κj; r̆i) be an assembely

of C-SFNs, where i = 1, 2, . . . , n.
If C-SFSWHWG : 3n

→ 3, then C-SFSWHWG is given as:

C − SFSWHWG(α1, α2, . . . , αn) =

n∏
i=1

α
′ωi
δ(i) (13)

where ωi > 0,
∑n

i=1 ωi = 1 is the associated weight and
ϖi > 0,

∑n
i=1 ϖi = 1 denotes the weights of attributes. Also

δ(k) is the permutation as δ(1), δ(2), . . . , δ(k).
Theorem 8: Assume αi = (ϑi, ιi, κi; r̆i) be an assembely of

C-SFNs, where i = 1, 2, . . . , n. Then, aggregated values are
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also C-SFN and

C − SFSWHWGmin(α1, α2, . . . , αn) =

n∏
i=1

α
′ωi
δ(i)

=
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C − SFSWHWGmax(α1, α2, . . . , αn) =

n∏
i=1

α
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Proof: The proof resembles to Theorem 3. □

VIII. CIRCULAR SF MULTI-ATTRIBUTE DECISON MAKING
STRUCTURE
In this part, we’ll present the MCDM method in Circular
Spherical Fuzzy Information that accounts for the uncer-
tainity. Finding the ideal answer to a problem is typically
essential for getting the best outcomes. Algorithms are the
means by which people make decisions. An algorithm is
an anticipated, stated series of steps aimed at providing the
ideal answer to an issue in particular. It is ideal to use an
algorithm if precise detail is required since doing so enhances
accuracy and lowers the risk of a mistake. With in this stage,
we’ll provide the algoritm using CSF Information, where we
consider p alternatives ℜ = {ν1, ν2, . . . , νp} alongwith q
criterias ℵ = {ζ1, ζ2, . . . , ζq} for decision matrixMp×q.
The weight vectors for each criteria are given as ϖ =

{ϖ1, ϖ2, . . . ,ϖq},
∑q

k=1 ϖ = 1. Let the decision matrix is
given as M = (ξij)p×q = (ϑij, ιij, κij; r̆ij) and their weight
vectors are ρ = {ρ1, ρ2, . . . , ρq},

∑q
k=1 ρ = 1. Following

are the steps of planned algorithm:

The flow chart of the algorithm is presented in figure 3 for
better understanding.

A. CASE STUDY WITH NUMERICAL EXAMPLE
In this case study, the decision-making procedure for
changing a software project from Python to GoLang is
examined. The focus is on a Python-based social media

Algorithm 1 Algorithm
Step 1:Collect Data of C-SF Information in the form of

Decison matrices M = (ξij)p×q = (ϑij, ιij, κij; r̆ij)
given by the decision makers.

Step 2: Normalize the C-SF data M = (ξij)p×q.
If there is Cost Criteria, then normalize the
decison matrices,otherwise there is no need of
normalization.

M ′
ij =

{
(ϑij, ιij, κij; r̆ij), if CI
(κij, ιij, ϑij; r̆ij), if CII

where CI is benefit crterion and CII being the cost
criterion.

Step 3:Aggregate the data using C − SFSWWAmin,C −

SFSWWAmax or C − SFSWWGmin,C −

SFSWWGmax Operator.

Step 4(a):Evaluate C-SF Information byC−SFSWWAmin,
C − SFSWWAmax ,C − SFSWWGmin and
C − SFSWWGmax Operator.

Step 4(b):Evaluate C-SF Information byC−SFSWOWAmin,
C − SFSWOWAmax ,C − SFSWOWGmin and
C − SFSWOWGmax Operator.

Step 4(c):Evaluate C-SF Information byC−SFSHWAmin,
C − SFSWHWAmax , C − SFSWHWGminand
C − SFSWHWGmax Operator.

Step 5:Find the score values of evaluated (aggregated) C-
SF information and then give ranking by maximum
score values using definition 5.4.
If scoring of two alternatives are same then use
accuracy defined in definition 5.4.

Step 6: Choose the optimal alternative as per maximum
value of scoring.

analytics application that has performance and scalability
issues. The study examines the factors taken into account
throughout the language switch, the chosen approach, and the
impact on platform performance and the development team as
a whole.
Software or hardware designed to collect, analyze, scrutinize,
and interpret data from multiple social media channels
are known as platforms for social media analytics. These
tools help businesses, marketers, and individuals learn more
about their target audiences’ activity on social media, the
success of their individual social media initiatives, and their
overall social media strategy. Solutions for social media
analytics are crucial in helping businesses and individuals
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FIGURE 3. Flow chart of algorithm.

better understand their social media performance, boost
engagement, and make informed decisions to enhance their
online presence and marketing campaigns.

Phython is commonly used to build social networking
networks for a number of compelling reasons. Its simplicity
and user-friendliness make it possible for developers to
write code rapidly in the quick-paced world of social
media development, where constant updates and feature
additions are necessary. Developers may quickly incorporate
a variety of capabilities, such as image recognition, user
authentication, and data processing, with the aid of this
extensive set of tools. In addition, Python’s syntax is simple
and easy to comprehend, which is beneficial for complex
projects like social networking networks since it makes
code easier to understand and maintain. Because of its
simplicity, versatility, and extensive ecosystem of libraries
and frameworks, Python is generally regarded as one of the
best options for creating social networking systems. Due to
its rapid development time and strong community support,
Pythonwas first utilized to construct the social media analytic
platform.

However, as the platform’s user base developed, it strug-
gled to adequately process enormous volumes of data
and meet growing demand. Despite being a versatile and
well-liked language, Python may struggle when compared
to other languages with extremely large traffic and data
amounts. Python is an interpreted language, thus when the
program is running, each line of code is read and executed.
This interpretation process may add a significant amount
of overhead, making it slower than compiled languages
when dealing with complicated computations and vast data
processing. The problems caused by large traffic and data
quantities can be resolved by using compiled languages
like GoLang or Python in combination with technologies.
Because of their increased speed, concurrent capabilities,
and smaller memory footprint while handling extremely
heavy traffic or processing vast quantities of data, additional
languages like GoLang, Java, or C++ may be selected. After
evaluating different options, the company made the decision
to move the project from Python to the Go programming

language (GoLang) in order to increase productivity and
scalability.
Due to its several significant speed and scalability advan-
tages, GoLang is a top choice for many high-performance
and concurrent applications, especially those dealing with
large volumes of data and high traffic. It can handle several
connections and requests concurrently without significantly
affecting performance. GoLang is a good option for manag-
ing big amounts of data and high traffic scenarios since it
has grown in popularity for creating high-performance and
scalable systems, such as web servers, microservices, cloud-
based services, and networking applications.
While converting a program language from Python to
GoLang, a number of decision-making options may be taken
into consideration in order to assure a well-thought-out and
effective strategy. The project’s unique requirements and
limitations will determine the best course of action.

• Incremental Migration (ν1): A big-bang migration
may be replaced by transferring modules or features
one at a time. This approach enables the team to
focus on specific areas, thoroughly test each component,
and gradually develop the GoLang code base while
preserving the Python functionality. The possibility of
abruptly disrupting the entire application is decreased by
doing this. Basically, incremental migration allows for
a planned and deliberate transition while reducing the
risks associated with a complete redesign and gaining
access to GoLang’s concurrency and performance
benefits.

• Hybrid Microservices (ν2): Microservices is an archi-
tectural framework that builds an application as a
collection of small, independent services that commu-
nicate with one another using well-defined APIs. Every
single microservice is in charge of a distinct piece of
a company’s functionality and may be built, imple-
mented, and expanded separately. In a microservices
framework, the application is divided into loosely linked
services, and each service may be constructed using
multiple technologies or programming languages. The
organization may consider breaking the program up into
smaller components as microservices, each of which
would be developed in the language that best suited
its requirements. While Python may still be utilized
for some components, GoLang may be used to build
microservices that are performance-critical.

• Using a Polyglot Architecture (ν3): A polyglot archi-
tecture is a software design approach that involves
using multiple programming languages and technolo-
gies within a single application or system. In the context
of transitioning from Python to GoLang, a polyglot
architecture can be employed to facilitate a gradual
and controlled migration. While the rest elements of
the program would still be written in Python, the
most important performance-intensive sections may be
redone in GoLang. This approach allows the team to
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utilize GoLang’s parallelism and performance benefits
where they are most needed without having to substan-
tially rework the code.

• Improving Existing Python Code (ν4): Before migrat-
ing from Python to GoLang, it’s critical to optimize the
existing Python codebase for efficiency, maintainability,
and readability. Improving the Python code will make
the transfer easier and provide a solid basis for the future
migration to GoLang. Performance bottlenecks may be
located using profiling tools, and performance-critical
code parts can be strengthened by rewriting or opti-
mization. Even while the scalability and concurrency
problems may not be entirely resolved by this method,
it can nevertheless significantly improve performance
immediately.

Making an informed and sensible decision on whether to
migrate from Python to GoLang as a software language
requires consideration of a number of significant factors.
Assessing the feasibility, benefits, and potential downside of
the shift will be made simpler by these requirements. Below
is a list of the primary decision elements for the case study:

• Performance Requirements (ζ1): Examine the per-
formance requirements of the application. Determine
whether Python’s interpreted nature is causing any
performance concerns, and then determine whether
GoLang’s compiled nature could significantly speed up
and improve the application’s efficiency. Through com-
prehensive performance testing, the team compares the
application’s performance in Python and GoLang. They
keep an eye on response times, resource consumption,
the system’s ability to handle a lot of simultaneous
requests, and user traffic.

• Scalability Demands (ζ2): Analyze the application’s
scalability requirements. Scalability refers to a lan-
guage’s ability to manage increasing workloads and
resource demands as an application grows. Scalable
applications may perform several tasks at once while
maximizing the use of available resources. Think about
if GoLang’s concurrency architecture and capacity to
fully utilize multiple CPU cores will better fit the
application’s expansion and accommodate rising user
demand.

• Development Team’s Expertise and Productivity
(ζ3): Evaluate the development team’s level of expertise
and knowledge of Python and GoLang. Consider
the GoLang phase of learning and if the team has
the knowledge and resources necessary to complete
the conversion successfully. If the team has previous
experience working with GoLang or other statically
typed languages, they may be able to shift more quickly
to GoLang development. Check to see if GoLang can
boost productivity and optimize development processes.
Because to GoLang’s usability and simplicity, the
development team can be more productive, which gives

themmore time to focus on developing new features and
enhancing performance.

• Concurrency and Parallelism (ζ4): Analyze the paral-
lelism and concurrency requirements of the application.
Determine if GoLang’s goroutines and channels are a
more efficient and user-friendly alternative to Python
for managing several tasks at once. When an application
does multiple tasks at once, only one of them is done
in its forefront while the others are completed in the
background. If the computer only has one CPU, the
program might not be able to perform several tasks
at once, but it can manage multiple tasks on its own.
It doesn’t finish one activity before beginning the next.
This is known as Concurrency. While a program that
uses parallelism divides its tasks into smaller ones so that
they may be handled simultaneously by several CPUs in
parallel.

As an illustration, consider a group of technicians assembling
a monitor. Multiple technicians can construct various display
components simultaneously, yet they all use the same
workstation to put everything together. At the workstation,
only one technician may assemble at once while the others
work on their pieces in the background. With parallelism,
technicians may concurrently construct components on many
workbenches. As a result, it is clear that a language supports
concurrency. It is ideal for large-scale programs.

The transition from Python to GoLang as the programming
language was advantageous for the social media analytic
platform application. With the help of GoLang’s improved
concurrency, scalability, and performance characteristics, the
application was able to effectively handle an increasing user
base and rising data processing requirements. The end users
and the development team recognized long-term benefits
that made the shift desirable even though it required careful
planning and adaption.

Step 1: Consider three decision matrices provided in
Table 1,2,3, each containing ℜ = {ν1, ν2, ν3, ν4}

as alternatives assessed in light of four criterions
ℵ = {ζ1, ζ2, ζ3, ζ4}.

TABLE 1. C-SF decision matrix 1.

Step 2:There is no cost criteria so no need of normaliza-
tion.

Step 3: In Table 4, the C-SF matrices have been
aggregated using the C-SFSWWAmin operator
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TABLE 2. C-SF decision matrix 2.

TABLE 3. C-SF decision matrix 3.

with the provided decision weight vectors ρ =

{0.25, 0.40, 0.35} and ξ = 2.

TABLE 4. Aggregated C-SF decision matrix.

Step 4(a):Apply the C-SFSWWAmin, C-SFSWWAmax,
C-SFSWWGmin, and C-SFSWWGmax opera-
tors with the weight vector of criteria ϕ =

{0.25, 0.27, 0.22, 0.26} to the information provided
in Table 4, see Table 5.

TABLE 5. Aggregated operations.

Step 4(b): Table 6 provide the results of apply-
ing the C-SFSWOWAmin, C-SFSWOWAmax , C-
SFSWOWGmin and C-SFSWOWGmax operator by
takng q = 0.1.

TABLE 6. Ordered aggregated operations.

Step 4(c): Use the information in Table 4 and
apply the C-SFSWHWAmin, C-SFSWHWAmax , C-
SFSWHWGmin and C-SFSWOWGmax operator.
Finding hybrid values is the initial step in this, after
which scoring is used to sort the aggregated data, see
Table 7.

TABLE 7. Hybrid aggregated operations.

Step 5:Next, we calculate the scoring of each alternative as
presented in Table 8. The ranking is then determined
in descending order based on the obtained scores.
The results are presented in Table 9.

TABLE 8. Scoring.

Step 6:The optimal choice is ρ1.

Thus, implementing an incremental migration to Golang is
the best solution to the limitations of Python in handling
high traffic and the complexity of a language transfer due
to scalability for the social media analytics platform. This
approach obviously exceeds other choices and effectively
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TABLE 9. Ranking.

solves each criterion for a seamless language transfer inside
the parameters of the social media analytics platform.
Incremental migration reflects a deliberate, smooth shift that
has a number of significant advantages over more abrupt
ones. Transitioning of language becomes less disruptive,
by using gradual migration, allowing the incorporation of
Golang while maintaining essential Python features. The
powerful capabilities of Golang to manage massive amounts
of data and concurrent activities may be fully utilized through
incremental migration. In summary, incremental migration
ensures a smooth transfer while maximizing performance,
scalability, and overall usefulness. It is not just an option; it
is a deliberate investment in the platform’s present and future
effectiveness.

IX. COMPARATIVE ANALYSIS
In this significant section of our research, we conduct a
detailed and in-depth comparison of the properties of the
proposed Sugeno-Weber aggregation operators (SW AOs)
and the MADM approach presented in this work. We high-
light the unique advantages of our reliable approach that set
it apart from others. To give a comprehensive evaluation,
we compare the unique properties of our multiple aggregation
operators to logarithmic-based aggregation approaches [48]
and the Einstein aggregation method presented by Abdullah
and Ashraf [49]. This extensive comparison demonstrates
how our distictive technique succeeds in coping with
confusing real-world decision-making problems (DMPs),
demonstrating its exceptional efficacy and durability.
We adopted a rigorous technique to compare our proposed
aggregating procedures thoroughly. Table 10 shows an

TABLE 10. SF matrix for comparison.

aggregated normalized SF information dataset fromAbdullah
and Ashraf’s study [49].

This data was then converted into our proposed C-SF
structure see Table 11, which allows us to execute different
aggregate operations on the dataset.

TABLE 11. Circular intuitionistic fuzzy decision matrix.

Using these techniques, we generated a variety of alternative
rankings. We ranked the alternatives using score function to
make assessment and comparison easier, see Table 12.

TABLE 12. Score value of circular intuitionistic fuzzy set.

The ranks of our suggested aggregation operations,
aggregation operations based on logarithms, and Einstein
aggregation operators were then summarized in Table 13.
By reviewing the results of this wide comparison, we give
convincing evidence of the superiority and practicability of
our technique. Its ability to deliver reliable responses in
complex decision-making settings demonstrates its potential
to alter decision sciences and related disciplines.

Our findings are based on the coherence discover in the
C-SF information ranking lists generated by both of the sug-
gested SW aggregation operators and comparison techniques.
As a consequence, we are certain that the SW Aggregation
Operators presented in this research, which operate inside
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TABLE 13. Ranking.

a circular spherical fuzzy set environment, offer a unique
and adaptive technique for dealing with ambiguity in DM
scenarios. The proven coherence and efficacy of our proposed
strategy pave the way for more informed and confident
decision-making in difficult conditions. Our method fully
uses the potential of SFS in dealing with complexity and
uncertainty by using the C-SF framework, allowing for
more informed and robust decisions. These SW aggregation
operators’ adaptability makes them useful tools across a
wide range of fields, resulting in improvements in decision
sciences and crucial insights for practitioners faced with
tough and dynamic decision-making situations.

To facilitate a clearer understanding of the comparison,
we have analyzed the data as a bar chart. The figure 4
graphically displays the order of our recommended C-SF
aggregation operators, logarithmic-based aggregation oper-
ators, and Einstein aggregation operators. When the data is
presented in this graphical manner, it is easier to comprehend
the relative effectiveness and utility of each strategy in
addressing real-world decision-making challenges.

FIGURE 4. Comparison chart.

X. CONCLUSION
This paper developed the circular spherical fuzzy structure
along with key operations and theorems of circular spherical
fuzzy structures. This study examined the basic operations
of SW (Sugeno-Weber) and then generated a number of
fundamental identities. We demonstrated the validity and
significance of these operations and identities in the context
of decision-making processes through our research. The
study’s findings and insights establish the groundwork for
future advancements in the use of SW approaches for a
variety of applications and problem-solving scenarios. This
study contributes to the greater subject of decision sciences
by offering a detailed explanation of SW operations and
identities, as well as practical tools for practitioners looking
for effective solutions to real-world situations.

The research then focused on providing many SW circular
spherical fuzzy aggregation operators, such as weighted
average, weighted geometric e.t.c.. By investigating the for-
mal definitions and features of these aggregation operators,
derived from the operational laws of C-SFSs using the SW
τ -N and τ -CN, the paper addressed the Multiple-Attribute
Decision Making (MADM) problem with innovative tech-
niques. A comprehensive study of the language transition for
the social media analytics platform was examined within the
context of CSF frameworks and comparison with existing
methodologies demonstrated the novel method’s validity and
use. The findings highlighted the method’s dependability as
well as its potential to improve decision-making processes in
uncertain contexts.

We will concentrate on investigating and developing
techniques like EDAS, TOPSIS, and TODIM e.t.c in the
framework of Circular Spherical Fuzzy (C-SF) environments
in the future.
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APPENDIX A
(1). To prove, (α ∩min β)c = αc ∪min βc.
First we’ll consider,

L.H .S = (α ∩min β)c

= ((ϑα, ια, κα; r̆α) ∩min (ϑβ , ιβ , κβ; r̆β ))c

=
(
min(ϑα, ϑβ ),min(ια, ιβ ),max(κα, κβ );min(r̆1, r̆2)

)c
=
(
max(κα, κβ ),min(ια, ιβ ),min(ϑα, ϑβ );min(r̆1, r̆2)

)
Now, consider

R.H .S = αc ∪min βc

= (ϑα, ια, κα; r̆α)c ∪min (ϑβ , ιβ , κβ; r̆β
c)

= (κα, ια, ϑα; r̆α) ∪min (κβ , ιβ , ϑβ; r̆β )

=
(
max(κα, κβ ),min(ια, ιβ ),min(ϑα, ϑβ );min(r̆1, r̆2)

)
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Hence proved.
The remaining proofs are on similar way.

APPENDIX B
(1). To prove, α ⊕max β = β ⊕max α.

First we’ll consider,

L.H .S = α ⊕max β

= (ϑα, ια, κα; r̆α) ⊕ (ϑβ , ιβ , κβ; r̆β )

=



√
ϑ2

α + ϑ2
β −

ξ
1+ξ

ϑ2
αϑ2

β ,√
ι2α+ι2β−1+ξ ι2α ι2β

1+ξ
,√

κ2α+κ2β−1+ξκ2ακ2β
1+ξ

,√
r̆α

2
+ r̆β

2
−

ξ
1+ξ

r̆α
2r̆β

2



=



√
ϑ2

β + ϑ2
α −

ξ
1+ξ

ϑ2
βϑ2

α,√
ι2β+ι2α−1+ξ ι2β ι2α

1+ξ
,√

κ2β+κ2α−1+ξκ2βκ2α
1+ξ

,√
r̆β

2
+ r̆α

2
−

ξ
1+ξ

r̆β
2r̆α

2


R.H .S = β ⊕max α

Hence proved.
(2). To prove, α ⊗max β = β ⊗max α.
First we’ll consider,

L.H .S = α ⊗max β

= (ϑα, ια, κα; r̆α) ⊗ (ϑβ , ιβ , κβ; r̆β )

=



√
ϑ2

α+ϑ2
β−1+ξϑ2

αϑ2
β

1+ξ
,√

ι2α+ι2β−1+ξ ι2α ι2β
1+ξ

,√
κ2
α + κ2

β −
ξ

1+ξ
κ2
ακ2

β ,√
r̆α

2
+ r̆β

2
−

ξ
1+ξ

r̆α
2r̆β

2



=



√
ϑ2

β+ϑ2
α−1+ξϑ2

βϑ2
α

1+ξ
,√

ι2β+ι2α−1+ξ ι2β ι2α
1+ξ

,√
κ2
β + κ2

α −
ξ

1+ξ
κ2
βκ2

α,√
r̆β

2
+ r̆α

2
−

ξ
1+ξ

r̆β
2r̆α

2


R.H .S = β ⊗max α

Hence proved.

(7). To prove, (α ⊗max β)x̄ = αx̄ ⊗max β x̄ . First we’ll
consider,

L.H .S = (α ⊗max β)x̄

= ((ϑα, ια, κα; r̆α) ⊗max (ϑβ , ιβ , κβ; r̆β ))x̄

=



√
ϑ2

α+ϑ2
β−1+ξϑ2

αϑ2
β

1+ξ
,√

ι2α+ι2β−1+ξ ι2α ι2β
1+ξ

,√
κ2
α + κ2

β −
ξ

1+ξ
κ2
ακ2

β ,√
r̆α

2
+ r̆β

2
−

ξ
1+ξ

r̆α
2r̆β

2



x̄

max

=



√√√√ 1
ξ

(
(1 + ξ )

(
ξϑ2

α+ξϑ2
β+ξ2ϑ2

αϑ2
β+1

1+ξ

)x̄
− 1

)
,√√√√ 1

ξ

(
(1 + ξ )

(
ξ ι2α+ξ ι2β+ξ2ι2α ι2β+1

1+ξ

)x̄
− 1

)
,√√√√ 1+ξ

ξ

(
1 −

(
1 −

ξκ2α+ξκ2β
1+ξ

+
ξ2κ2ακ2β

(1+ξ )2

)x̄)
,√√√√ 1+ξ

ξ

(
1 −

(
1 −

ξ r̆α2+ξ r̆β 2

1+ξ
+

ξ2 r̆α2 r̆β 2

(1+ξ )2

)x̄)
,



Now, we’ll consider

R.H .S = αx̄ ⊗max β x̄

= (ϑα, ια, κα; r̆α)x̄max ⊗max (ϑβ , ιβ , κβ; r̆β )x̄max

=



√
1
ξ

(
(1 + ξ )

(
ξϑ2

α+1
1+ξ

)x̄
− 1

)
,√

1
ξ

(
(1 + ξ )

(
ξ ι2α+1
1+ξ

)x̄
− 1

)
,√

1+ξ
ξ

(
1 −

(
1 − κ2

α(
ξ

1+ξ
)
)x̄)

,√
1+ξ
ξ

(
1 −

(
1 − r̆α

2( ξ
1+ξ

)
)x̄)


⊗max



√√√√ 1
ξ

(
(1 + ξ )

(
ξϑ2

β+1
1+ξ

)x̄
− 1

)
,√√√√ 1

ξ

(
(1 + ξ )

(
ξ ι2β+1
1+ξ

)x̄
− 1

)
,√

1+ξ
ξ

(
1 −

(
1 − κ2

β (
ξ

1+ξ
)
)x̄)

,√
1+ξ
ξ

(
1 −

(
1 − r̆β

2( ξ
1+ξ

)
)x̄)


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=



√√√√ 1
ξ

(
(1 + ξ )

(
(ξϑ2

α+1)(ξϑ2
β+1)

(1+ξ )2

)x̄
− 1

)
,√√√√ 1

ξ

(
(1 + ξ )

(
(ξ ι2α+1)(ξ ι2β+1)

(1+ξ )2

)x̄
− 1

)
,√√√√ 1+ξ

ξ

(
1 −

(
1 −

(
1−ξκ2α
1+ξ

)( 1−ξκ2β
1+ξ

))x̄)
,√√√√ 1+ξ

ξ

(
1 −

(
1 −

(
1−ξ r̆α2

1+ξ

)(
1−ξ r̆β 2

1+ξ

))x̄)



=



√√√√ 1
ξ

(
(1 + ξ )

(
ξϑ2

α+ξϑ2
β+ξ2ϑ2

αϑ2
β+1

1+ξ

)x̄
− 1

)
,√√√√ 1

ξ

(
(1 + ξ )

(
ξ ι2α+ξ ι2β+ξ2ι2α ι2β+1

1+ξ

)x̄
− 1

)
,√√√√ 1+ξ

ξ

(
1 −

(
1 −

ξκ2α+ξκ2β
1+ξ

+
ξ2κ2ακ2β

(1+ξ )2

)x̄)
√√√√ 1+ξ

ξ

(
1 −

(
1 −

ξ r̆α2+ξ r̆β 2

1+ξ
+

ξ2 r̆α2 r̆β 2

(1+ξ )2

)x̄)


Hence proved.

On similar way, we can prove the remaining identities.

APPENDIX C
Mathematical induction could be used for proving the C-
SFSWWA operator.

We will prove for n = 2. Then we have

C − SFSWAmin(α1, α2, . . . , αn) =

2∑
i=1

ϖiαiϖ1 ⊙ α1

=



√
1+ξ
ξ

(
1 −

(
1 − ϑ2

1 (
ξ

1+ξ
)
)ϖ1

)
,√(

(1 + ξ )
(

ξ ι21+1
1+ξ

)ϖ1

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξκ21+1
1+ξ

)ϖ1

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξ r̆1
2
+1

1+ξ

)ϖ1
− 1

)
1
ξ



ϖ2 ⊙ α2 =



√
1+ξ
ξ

(
1 −

(
1 − ϑ2

2 (
ξ

1+ξ
)
)ϖ2

)
,√(

(1 + ξ )
(

ξ ι22+1
1+ξ

)ϖ2

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξκ22+1
1+ξ

)ϖ2

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξ r̆2
2
+1

1+ξ

)ϖ2
− 1

)
1
ξ


C − SFSWAmin(α1, α2, . . . , αn) = ϖ1α1 ⊕ ϖ2α2

=



√
1+ξ
ξ

(
1 −

(
1 − ϑ2

1 (
ξ

1+ξ
)
)ϖ1

)
,√(

(1 + ξ )
(

ξ ι21+1
1+ξ

)ϖ1

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξκ21+1
1+ξ

)ϖ1

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξ r̆1
2
+1

1+ξ

)ϖ1
− 1

)
1
ξ


⊕min



√
1+ξ
ξ

(
1 −

(
1 − ϑ2

2 (
ξ

1+ξ
)
)ϖ2

)
,√(

(1 + ξ )
(

ξ ι22+1
1+ξ

)ϖ2

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξκ22+1
1+ξ

)ϖ2

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξ r̆2
2
+1

1+ξ

)ϖ2
− 1

)
1
ξ



=



√
1+ξ
ξ

(
1 −

(
1 − ϑ2

1 (
ξ

1+ξ
)
)ϖ1

(
1 − ϑ2

2 (
ξ

1+ξ
)
)ϖ2

)
,√(

(1 + ξ )
(

ξ ι21+1
1+ξ

)ϖ1
(

ξ ι22+1
1+ξ

)ϖ2

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξκ21+1
1+ξ

)ϖ1
(

ξκ22+1
1+ξ

)ϖ2

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξ r̆1
2
+1

1+ξ

)ϖ1 ( ξ r̆2
2
+1

1+ξ

)ϖ2
− 1

)
1
ξ



=



√
1+ξ
ξ

(
1 −

∏2
i=1

(
1 − ϑ2

i (
ξ

1+ξ
)
)ϖi

)
,√(

(1 + ξ )
∏2

i=1

(
ξ ι21+1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏2

i=1

(
ξκ2i +1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏2

i=1

(
ξ r̆i2+1
1+ξ

)ϖi
− 1

)
1
ξ


This indicates that the outcome works properly for n=2.

Make the assumption that the equation is hold true for n =

π , then

C − SFSWAmin(α1, α2, . . . , απ ) =

π∑
i=1

ϖiαi

=



√
1+ξ
ξ

(
1 −

∏π
i=1

(
1 − ϑ2

i (
ξ

1+ξ
)
)ϖi

)
,√(

(1 + ξ )
∏π

i=1

(
ξ ι2i +1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏π

i=1

(
ξκ2i +1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏π

i=1

(
ξ r̆i2+1
1+ξ

)ϖi
− 1

)
1
ξ


Now, for n = π + 1, we have as shown in the equation at the
next page,
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C − SFSWAmin(α1, α2, . . . , απ+1) =

π+1∑
i=1

ϖiαi

C − SFSWAmin(α1, α2, . . . , απ+1) =

π∑
i=1

ϖiαi ⊕ ϖπ+1απ+1

=



√
1+ξ
ξ

(
1 −

∏π
i=1

(
1 − ϑ2

i (
ξ

1+ξ
)
)ϖi

)
,√(

(1 + ξ )
∏π

i=1

(
ξ ι2i +1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏π

i=1

(
ξκ2i +1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏π

i=1

(
ξ r̆i2+1
1+ξ

)ϖi
− 1

)
1
ξ


⊕min



√
1+ξ
ξ

(
1 −

(
1 − ϑ2

π+1(
ξ

1+ξ
)
)ϖπ+1

)
,√(

(1 + ξ )
(

ξ ι2π+1+1
1+ξ

)ϖπ+1

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξκ2π+1+1
1+ξ

)ϖπ+1

− 1
)

1
ξ
,√(

(1 + ξ )
(

ξ ˘rπ+1
2
+1

1+ξ

)ϖπ+1
− 1

)
1
ξ



=



√
1+ξ
ξ

(
1 −

∏π
i=1

(
1 − ϑ2

i (
ξ

1+ξ
)
)ϖi

) (
1 − ϑ2

π+1(
ξ

1+ξ
)
)ϖπ+1

,√(
(1 + ξ )

∏π
i=1

(
ξ ι2i +1
1+ξ

)ϖi
(

ξ ι2π+1+1
1+ξ

)ϖπ+1

− 1
)

1
ξ
,√(

(1 + ξ )
∏π

i=1

(
ξκ2i +1
1+ξ

)ϖi
(

ξκ2π+1+1
1+ξ

)ϖπ+1

− 1
)

1
ξ
,√(

(1 + ξ )
∏π

i=1

(
ξ r̆i2+1
1+ξ

)ϖi ( ξ ˘rπ+1
2
+1

1+ξ

)ϖπ+1
− 1

)
1
ξ



=



√
1+ξ
ξ

(
1 −

∏π+1
i=1

(
1 − ϑ2

i (
ξ

1+ξ
)
)ϖi

)
,√(

(1 + ξ )
∏π+1

i=1

(
ξ ι21+1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏π+1

i=1

(
ξκ2i +1
1+ξ

)ϖi

− 1
)

1
ξ
,√(

(1 + ξ )
∏π+1

i=1

(
ξ r̆i2+1
1+ξ

)ϖi
− 1

)
1
ξ


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The most intriguing feature is that the aggregated values
deduced by the C-SFSWWA operator are likewise C-SFSN.
Consider the following scenario that χ = {(ϑi, ιi, κi; r̆i)} is
a CFS where i = 1, 2, . . . , n 0 ≤ ϑi, ιi, κi ≤ 1 and satisfies
0 ≤ ϑ2

χ + ι2χ + κ2
χ ≤ 1. And

∑n
i=1 ϖi = 1, ϖi > 0.

0 ≤ ϑi ≤ 1 ⇒ 0 ≤ ϑ2
i ≤ 1 ⇒ 0

≤

(
1 − ϑ2

i (
ξ

1 + ξ
)
)ϖi

≤ 1

⇒ 0 ≤

n∏
i=1

(
1 − ϑ2

i (
ξ

1 + ξ
)
)ϖi

≤ 1

⇒ 0 ≤

√√√√ n∏
i=1

(
1 − ϑ2

i (
ξ

1 + ξ
)
)ϖi

≤ 1

Simlarly,

⇒ 0 ≤

√√√√ n∏
i=1

(
1 − ι2i (

ξ

1 + ξ
)
)ϖi

≤ 1

⇒ 0 ≤

√√√√ n∏
i=1

(
1 − κ2
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Thus,
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
≤ 1

So, the consequence of utilizing the C-SFSWWA operator,
what emerges is also a C-SFSN.

APPENDIX D
Assume αi = α = (ϑi, ιi, κi, r̆i) where i = 1, 2 . . . , n be a set
of C-SFSNs. Then,

C − SFSWWAmax(α1, α2, . . . , αn)

=
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= α

APPENDIX E
Assume αi be a C-SFSNs and τ > 0, we get
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APPENDIX F
For all i = 1, 2, . . . , n we have
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Then, by comparison we get
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i ≤ C − SFSWWAmax(α1, α2, . . . , αn) ≤ α+

i

Similarly, for α+
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we can prove,

α−

i ≤ C − SFSWWAmax(α1, α2, . . . , αn) ≤ α+

i
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