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ABSTRACT Image scaling techniques such as Super-Resolution (SR) are useful for object detection,
especially for detecting small objects. However, we found that scaling by an inappropriate factor tends to
induce false-positive detections. This paper presents a Region-Dependent Scale-Proposal (RDSP) network
that estimates the appropriate scale factors for each image region depending on its contextual information.
In our detection framework, images are appropriately scaled by SR according to the estimations of the RDSP
network, and fed into the scale-specific object detectors. While previous works have proposed models for
scale proposal, our RDSP extracts regions where objects could potentially exist based on scene structure,
regardless of whether actual objects are present, because small objects are often too small to determine
their presence accurately. Additionally, while existing approaches have fused object detection and SR in
an end-to-end manner, scale proposals for SR are not provided or are performed independently. Qualitative
and quantitative experiments show that our RDSP network provides appropriate SR scales and improve
detection accuracy on highly challenging dataset, captured by real car-mounted cameras with size-varied
objects, including extremely small objects. Our code is available at https://github.com/kakitamedia/RDSP.

INDEX TERMS Object detection, object scales, region-dependent scale proposals, super-resolution, tiny
object detection.

I. INTRODUCTION
Object detection is one of the most important computer vision
tasks. One of the challenges in object detection lies in the
variation in object sizes, and many previous works addressed
this size-varied object detection task.

A standard anchor-based method detects size-varied
objects from a wide variety of scaled anchor boxes that are
densely distributed in an image (e.g., SSD [2], RetinaNet [3],
and Faster R-CNN [4]). However, such a huge number of
anchor boxes that cover a variety of locations and scales not
only degrade computational efficiency but also make learning
difficult.

The associate editor coordinating the review of this manuscript and

approving it for publication was Felix Albu .

In contrast to such a scale-invariant object detector,
it is known that object size-varied object detection can
be improved by scale-specific object detectors [5], [6]
with image scalings. In SNIP [5], an image is scaled
to various sizes by pre-determined upscale factors with
image interpolation, and all the scaled images are fed into
its corresponding scale-specific detector. However, it has
been pointed out that image interpolation degrades the
performance of small object detection [1].

To detect such small objects, detection methods using
Super-Resolution (SR) have been proposed. For example,
face detection [7] and generic object detection [1], [8]. In [7],
[8], SR is applied to regions extracted by RPN. However,
in cases where objects are extremely small, RPN may not
perform effectively. Therefore, the entire detection process,
including RPN, should performed on SR images. In [1], SR is
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FIGURE 1. Examples of our object-scale proposals for scale-specific
object detection with super-resolution. (a) Detection result by TDSR [1]
with factor 2. False-positive detection can be seen on the left of the
image. (b) SR-scale proposals by our Region-Dependent Scale-Proposal
(RDSP) network. The regions appropriate for upscaling by
super-resolution with factor 2 are predicted. (c) Detection result of our
proposed detection pipeline. False-positive detection is suppressed
based on (b).

applied before the entire detection process, but they conduct
experiments only onmanually downsized images. Thismeans
the effectiveness of SR for size-varied object detection is not
evaluated.

Therefore, we apply SR directly to real data, which
contains objects of various sizes, including extremely
small objects. However, we found that application of
SR to detectors tends to detect false-positives (as shown
in Figure 1 (a) and Figure 2) when object regions are
rescaled by inappropriate scaling factors, while these
inappropriately-rescaled regions are not false-detected in the
original-scale
image.

This paper presents how to estimate the appropriate scale
of each image region. Our contributions in this paper are as
follows:

• We apply SR to the size-varied object detection tasks,
while the previous SR-based approach applies SR to
manually downscaled images.

FIGURE 2. Recall and precision of standard one-stage detectors with
different settings. Naive application of SR improves the recall by
achieving the detection of small objects, but harms the precision because
of false-positives. Our method improved recall without harming precision.

• Our proposed method addresses false-positive detec-
tions in SR-based object detection. In our method,
an appropriate SR scale is predicted at each image
region depending on the scene structure. Based on
this prediction, the false-positive detections caused by
inappropriate scaling are suppressed.

• The aforementioned appropriate scale prediction is
achieved by our proposed network called a Region-
Dependent Scale-Proposal (RDSP) network. While
some previous works have proposed models for scale
proposal, our RDSP extracts regionswhere objects could
potentially exist based on scene structure, regardless
of whether actual objects are present, because small
objects are often too small to determine their presence
accurately.

• In RDSP, the global scene structure and local appearance
features are utilized in implicit and explicit manners.
While RDSP is presented in our early work [9],
it is extended with the positional and global structure
embeddings in this paper.

• This paper explores how to effectively end-to-end train
the network consisting of RDSP, SR, and detection
sub-networks. Since the full network is huge, the
ill-considered combination of complex loss functions
makes it difficult to train the network due to conflict
between the losses. We found the best combination
of the losses for end-to-end learning of the full
network.

• Our method can be applied to any differentiable
object detector. This applicability is demonstrated in
our experiments shown in this paper. Various object
detectors are integrated with RDSP in order to improve
the performance of object detection.
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• To validate the effectiveness of the proposed method,
we utilize datasets captured by car-mounted cameras,
which have severe object size variations, including
extremely small objects.

While the aforementioned first and second contribution
has been presented in our early version [9], the remaining
contributions are the novel contributions presented in this
paper.

II. RELATED WORK
In this section, we introduce SR using deep convolutional
networks (in Sec. II-A) and object detection using SR and/or
scene-object relationships (in Secs. II-B and II-C).

A. DEEP SUPER-RESOLUTION
As with many computer vision technologies, SR has been
improved with convolutional networks (e.g., DBPN [10],
WDST [11], SRFlow [12], PAMS [13], CARN [14],
LatticeNet [15], SRNTT [16], SPSR [17]). Recent approaches
with downscaling kernel representations [18], [19], [20], [21],
[22], [23] improve the SR performance and its applicability to
real-world images degraded by a variety of blur kernels. Since
SR is one of the hot topics in computer vision as demonstrated
in public challenges [24], [25], [26]. Furthermore, single-
image SR is extended to video SR [27], [28], [29], [30], [31]
and joint space-time video SR [32], [33], [34], [35] for more
variety of applications.

However, all of these SR methods are designed to improve
the image quality for human perception, which is evaluated by
PSNR and other image-quality metrics. While our proposed
method can utilize any of these SR methods, the goal of
our work is to explore SR methods applicable to machine
perception, such as object detection. To this end, in previous
work, SR is combined with an object detector in tiny
face detection [7] and tiny generic object detection [1],
[8]. This paper proposes automatic region-dependent scale
proposals for SR, in addition to image upscaling using
SR.

B. OBJECT SCALE PROPOSAL
To address size-varied object detection challenges, numerous
strategies have been proposed. For example, image pyramid-
based [5], [6], [36], and feature pyramid-based [2], [3], [37]
strategies are common practice. However, these methods are
unsuitable for scenarios with extremely large variations in
object sizes, as they require constructing very large pyramids.
Therefore, previous works [38], [39] proposed that explicitly
predict object sizes in advance and perform detection based
on these predictions. However, since these approaches rely
on the appearance of objects in the image to estimate their
scale, estimation can fail when dealing with extremely small
objects. Therefore, scale estimation methods that do not rely
on object appearance are needed.

Scene structure also plays a role in determining the scale
of objects in an image; for instance, a sidewalk near the

vanishing point may contain a small person. Hence, some
studies explicitly utilize this kind of scene structure. For
example, scene-specific [40], [41], perspective-aware [42],
depth-aware [43], 3D geometry-aware [44] object detectors
are proposed.

In this study, we construct the RDSP network that incor-
porates scene structures and propose its training method that
enables scale estimation independent of object appearance.

C. SCALE-DEPENDENT OBJECT DETECTION
Beyond object scale recognition [42], [43], [44], [45]
mentioned in Sec. II-B, local image regions can be explicitly
rescaled for more easy recognition (e.g., region-dependent
object scaling for object detection [46], in particular for tiny
object detection [47]). Tiny object detection can be further
improved by incorporating SR and detection networks with
end-to-end learning [1].
Our proposed method integrates scale-dependent detection

with SR so that appropriate scales in different image local
regions are estimated. Previous methods (i) estimate a
region-independent scale histogram [46] or (ii) just employ
off-the-shelf detectors for estimating region-dependent scale
proposals [47]. On the other hand, our method has additional
networks (RDSP) for proposing the probability maps,
in which a pixel value in each pixel is higher if it is highly
possible that any target object is observed in that pixel, for
multiple SR scales. Each scale proposal is expressed as a
heatmap image, as shown in Figure 1 (b).

III. REGION-DEPENDENT SR-SCALE PROPOSALS FOR
SCALE-SPECIFIC OBJECT DETECTION
Figure 3 shows the overall pipeline of our proposed method.
Our detection pipeline consists of three independent branches
and one independent detector, and each branch is composed
of the following processes. Note that each ‘‘term’’ enclosed
in double quotation marks appears in Figure 3 and Figure 4.
1) SR networks: The SR network is prepared for each

scaling factor.
2) RDSP network: The RDSP network is designed to

estimate the ‘‘Scale-proposal heatmaps’’ where the
appropriateness of each SR scaling factor (e.g., factors
of 1, 2, and 4) is given at each pixel. The examples of
the scale proposal heatmap are shown in Figure 1 (b).

3) Detection network: Each of the generated ‘‘Masked
SR images’’ is fed into its corresponding-scale object
detection network (i.e., ‘‘Detector’’ in Figure 3).
Detected bounding boxes are superimposed onto a
single image, where overlapping bounding boxes are
merged by a standard non-maximum suppression
scheme.

Our RDSP network suppresses false positives due to
inappropriate scaling by proposing an appropriate scaling
factor for each image region. In what follows, we explain our
proposed ‘‘RDSP network’’ in detail in Section III-A. After
how to train the network consisting of three networks (RDSP
network, SR, and detection) is introduced in Section III-B,

VOLUME 11, 2023 122143



K. Akita, N. Ukita: Context-Aware RDSPs for Scale-Optimized Object Detection Using SR

FIGURE 3. Overall pipeline of the proposed method. Any differentiable network can be used for the SR network and detector. The detailed structure of
RDSP networks is shown in Figure 4.

FIGURE 4. RDSP architecture. ⊕ denotes a pixel-wise add operation.

Section III-C describes how to create the ground-truth for the
training of RDSP network.

A. REGION-DEPENDENT SR-SCALE PROPOSALS
The RDSP network is required to roughly but robustly detect
regions in each of which there might be any object. This
region is called a Possible Object Region (POR). In particular,
even PORs of tiny objects must also be detected by the
RDSP network. Such PORs of tiny objects are upscaled using
SR by large scaling factors (e.g., the factor of 4). However,
this scheme seems to be a chicken-and-egg problem because
the RDSP network must detect PORs of tiny objects to
support the following object detection network. Therefore,
the goal of the RDSP network is not to precisely detect
objects without excess or deficiency but to roughly detect
PORs with no false negatives. While the POR is similar to
a general region proposal for object detection, RDSP also
estimates the appropriate scaling factor of each POR for
improving the performance of scale-specific object detection.
One more difference between the region proposal and the
POR is that a set of pixelwise probability values is provided in
a heatmap image for our POR representation, while the region

proposal is a bounding box corresponding to each object
region.

Since POR estimations for tiny objects are difficult,
we need additional cues as well as the appearance information
of each region of interest. To encode additional cues, the
proposed RDSP architecture has the following three modules
(also shown in Figure 4):

1) ‘‘Positional embedding’’: If similar scene structures
are observed in different images, objects in each class
are observed to be similar sizes in specific pixel
coordinates in these images. For example, in the case
of an in-vehicle camera, small objects are located
near the vanishing point, i.e., around the center of the
image. In order to utilize such a constraint implicitly,
we employ a positional embedding scheme. For this
embedding, we use a pair of ‘‘position images’’
consisting of x and y channels in which the value of
each pixel is x and y image coordinate, respectively.
These position images are fed into a 1 × 1 conv layer.
The output features of this conv layer are pixelwise
added to image features extracted from the input image
(as indicated by ‘‘Add-1’’ in the figure).
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2) ‘‘Scene structure embedding’’: If the structure of
a scene is neglected, ridiculous detections might be
found. For example, the misclassification of a boat in
the sea as a car is a typical one [48]. To suppress such
misclassification, methods using the structure of the
entire scene have been proposed. (e.g., based on object-
scene relationships [48] and attention [49]). In our
work, scene structure influences the image features by
adding the pooled global features to the image features
pixel-wisely (as indicated by ‘‘Add-2’’ in the figure).

3) ‘‘UNet-like backbone’’: The effectiveness of the
context around a region of interest is validated for
tiny object detection such as face detection [7],
human-body key-point detection [50], and semantic
segmentation [51]. The proposed method employs
a semantic segmentation network, U-Net [52], for
estimating the scale proposals by jointly evaluating
local and global appearance features. The U-Net
architecture [52] has symmetric expanding paths for
precise localization and contracting paths for capturing
contexts. These two types of paths are designed to be
symmetric and connected in order to propagate a large
number of feature channels from the contracting paths
to the expanding paths for utilizing the local and global
contexts.

The ‘‘Add’’ operation described above refers to element-
wise addition defined by the following equation.

F ′
x,y,c = Fx,y,c + Ex,y,c (1)

where F ′ denote the post-embedded feature, while F denotes
the image feature and E denotes the embedding feature. x, y,
and c denote positions on each feature map.

The ‘‘stretch’’ operation in Figure 4 involves replicating
a 1-dimensional vector V in both the height and width
dimensions to create a 3-dimensional feature map. The
‘‘stretch’’ed feature map M is expressed as the following
formula:

Mx,y,c = Vc (2)

Through this ‘‘stretch’’ operation, the pooled 1-dimensional
feature vector is expanded to the same size as the image
feature map.

The RDSP network represents the estimated PORs as
a set of heatmap images, each of which corresponds to
each scaling factor, as indicated by the ‘‘Scale-proposal
heatmap’’ in Figure 4. Since the last layer of the UNet-like
backbone is a Sigmoid activation layer, each pixel value in the
scale-proposal heatmap is normalized between 0 and 1, which
means the less probable and the most probable to be a POR,
respectively. As shown in Figure 3, our proposed network has
multiple RDSP networks, each of which corresponds to each
scaling factor.

While our proposed RDSP is similar to the general Region
Proposal Network (RPN), it differs in that RDSP estimates
the probability of an object’s presence based solely on

FIGURE 5. The overview of the training of our proposed method.

context, regardless of whether the object actually exists there.
In contrast to RPN, which is trained based on the ground
truth bounding boxes, our RPSP is trained to inherently
extract regions where objects could potentially exist by
our proposed training algorithm, as detailed in the next
section.

B. END-TO-END TRAINING FOR SR AND RDSP
In our proposed detection framework, we train each branch
(as illustrated on the right in Figure 3) independently.
An overview of the training for each branch is shown in
Figure 5.

As well as a detection network, any differentiable SR
network can be utilized for our joint SR and detection
network. Prior to end-to-end training of the full network
consisting of these two networks, we assume that each of
them is pre-trained in accordance with the training process
of each network for better training of the full network.
In what follows, the end-to-end training scheme following
these pre-training processes is described.

As with the basic training process of an SR network,
in our end-to-end training scheme, the SR network is trained
with the following reconstruction loss expressed by the mean
absolute error (MAE):

Lrec(x, x̂) =
1
N

N∑
i=1

|xi − x̂i|, (3)

where x and x̂ denote the ground-truth HR image and its SR
image, respectively. N is the number of pixels in each image.

In contrast to general SR training using Lrec, we train SR
networks also with a detection loss (denoted by Ldet ) for
optimizing SR for object detection. Let ↓s (·) denote an
image downscaling function by factor s, and the SR network
is denoted by S. The detection network D takes the SR image
masked by the heatmap estimated by the RDSP (denoted by
R). The form of the output ofD (i.e., detection results) and its
ground truth (denoted by y) differs depending on the object
detector. For example, in CenterNet [53], y consists of three
kinds of multi-channel images. The pixel values of the first,
second, and third images are (i) the confidence value of object
center detection in each pixel, (ii) the width and height of the
object bounding box in each pixel, and (iii) bounding-box
displacements caused by the output stride; see the original
paper [53] for details.
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FIGURE 6. (a) Training image and ground-truth bounding boxes. Red, blue,
and yellow bounding boxes are grouped into those of factors 1, 2, and 4,
respectively. From this training image, ground-truth heatmap images for
each factor are generated as shown in (b), (c), and (d), respectively. These
heatmaps are blurred by Gaussian for robust detection.

With Lrec and Ldet , the SR network in our full network is
trained with the following compound loss function LSR:

LSR(x, y) = λrecLrec(x, S(↓s (x)))

+ λdetLdet (y,D(S(↓s (x)) ⊙ R(x))), (4)

where λrec and λdet are constants determining the relative
weights of the reconstruction loss and the detection loss,
respectively.

The RDSP network is trained with the following loss
expressed by the binary cross entropy (BCE) using the
ground-truth heatmap that is created from the detection
ground-truth:

Lscale(p, p̂) = −
1
N

N∑
i=1

pi log p̂i (5)

where p and p̂ denote the ground-truth heatmap and the
predicted heatmap, respectively. As described above, the
RDSP network is required to roughly but robustly detect
possible object regions. Therefore, the ground-truth heatmap
p is designed to fulfill that requirement. The details of
ground-truth heatmap p are described in Sec III-C.
We train the RDSP networks also with a detection loss for

object detection. With Lscale and Ldet , the RDSP network is
trained with the following loss function LRDSP:

LRDSP(x, y, p) = λscaleLscale(p,R(x))

+ λdetLdet (y,D(S(↓s (x) ⊙ R(x))), (6)

where λscale are weighting parameter for Lscale.
In total, the loss function for the entire proposed framework

is as follows:

Ltotal = LRDSP + LSR (7)

C. SCALE-PROPOSAL GROUND-TRUTH FOR RDSP
TRAINING
As described in Sec. III-B, the RDSP network is trained with
the ground-truth heatmaps. Although the RDSP networks

FIGURE 7. The architecture of DBPN [10] network.

are required to estimate the regions that are suitable for the
corresponding scale factor, it is difficult to learn to satisfy
such requirements from end-to-end training with object
detection alone. Therefore, to support the training, we create
ground-truth heatmaps that satisfy the requirements. For
producing the ground-truth data for this training, a standard
training dataset for object detection is reprocessed as follows:

1) The bounding boxes of objects for detection are divided
into height-dependent groups. In our experiments, the
bounding boxes are divided into three groups, namely
bounding boxes whose appropriate scaling factors
are 1, 2, and 4. More specifically, in our experiments,
the groups of scaling factors of 1, 2, and 4 include
the following ranges depending on the height of the
bounding box (denoted by hb): (1) if hb ≥ 64, factor
of 1, (2) if 32 ≤ hb < 64, factor of 2, and (3) if
hb < 32, factor of 4. In the training images, the groups
of factors 1, 2, and 4 have 7,156, 6,348, and 6,297
bounding boxes, respectively.

2) Each RDSP network produces a heatmap-like image in
which higher values are given in pixels where any target
object is likely to be observed. The ground-truth image
of the heatmap for the factor of S ∈ 1, 2, 4 contains
only the bounding boxes included in factor S’s group,
as illustrated in Figure 6. In each ground-truth image,
all bounding boxes are filled by 1, while all other pixels
are 0.

3) For robust detection, all bounding boxes filled by 1 are
blurred by Gaussian. This blurred image is used as the
ground truth of the output of the RDSP network for
training.

IV. EXPERIMENTS
A. DATASET
We conducted experiments with the CityScapes dataset [54],
which is a car-mounted camera dataset. Since this dataset
is developed for evaluating instance segmentation methods,
the annotations are pixelwise instance labels. From these
pixelwise instance labels, bounding boxes for object detection
were generated so that a rectangle circumscribing each
instance is regarded as its bounding box. While 30 object
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FIGURE 8. The successful cases on the CityScapes dataset with Super-Resolution and the proposed RDSP. The predicted bboxes with confidence greater
than 50% are visualized. For better visualization, a part of the image is cropped.

classes are defined in the dataset, most of them are
background objects such as ‘‘sky’’ ‘‘road,’’ and ‘‘vegetation.’’
In our experiments, only classes included in the human
group (i.e., ‘‘person’’ and ‘‘rider’’) were used for the object
detection task. The CityScapes dataset is officially split into
training and test images. The number of training and test
images containing human bounding boxes is 2,965 and 492,
respectively. In all the training and test images, 19,801 and
3,975 human bounding boxes are included, respectively.

Additionally, we conducted experiments on the BDD100k
dataset, which is a dataset collected from car-mounted cam-
eras, like the CityScapes dataset. In contrast to the CityScapes
dataset, the BDD100k dataset is primarily designed for object
detection tasks, so we use the provided bounding boxes as-
is. The BDD100k dataset is officially split into training and
test images. The training set contains 92,369 human bounding
boxes, while the test set has 13,426 human bounding boxes.
The dataset consists of a total of 70,000 training images and
10,000 test images.

B. TRAINING DETAILS
The proposed method has three components: SR network,
RDSP network, and object detection network. As an SR net-
work, we use Deep Back-Projection Network (DBPN) [10],
which achieves competitive results in SR challenges [24]. The
architecture of DBPN is shown in Figure 7. As a detection

network, we use the following five detectors of three types:
(1) One-stage detector; SSD [2] and RetinaNet [3], (2) Two-
stage detector; Faster R-CNN [4], (3) Anchor-free detector;
FCOS [55], CenterNet [53].

First, these three components are pretrained independently
by Lrec,Lscale,Ldet , respectively. For this pretraining, we use
Adam [56] optimizer with β=(0.9, 0.999), and themini-batch
size is 8. The learning rate is initialized to 1e-4 and multiplied
by 1/10 at 300,000 and 450,000 iterations, while the total
iterations are 500,000. As augmentations, we apply random
flipping and random cropping to 512 × 512. The weights
of SR networks are initialized from the author model,
while the weights of the detection networks are initialized
from coco-pretrained weights published in mmdetection [57]
project. The RDSP models are trained from randomly-
initialized weights.

After this pretraining, these networks are fine-tuned in an
end-to-end manner with loss functions described in Sec III-B.
For this training, we set the mini-batch size 6. The learning
rate is initialized to 1e-4 and multiplied by 1/10 at 200,000
and 280,000 iterations, while the total iterations are 300,000.
Other settings follow the pretraining.

C. RESULTS AND ANALYSIS
1) EFFECTS OF SR AND RDSP
We compare the results with and without SR and RDSP
to validate their effectiveness. The qualitative results on
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TABLE 1. Experimental results on the CityScapes dataset. We conducted comparisons across various object detectors (i.e., SSD, RetinaNet, Faster R-CNN,
FCOS, and CenterNet) with and without SR and our RDSP. ✓denotes that the corresponding sub-network is integrated into the full network. Red and blue
values indicate the best and the second-best scores in each detector, respectively.

TABLE 2. Experimental results on the BDD100k dataset. We conducted comparisons across various object detectors (i.e., SSD, RetinaNet, Faster R-CNN,
FCOS, and CenterNet) with and without SR and our RDSP. ✓denotes that the corresponding sub-network is integrated into the full network. Red and blue
values indicate the best and the second-best scores in each detector, respectively.

the CityScapes dataset in the SSD detector are shown in
Figure 8. The first and second rows of the figure show that
SR enables the detector to detect small objects that are not
detected without SR. Rows 3-6 of the figure shows that,
while detection with SR detects false positives in regions
where people should not be present in terms of their contexts,
our proposed method suppresses these false positives by
successfully estimating regions where people should not
be and masking them. The quantitative results of various
detectors on CityScapes are shown in Table 1. Table 1 shows
that the use of SR improves the detection performance of
small objects, but sometimes has negative impacts on the
performance of medium or large object detections. With
our proposed RDSP networks, the detection performances
are further improved in most cases. However, the results
with CenterNet indicate a performance decrease when
utilizing RDSP. The discussion of these results is presented
later.

Furthermore, we evaluated the effectiveness of SR and
RDSP on the BDD100k dataset. The quantitative results
are shown in Table 2. Unlike the results on the CityScapes
dataset, the table shows a significant performance drop when

using SR without RDSP. This is because of the fact that the
BDD100k dataset contains more realistic and challenging
images, for example, including stronger blur and reflections
on the front windshield. In such images, SR tends to generate
more severe artifacts, exacerbating the false-positive issue.
Nevertheless, even in these challenging cases, our RDSP
mitigates the false-positive issue and dramatically improves
overall performance.

2) MODEL COMPLEXITY ANALYSIS
We evaluate the model complexity of our proposed method
with the SSD detector. The results are shown in Table 3.
From this table, we can see that our proposed RDSP
achieves performance improvement with relatively reason-
able computational costs and parameter counts compared
to not using RDSP. Therefore, RDSP can be consid-
ered an efficient method for object detection within the
SR-based detection framework. However, when compared
to the original SSD, our model has significantly higher
runtime and parameter counts. This is because our detection
framework has independent detection branches at each
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scale. While the parallelization of these branches on
high-performance computational resourcesmaymitigate run-
time, this complexity of SR-based object detection remains a
limitation.

3) COMPARISONS WITH STATE-OF-THE-ART DETECTOR
We compare our proposed framework with several state-of-
the-art general object detection methods. These state-of-the-
art methods are finetuned on the CityScapes dataset based
on the COCO-pretrained models and training configurations
provided by respective authors. The results are shown in
Table 4. The table reveals that even these SoTA methods
exhibit lower performance in some metrics. This highlights
the difficulties posed by significant size variations and the
practical challenges presented by the CityScapes dataset,
captured by real car-mounted cameras. Our proposed method
outperforms these SoTA methods, especially in the APs
metric, indicating the effectiveness of utilizing SR in this kind
of challenging dataset.

4) COMPARISONS WITH INTERPOLATION-BASED
UPSCALING
The previous scale-specific detectors [5], [6] use bicu-
bic interpolation to upscale images. Furthermore, other
methods [3], [53] demonstrated that the detection perfor-
mance can be improved by merging detection results of
upscaled images at several factors by bicubic interpolation.
Therefore, we also experiment with bicubic interpolation
instead of SR. Additionally, we also present experimen-
tal results using a simpler interpolation method, linear
interpolation.

The results are shown in Table 5. With RDSP, SR out-
performs interpolation-based upscaling. This implies that SR
has the potential to outperform interpolation when the false
positives are suppressed by our proposals. On the other hand,
without RDSP, interpolation-based scaling performs slightly
better than SR. In addition, we show examples of upscaled
image regions that have false positives by SR in Figure 9.
From this figure, we can see that the image upscaled by SR
is sharp but has unnatural edges, which are not presented in
the interpolation-based method. These edges are a potential
cause of false positives. Our proposed RDSP suppresses
these false positives, and thus takes advantage of SR for
small object detection. On the other hand, with interpolation-
based methods, it can be observed that the performance
slightly degrades when RDSP is used. This is because RDSP
masks certain regions of the image, potentially leading to
the loss of useful information for detection, although these
regions do not have unnatural artifacts. Furthermore, we can
see that there is no significant difference in performance
between Bicubic interpolation and Blinear interpolation.
Since the proposed method trains the detector with upscaled
images, it suggests that the subtle differences arising from
the choice of interpolation method do not affect detection
accuracy.

FIGURE 9. The examples of upscaled image regions that have false
positives by SR. These images are the results of x4 upscaling using
Bicubic and SR. The top images represent a region of the original image
size at 48 × 48, while the bottom images represent a region of the
original size at 64 × 64. We can see that the SR images are clear but have
unnatural edges compared to Bicubic ones.

5) ABLATIONS OF RDSP COMPONENTS
As described in Section III-A, the RDSP consists of
the following three components; ‘‘Positional embedding,’’
‘‘Scene structure Embedding,’’ and ‘‘UNet-like Backbone’’
(hereinafter called PE, SE, andUB, respectively).We conduct
ablation studies to measure the effects of these structural
components. For the ablation of UB, we remove the maxpool
and up-conv layers from UB since the motivation of UB is to
capture the contextual information. This allows comparison
with networks that have the same number of layers but
cannot capture contexts. The results of ablations are shown
in Table 6.
From this table, when only one of the three components

is ablated, there is no significant difference in performance
compared to using all three components in any case. This
suggests that these three components play similar roles in
incorporating a global context, although they have different
operations. On the other hand, when all three components
are ablated, a significant performance drop is observed. This
implies that extracting global context is essential for the
estimation of RDSP.

6) LEARNING STRATEGIES
In our proposed method, the RDSP is pretrained by our
proposed loss function Lscale, and then fine-tuned by the
combined loss of detection loss Ldet and proposed loss
Lscale, as described in Sec III-B. In this section, we present
experiments with and without pretraining to validate the
effectiveness of pretraining. In addition, we experiment
with or without Lscale during fine-tuning by changing the
weighting parameter for Lscale (denoted as λscale). The
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TABLE 3. Comparison of the model complexity of the proposed method.

TABLE 4. Comparisons with other state-of-the-art object detector. Red
and blue values indicate the best and the second-best scores,
respectively.

TABLE 5. Comparisons with interpolation-based upscaling with SSD.
✓denotes that the corresponding architecture is used.

TABLE 6. Ablation studies for RDSP network with SSD. PE, SE, and UB
denote ‘‘Positional Embedding,’’ ‘‘Scene structure Embedding,’’ and
‘‘UNet-like Backbone,’’ respectively. ✓means the corresponding
architecture is used. Bold values indicate the performance difference
between using all three components and the rest.

TABLE 7. Comparison of learning strategies with SSD detector. ✓denotes
RDSP network is pretrained.

comparisons of learning strategies are shown in Table 7. From
this table, we can see that using Lscale during fine-tuning
has no positive impact. In contrast, pretraining with Lscale
improves the detection performance.

TABLE 8. Comparison of detector sharing with SSD.

TABLE 9. Comparison of embedding operation.

7) INDEPENDENT DETECTORS FOR EACH SCALE FACTOR
In our proposed detection pipeline, SR images are fed
into independent detectors for each scale factor, while the
previous methods [5], [6] utilize shared detectors. This is
because SR images upscaled by CNNs have unique features
(e.g., checkerboard artifacts) that depend on their upscaling
factors, and it is very difficult for a detector to generalize these
unique features, such as artifacts. To prevent the detectors
from being affected by such unique features, we utilize inde-
pendent detectors for each scaling factor. To demonstrate the
effectiveness of the independent detectors, we experimented
with a shared detector on SSD. This detector sharing is done
by fixing the detector’s weights with the pretrained model
described in Section IV-B.

The quantitative results are shown in Table 8. The table
shows that detector sharing has a negative effect on the
detection performance on all metrics.

8) EMBEDDING OPERATION
In RDSP, positional and scene structure features are embed-
ded using an ‘‘Add’’ operation as described in Sec.III-A.
In this section, we explore an alternative embedding method,
which is the ‘‘Multiply’’ operation, and provide a comparison
between the two approaches. The results of this comparison
are shown in Table 9.
From the table, we can see that the ‘‘Add’’ and ‘‘Multiply’’

operations yield very similar performance. This suggests that,
fundamentally, the choice between these operations does not
significantly impact the embedding’s effectiveness.

9) ANALYSIS OF PERFORMANCE DROP IN CENTERNET
As shown in Table 1 and Table 2, our proposed frame-
work performs worse when using CenterNet. We attribute
this performance drop to the Deformable Convolution in
Centernet. Since Deformable Convolution allows flexible
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FIGURE 10. The failure case with the proposed RDSP. The predicted bboxes with confidence greater than 50% are visualized. For better visualization,
a part of the image is cropped.

TABLE 10. Comparison of CenterNet with and without Deformable
Convolution. DC denotes Deformable Convolution, and red values
indicate the best scores in each detector.

convolution positions and enables the extraction of contextual
information, our proposed RDSP imposes a mask on
the image, potentially causing the convolution positions
of Deformable Convolution to extend into the masked
regions. Table 10 shows the comparisons with and without
Deformable Convolutions on Centernet. We can see that the
performance degradations do not occur on CenterNet without
Deformable Convolutions.

10) ANALYSIS OF FAILURE CASE OF PROPOSED METHOD
Figure 10 shows failure cases of the proposed method. The
failure cases can be categorized into two types:

• Limited contextual information. Since our RDSP
relies on contextual information to recognize object
scales, heatmap estimation fails when there is limited
contextual information. In the examples shown in the 1st
and 2nd row of Figure 10, the heatmaps do not activate in
regions where it should be estimated as x2 or x4 scales,
because the entire scene is dark and challenging to
extract contextual information. Such RDSP estimation
failures result in undetected objects, which are detected
without RDSP.

• Crowded scenes. Since our proposed detection frame-
work merges the detection results from each branch

using Non-Maximum Suppression (NMS), it struggled
to detect overlapping objects. Therefore, while the use of
SR and RDSP improves detection accuracy, undetected
objects still exist, as shown in the 3rd and 4th row of
Figure 10.

Improving the first category could potentially be achieved
by providing additional cues beyond the image, such as
LiDAR or RADAR data. For the second category, some
performance improvement might be achieved through the use
of more advanced NMS, such as Soft-NMS [62] or learnable
NMS [63].

V. CONCLUDING REMARKS
This paper proposed a method for estimating object-scale
proposals for scale-optimized object detection using SR.
With images that are rescaled by the appropriate SR scaling
factor, an object detector can work better than in the original-
size image. A variety of experimental results validated
that our proposed RDSP network can capture the rough
locations of objects depending on contextual information.
We qualitatively and quantitatively verified that object
detectors using our scale proposals outperform those without
the scale proposals.

Since the proposed method can also be applied to many
other computer vision tasks (e.g., human pose estimation,
face detection, and human tracking) that capture tiny objects,
we would like to extend our proposals to these tasks in future
work.
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