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ABSTRACT Graph clustering has attracted many interests in recent years, with numerous applications
ranging from the clustering of computer networks to the detection of social communities. It presents a
challenging NP-class problem, and as a result, numerous algorithms have been developed, each tailored
to specific objectives and quality metrics for evaluation. This research commences by categorizing existing
graph clustering algorithms based on two distinct perspectives: parameter-free algorithms and user-defined or
adjustable parametric algorithms. Quality metrics are further categorized into three distinct groups: internal
connectivity, external connectivity, and a combination of both. If a task can be represented by a simple
undirected and unweighted graph, from a management and deployment of resources perspective, having
clusters of some kind of similar density is advantageous as it allows efficient management. This research
introduces a partitioning graph clustering algorithm that allows users to specify the desired density of a
cluster by means of ‘relative density’. Clustering process involves the determination of all triangles (i.e.,
smallest cliques) and selecting a clique as an initial cluster. The expansion of a cluster is done by adding
adjacent cliques while the required relative density is monitored. Existing metrics are found unsuitable for
evaluating the proposed method; therefore, a suitable new metric, the Mean Relative Density Deviation
Coefficient (MRDDC), is introduced.

INDEX TERMS Graph clustering, mean relative density deviation coefficient (MDRCC), NP problem,
partitioning graph clustering, quality metric, relative density.

I. INTRODUCTION
In the present era, the rapid increase in the volume and variety
of data has led to the emergence of advanced data techniques
aimed at uncovering the latent patterns and structures in
complex networks. Among the many prominent techniques
available, graph clustering is a vital domain in data science.
It involves the grouping of nodes within a graph based on their
connectivity patterns or similarity features to gain insight into
the underlying structure of the graph [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Qilian Liang .

Graph clustering serves a diverse array of purposes across
nearly all domains. For instance, identifying communities
with similar interests or behaviors in social network analysis
references [2], [3], and [4], optimizing routes and traffic
flow within transportation networks, uncovering functional
gene or protein modules in biological networks, delineating
regions with similar texture or color in image segmenta-
tion [4], [5], and providing personalized recommendations
through recommendation systems [6], [7]. Numerous tech-
niques have been proposed to address a wide spectrum of
objectives. Some notable examples encomapss K-means [8],
DBSCAN [9], Girvan-Newman [10], Louvain [11], among
many others. These algorithms differ in terms of their
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input parameters, which can either be presetted to default
parameter values, specified by users, or adjusted by users
to fine tune the resultant clusters. Selecting appropriate
user inputs for clustering algorithms is a challenging but
crucial task, given clustering’s subjective and application
specific nature [12], [13]. Conversely, limited user inputs and
domain specificity may also constrain clustering algorithms’
usefulness.

Clustering algorithms commonly employ various param-
eters including the number of clusters, minimum number
of neighboring points, resolution parameters, regularization
parameters, and convergence criteria [14]. Distance metrics,
such as Euclidean distance, cosine similarity, Jaccard dis-
tance, and correlation distance, have been used to measure
the similarity or dissimilarity between nodes or clusters [15],
[16]. For example, hierarchical clustering algorithms use
linkage methods, such as single, complete, or average linkage
to calculate the distance between merging clusters [17], [18].
In certain community detection algorithms, the resolution
parameter is used to control the number and size of
communities [19], [20].
Each clustering algorithm employs one of the three types

of input parameters: those with preset default values, user-
specified parameters, or adjustable parameters that can be
fine-tuned for better clustering results. In more complex
algorithms, such as spectral clustering and random walk-
based methods, advanced knowledge of linear algebra and
graph theory may be required to adjust parameters. The
process of tuning parameters often involves iterative cycles of
experimentation and evaluation, rendering it computationally
intensive, particularly when dealing with large and complex
networks. Consequently, there is a trade-off between the
potential benefits of parameter tuning and an increase in
the algorithmic complexity. In addition to computational
challenges, unbalanced clustering is another significant issue
that can arise when adjusting the algorithmic parameters.
In practice, unbalanced clustering, in terms of density and
connectivity can lead to inefficient resource utilization,
reduced network performance, and increased maintenance
costs [21]. In IoT applications, unbalanced clusters can result
in energy wastage, missed events or anomalies, and reduced
device lifetime. This ultimately affects the reliability and
accuracy of these applications [22], [23].
Asmentioned previously, the versatility of graph clustering

techniques extends across virtually every domain. Similar
to numerous other scientific disciplines, the development of
graph clustering algorithms is driven by specific objectives
inherent to their respective applications. Nevertheless, sev-
eral requirements in the field of graph clustering remain
unfulfilled. One such requirement pertains to the capability
to cluster a graph in which the resultant clusters possess
the same or very similar density. This capability is highly
advantageous for efficient deployment and management of
resources across various applications. For example, in a
complex graph that represents large communities, sub

communities can be seen as clusters within the overall
community. If these sub communities are of equal density,
an equal deployment of resources to these communities can
be efficient because each sub community is of equal size.
The same can be said for a complex graph that represents
communication among people (e.g., LINE), where it would
be advantageous if the network of communication was split
into small units of networks with similar density. This may
allow for efficient monitoring of each unit, as each unit
is likely to demand similar resources. Similarly, during the
recent COVID-19 pandemic, interactions among infected
patients in a particular city can be represented by a graph.
Dividing them into clusters of similar density allows each
cluster to be considered relative to the entire network. It may
be possible to have clusters with smaller patients (i.e., nodes)
but much higher interactions (i.e., edges). A detailed analysis
of each cluster may reveal the information of interest. These
examples can be transformed into the ability to cluster a well
connected graph where the resultant clusters have the same or
very similar density. To date, no clustering algorithm allows
users to specify the desired density of any type. Hence, this
study attempts to partition the clustering of an undirected,
unweighted graph such that user(s) can specify the required
density. This density is considered the mean ‘relative density’
and is described in detail in Section V. It is assumed that
the clusters in the graph are not apparent or visible. If such
circumstances exist, then the application of a graph clustering
algorithm may not be necessary.

The remainder of this paper is organized as follows.
Section II briefly describes the fundamental terminologies
and definitions related to graphs that are consistently utilized
throughout this paper. Section III presents a comprehensive
overview of the existing related work on graph clustering
algorithms. In addition, they were categorized based on the
necessity of input parameters. Section IV presents a com-
prehensive description of the established clustering quality
metrics. These metrics, categorized into internal and external
connectivity-based measures, aim to facilitate the selection of
appropriate evaluation criteria tailored to specific clustering
processes and their applications. Section V describes the
proposed two-phase graph-partitioning clustering algorithm
with user-specified relative density. Definitions, mathemat-
ical equations, pseudo-codes, and examples are provided
for clarity of the proposed clustering algorithm. Section VI
discusses the partitioning clustering results of the eight
real-world networks selected using the proposed clustering
algorithm. The results of the three networks have diverse
characteristics and are illustrated graphically. This section
also presents the evaluation process and identifies the
shortcomings of the existing quality metrics. Section VII,
therefore, introduced a novel quality metric known as the
Mean Relative Density Deviation Coefficient (MRDDC).
Section VIII discusses the main findings of the study. The
paper is concluded in section IX, and possible directions for
further work are suggested in section X.

122274 VOLUME 11, 2023



R. Tariq et al.: Partitioning Graph Clustering With User-Specified Density

II. PRELIMINARIES
Theoretically, a graph is typically expressed as G(V ,E),
where V denotes the set of nodes (vertices) and E is the set
of edges. A graph is identified based on the edge type. In its
simplest form, if an edge (e ∈ E) has no weight and direction,
the graph is referred to as an unweighted and undirected
graph; otherwise, it is referred to with respect to the type
of edge. Clustering is a field within data science in which
all data are grouped together to form several clusters. Good
clustering is one in which the intra-similarity of each cluster
is high and the inter-similarity between clusters is low. As the
name implies, graph clustering is a sub field of clustering
that specifically deals with data represented in the form of
a graph. The clustering of G is a partition of V into disjoint
subsets, where each subset formally represents a cluster. Let
C = {C1,C2, . . . ,Ck} be a collection of k subsets of V ,
where |C| = k , and represents the number of clusters.
∀v ∈ V , ∃!i ∈ {1, 2, . . . , k} : v ∈ Ci. Each node belonged

to a single cluster.
OR: ∀i, j ∈ {1, 2, . . . , k} with i ̸= j, Ci ∩ Cj = ∅. Clusters
are non-overlapping.

Graph clustering can be categorized into three types:
partitioning, overlapping, and hierarchical [4]. The definition
above belongs to partitioning clustering. In overlapping
clustering, a node may belong to more than one cluster,
and hence overlapping area(s) is (are) identified, whereas
several layers may exist in hierarchical clustering. This
work is concerned with partitioning clustering. Henceforth,
the terms ‘clustering’ and ‘partitioning clustering’ are
used interchangeably. For a relatively complex graph (i.e.,
a reasonably large number of nodes and edges), all three
types of clustering may be possible. Also, graph clustering
is a combinatorial problem that is known to be NP-hard [3],
[24]. Fig. 1 illustrates these three types of clustering and the
possibility of different clustering results in an arbitrary simple
graph.

FIGURE 1. (a) Arbitrary simple graph (b) Partitioning clustering
(c) Overlapping clustering (d) Hierarchical clustering.

The concept of a cluster’s degree encompasses two primary
components, internal and external degrees, which can be
defined as follows.

1) Cluster Internal Degree:The internal degree of a vertex
v ∈ Ci, denoted as int_deg(v), represents the number of
edges connecting v to other vertices within Ci. For any
vertex v ∈ Ci, int_deg(v) must be greater than or equal
to one (int_deg(v) ≥ 1). Therefore, the internal degree
of a cluster is calculated as the sum of the internal
degrees of all vertices within the cluster, expressed as

follows.

intdeg(Ci) =
∑
v∈Ci

intdeg(v) (1)

2) Cluster External Degree: Similarly, the external degree
of a vertex v ∈, denoted as ext_deg(v), is the number
of edges connecting v to vertices outside the cluster.
For node v ∈ Ci, the external degree ext_deg(v) =
0 indicates that the cluster is highly connected. Hence,
the external degree of a cluster Ci is equal to the sum
of the out-degrees of its constituent nodes, as follows.

extdeg(Ci) =
∑
v∈Ci

extdeg(v) (2)

Therefore, the total degree of a cluster can be defined as the
sum of its internal and external degrees, which is formulated
as following in (3).

totdeg(Ci) = intdeg(Ci)+ extdeg(Ci) (3)

Several traditional methods have been developed for
clustering graphs. One common approach is the minimum
cut partition, which aims to minimize inter-cluster edges [4].
This approach is similar to graph-partitioning, which is
often extended to more than two clusters using iterative
bisectioning. Additionally, many cases seek equally sized
clusters, resulting in the NP-hard ‘minimum bisection’
problem [25].
Another popular approach involves identifying patterns

within a graph including cliques and motifs. These two terms
are sometimes used interchangeably in literature. Cliques
are fully connected subgraphs where each node has an edge
on every other node; they can be of different sizes (i.e.,
different numbers of nodes) [26]. Motifs are patterns (or
recurring subgraphs(s)) in a graph that occur frequently.
Notably, cliques can also be considered motifs; however, not
all motifs exhibit clique characteristics. These were used as
the basis for clustering graphs [27], [28], [29]. Fig. 2(a)_2(g)
illustrates examples of clique and motif structures. Fig 2(a)
through (d) illustrate two-node, three-node, four-node, and
five-node cliques, respectively. Additionally, Fig. 2 (e), (f),
and (g) depict examples of motifs that frequently appear in
networks.

FIGURE 2. Examples of common cliques and motif structures.

In brief, K represents a complete graph and subscript 3
signifies a complete graph comprising three vertices. Con-
sequently, K3 denotes a clique of size three, specifically a
triangle. For brevity, this study adopts the notation K to
represent a clique of size three, with the total count of cliques
in a graph denoted as |G(K )|.
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III. CATEGORIZATION OF GRAPH CLUSTERING
ALGORITHMS
Numerous taxonomies have emerged in the literature for
categorizing graph clustering algorithms that encompass all
three fundamental types [30]. Within this field, scholars have
proposed classifications based on the exploration of cohesive
subgraphs, node clustering techniques, community quality
optimization, divisive strategies, and model-based method-
ologies [19], [31]. Moreover, numerous in-depth surveys
have explored the domain of clustering algorithms, including
the notable extensive reviews referenced in [4], [32], and
[33]. These taxonomies have provided a comprehensive
understanding of this field. For instance, as highlighted
in [34], clustering algorithms can be broadly categorized
into various types such as those based on the center,
hierarchical structures, mixture models, graphs, fuzzy logic,
and combinatorial search techniques. However, each method
relies on a specific set of parameters to detect the clusters in
a graph. These parameters can be adjusted, specified by the
user, or set to default values by the algorithm, depending on
their scope or work.

In this section, a new perspective on categorizing com-
monly used graph clustering algorithms (GCA) based on the
parameters used is proposed. Algorithms are distinguished
as those that do not require user-specified parameters (i.e.,
parameter-free algorithms) and those that rely on user
specified or adjustable parameters. This categorization can
help users to determine a suitable strategy for clustering
and comprehend the underlying structure of the network.
Furthermore, this study provides valuable insights into the
implementation of various integrated libraries.

A. PARAMETER-FREE ALGORITHMS
Many clustering techniques require pre-existing knowledge
or user-defined input parameters, which substantially influ-
ence their effectiveness [35], [36]. To address challenge,
automatic or parameter-free clustering methodologies have
been introduced. In this subsection, we discuss widely
used clustering techniques that do not require users
to specify parameters but involve technically adjustable
parameters such as objective function, convergence, and
tolerance. These adjustable parameters have default settings,
thereby simplifying the clustering process for the users.
Additionally, several libraries provide implementations of
these techniques with default settings, thereby simplifying
the clustering process and making it more accessible to
non-experts.

1) FAST-GREEDY
Fast Greedy (FG) is a modularity optimization approach for
agglomerative hierarchical clustering that outperforms other
clustering methods in terms of efficiency and scalability,
without requiring user-specified parameters [35]. Optimized
data structures and strategic optimization shortcuts further
enhance their performance [32]. Fast Greedy has been

implemented in various libraries, such as the community dis-
covery library (CDlib) in Python, the widely used NetworkX
library for complex network analysis, and the igraph software
package [37], [38], [39]. These implementations require only
the graph structure as an input parameter, making Fast Greedy
an accessible and user-friendly option for graph clustering. Its
potential applications include analyzing online sales websites
and recommender networks, such as Amazon.com.

2) INFO-MAP
Info-Map (IM) is a greedy clustering algorithm that uses
information theory principles [40], [41] to identify clusters
by analyzing information flows through random walks.
It partitions the network into modules, optimizes the
transmission rate, and sends signals to a decoder over
a channel with limited channel capacity. The clustering
quality was measured using the minimum description length,
with a shorter length indicating a more compressed cluster
structure. Technical customization options require expertise,
but libraries such as the community discovery library and
igraph software package provide default parameter settings
to simplify the algorithm for end_users. Directed networks
require random teleportation for ranking, whereas undirected
graphs require only one input parameter (graph) and are
independent of the teleportation rate [42].

3) LABEL PROPAGATION
The algorithm known as Label Propagation Algorithm (LPA)
is a graph clustering technique that achieves clustering
by iteratively assigning labels to nodes based on their
neighboring nodes until convergence [43]. This approach
assumes that nodes within the same cluster are likely to
share the same label as most of their neighbors. Although the
LPA has the advantage of linear computational complexity,
it suffers from randomness. Various extended LPAs have been
proposed to improve performance, including memory-based
label propagation (MemLPA) [44], modularity, and node
importance (LPA-MNI) [45]. However, these extensions
do not entirely solve the randomness issue or increase
the complexity of the algorithms. LPA is a parameter-free
method, but it can be customized using optional parameters
such asmax_iter, which controls the number of iterations that
the algorithmwill perform before stopping. Parameter tol sets
the threshold for the change in labels of the nodes between
iterations, below which the algorithm is considered to have
converged. Several libraries, includingCDlib, NetworkX, and
igraph, provide easy-to-use interfaces for implementing LPA
with default settings [20], [42], [54].

4) WALKTRAP
Walktrap is a hierarchical clustering algorithm that uses
random walks over short distances to group nodes within
the same cluster [46]. Initially, it starts with a non-clustered
partition and then computes the distances between nearby
nodes, followed by merging neighboring clusters until
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(n-1) iterations have been completed. This technique uses a
technical parameter, called, t which determines the number
of steps considered in a random walk. The default value
for t is 4, but users can set it to any value between
2 and 8. However, it is important to note that (t) is a
technical parameter based on the principles of the algorithm,
and fine-tuning may not always result in better clustering
performance. Most implementations of the algorithm provide
a default value for t (e.g., CDlib and igraph), but the optimal
value may need to be determined through experimentation
or by analyzing the characteristics of the network being
clustered.

5) SPINGLASS
The spinglass algorithm is a widely used clustering technique
that utilizes the ‘Potts model’ statistical mechanics [47]
to connect nodes with the same spin state and disconnect
those with different spin states. The algorithm employs
simulated annealing techniques to reduce the resource
requirements, as described in [48]. The Spinglass algorithm
has several technical and statistical parameters, including
the temperature schedule, interaction strength, randomness,
initialization, spin update rule, spin glass Hamiltonian
formulation, and convergence criteria. These parameters are
based on the principles of statistical physics and play a
crucial role in optimizing the clustering results. However,
it is important to note that these parameters are highly
technical and statistical in nature and their optimal values
may not be immediately obvious. Several software packages
offer implementations of the spinglass clustering algorithm
and provide the default settings. Popular examples include
NetworkX, igraph, Gephi, and SciPy are Python libraries for
scientific computing which include modules for clustering
and community detection.

6) LEADING EIGENVECTOR
Several solutions have been proposed to identify clusters in
graphs with high edge density. One popular method is to
maximize the modularity benefit function over all possible
network divisions. This approach provides a robust solution
to clustering challenges. An alternative method was proposed
by Newman [49]. The modularity function is rewritten in
matrix form, allowing the optimization task to be expressed
as a spectral problem in linear algebra. The Leading
Eigenvector Algorithm (LEA) is a popular implementation
of this approach. It computes the leading eigenvector of
the modularity matrix and partitions the graph into two
parts to maximize the modularity improvement. Although
the algorithm itself does not have inherent parameters,
specific parameters may be applied when it is used for
graph clustering via modularity maximization, such as the
resolution parameter, stopping criteria, and method for
computing the modularity matrix. Many libraries, including
NetworkX, igraph, and Gephi, include LEA as part of their
default graph clustering routines.

7) GRAPH-BASED K-MEANS
Graph-based k-means clustering is a method proposed to
overcome the limitations of traditional k-means when applied
to graph-structured data. The approach utilizes the minimum
spanning tree of the graph to automatically estimate k
and initialize the placement of centroids [50]. This method
has been demonstrated to outperform standard k-means on
synthetic and real-world datasets. It demonstrates enhanced
stability against noise and outliers. Additionally, a theoretical
analysis of the proposed algorithm shows that it has a lower
bound on the number of iterations required to converge to
a solution. Overall, this novel approach to graph clustering
provides valuable insight into the theoretical properties of the
algorithm and improves upon traditional k-means clustering.

B. PARAMETERIZABLE ALGORITHMS
Clustering is a complex and subjective process, particularly
when dealing with real-world networks, and unsupervised
clustering approaches may not always meet users’ precise
requirements or expectations [12]. Studies have demonstrated
that even a single user-specified input value can significantly
enhance clustering results by aligning them more closely
with the specific requirements of the user [33]. Advanced
graph clustering techniques in community detection allow
users to control certain parameters by specifying or adjusting
them. This customization capability directly affects the
number and size of the resulting clusters. The following
subsection presents a comprehensive overview of the fre-
quently employed graph clustering algorithms that utilize
adjustable or user-specified parameters. These algorithms
are implemented in renowned libraries such as Scikit-learn,
NetworkX, CDlib, and igraph. These libraries offer users
the flexibility to choose between default parameter settings
or customize them according to their specific requirements,
thereby allowing the fine-tuning of the clustering process.

1) GIRVAN-NEWMAN
Girvan and Newman proposed a graph clustering algorithm
that uses edge_betweenness to detect clusters in complex
networks [10]. The algorithm constructs a full dendrogram by
removing edges with the highest betweenness value, provid-
ing a hierarchical structure and away to determine the optimal
level-cut through modularity [47]. The Girvan-Newman
algorithm is included in several Python libraries, including
NetworkX, igraph, and CDlib, allowing users to customize
the parameters for optimal clustering results.

The level-cut parameter is critical because it directly
affects the number and size of the clusters. In NetworkX,
the community.girvan_newman function allows users
to set the desired number of clusters using argument k, and the
algorithm terminates once it reaches this number. By contrast,
the clustering method in igraph requires argument n to denote
the desired number of clusters, and the algorithm stops
accordingly. CDlib sets the level cut to a default value of
three, but allows users to adjust this parameter based on
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their specific needs. Overall, the Girvan-Newman algorithm
is widely used and effective, with customizable parameters
available in various libraries to tailor the clustering results to
the user requirements.

2) LOUVAIN
The louvain algorithm, which is recognized as a cutting-edge
graph clustering method, is commonly referred to as
multilevel clustering. It derives its name from the place
where it originated. The algorithm optimizes modularity by
performing local node movement and network aggregation
through ‘passes’ [11]. Although it has been widely recog-
nized for its speed and efficiency [32], [51], it has been
found to have limitations in maximizing modularity, making
it difficult to identify small communities [52]. The Louvain
algorithm with resolution limit adjustment is available in
popular Python network analysis libraries, such as CDlib,
igraph, and NetworkX. This requires an input graph and
adjustable resolution parameter (γ ). Lower values of γ

produce fewer and larger clusters, whereas the default value
of γ = 1 retrieves the original modularity definition used by
the algorithm.

3) LEIDEN
The Leiden algorithm is an advanced clustering method that
builds on the Louvain algorithm [9]. One of the limitations
of the Louvain method is the possibility of producing poorly
connected clusters, which can be overcome by the Leiden
algorithm. This is particularly relevant when dealing with
modularity and the constant Potts model (CPM) beyond the
resolution limit. The Leiden algorithm integrates a range
of previous enhancements and employs a combination of
fast local moves, smart local moves, and random neighbor
moves. The Leiden algorithm guarantees the identification of
partitions in which all clusters are internally connected. It also
converges to a stable partition, where subsets of clusters are
optimally assigned, thereby providing an upper bound for
the quality of an optimal partition. The integration of the
Leiden algorithm into popular network analysis libraries in
Python, such as igraph and CDlib, enables users to leverage
their capabilities. These libraries offer flexibility by allowing
users to adjust the resolution parameters of the algorithms
according to their specific requirements.

4) FLUID-COMMUNITIES
The fluid community algorithm partitions a graph into
communities using virtual fluid [53]. It has been success-
fully applied to social network analysis, bioinformatics,
and recommender systems. The algorithm updates node
community affiliations using differential equations that
guide the movement of fluids between nodes. These
updated rules encourage the fluid to flow towards nodes
with similar affiliations and discourage it from flow-
ing towards nodes with dissimilar affiliations. The Net-
workX Python library includes the implementation of the

fluid community algorithm, which is accessible through
the (algorithms.community.asyn_fluidc.asyn
_fluid). The function uses a graph and optional estimate
of the number of communities (k) to be detected as inputs.
It is important to note that the (k) does not guarantee the
exact detection of exactly k communities, as the algorithm
dynamically determines the number of communities based
on the topology of the graph and other function parameters.
Overall, the Fluid Communities algorithm provides a pow-
erful and flexible approach to community detection, and its
implementation in NetworkX makes it easily accessible to
end users.

5) SPECTRAL METHOD
Spectral clustering method is a popular modern clustering
method that uses information from the eigenvalues of special
matrices constructed from a graph to identify clusters [54],
[55]. It outperforms conventional clustering algorithms, such
as single linkage or k-means clustering, and is widely
used in many graph-based clustering algorithms. Spectral
clustering is versatile and can be applied to non-graph data;
however, constructing a similarity graph for data points is
challenging. Determining an appropriate similarity graph and
its parameters, particularly k or ε, is difficult for datasets
with clusters of varying densities and arbitrary shapes. Con-
sequently, the clustering outcomes are sensitive to the choice
of the similarity graph and its parameters. Several well-
known libraries, including Scikit-learn, NetworkX, igraph,
and MATLAB, offer spectral clustering implementations that
allow users to define the number of clusters (k) as an input
parameter.

6) EXPECTATION MAXIMIZATION
The expectation maximization (EM) algorithm, introduced
in [56], is a model-based approach for clustering data.
It utilizes probability distributions to estimate the parameters
of the underlying data-generation process. The EM technique
has two main steps: the E-step estimates missing data
values, such as cluster assignments for each observation,
using the observed data and current parameter estimates,
and the M-step updates the parameter estimates based on
the complete data, maximizing the expected complete-data
log-likelihood. The EM has several parameters, including
the initialization method, convergence criteria, and the max-
imum number of iterations. Numerous community discovery
libraries, such as CDlib, offer user-friendly implementations
that simplify their usage in various practical applications.
Users can easily specify the desired number of clusters (k)
as input to the function or method.

Fig. 3 depicts a summary of the categorization of graph
clustering algorithms (GCA) with respect to parameter-free
and parameterizable.

As discussed in this section, numerous graph clustering
algorithms exist, and theywere invented for general purposes,
as well as with specific objectives in mind. These can be
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TABLE 1. Summary of algorithm features, strengths, and limitations.

FIGURE 3. Graph clustering algorithm categorization summary.
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categorized from a parametric perspective. This section also
suggests areas in which the existing algorithms cannot be
fulfilled. One such area is the ability to specify parameters
that can guide clustering to ensure that the resulting clusters
possess equal or similar densities. Understanding the under-
lying principle of each algorithm is advantageous because
it enables the suitable selection of available algorithms.
Although a precedent statement is agreed upon among
the graph clustering community, it may not always occur
in practice. With the public availability of several graph
clustering software packages, many scientists from other
fields are likely to select parameter-free and rely on default
values to provide satisfactory clustering results (which cannot
always be guaranteed). This phenomenon also occurs in the
application of neural networks. Therefore, because graph
clustering is an NP-hard problem, results should not always
be taken on face value, and experimentation with several
algorithmsmay be necessary. This Section also paves the way
for the need for quality measures(s) for the clustering process,
which is discussed in the next section. Table 1 provides a
brief summary of feature, strength and limitation of each
algorithm.It is, by no means, a comprehensive report with
respect to all possible aspects.

IV. CLUSTERING QUALITY METRICS
Numerous clustering algorithms can be used to identify
meaningful clusters. However, the discovered clusters may
not be of the same quality even if they are meaningful [4].
Therefore, the evaluation of these clusters and the clustering
process are necessary and play a significant role. For instance,
an algorithm that results in vast diversity in size may not
be useful for resource management [57]. It is important to
recognize that determining the best cluster or set of clusters is
subjective and depends entirely on the cluster definition and
quality metrics employed in the evaluation. The evaluation
of graph clustering algorithms requires appropriate quality
metrics. Researchers have proposed various metrics to assess
cluster quality, some of which consider cluster density both
internally and externally within a graph [4], [25], [58], [59].
For example, modularity is a common metric for assessing
the connections within clusters. These metrics quantitatively
measure cluster connectedness from various perspectives
including internal and external factors. A list of commonly
used quality metrics that consider cluster connectivity can be
found in [60]. In this section, we systematically categorize
the quality metrics used in graph clustering with respect
to the connectivity within the clusters in relation to overall
connectivity.

A. INTERNAL CONNECTIVITY CLUSTERING QUALITY
METRICS
This subsection elaborates on the clustering quality metrics,
which are based on the cluster’s internal degree, (intdeg(Ci)).
The efficacy of clustering is determined by evaluating the
characteristics of interconnections within clusters, with an
emphasis on assessing cluster cohesion.

1) COVERAGE
Coverage (Cov) serves as a quality metric, as described
in [9], for assessing the internal density of clusters within a
graph [2], [4], [61]. It quantifies the ratio of internal edges
across all clusters to the total number of edges in the graph.
The coverage metric ranges from 0 to 1, with 0 indicating
a graph in which each node is a singleton and disconnected
cluster and 1 indicating a graph that is considered a single
cluster. The capacity to achieve maximum coverage may be
influenced by additional information, such as the number
of clusters, and vice versa. Excessive optimization of the
coverage metric may lead to a large cluster in which all nodes
are assigned to the same cluster, thereby affecting the number
of clusters [62]. The mathematical formula for calculating
coverage is given by the following 4, where k is the number
of clusters, and C represents a set of clusters in a graph:

Coverage (C) =

∑k
i=1 intdeg(Ci)

e
(4)

2) INTERNAL DENSITY
Graph density δ(G), quantifies the level of edge cohesion
within a graph. The maximum number of edges in a graph
can be calculated using the notion n(n− 1)/2, where n is the
number of nodes in the graph. Hence, the graph density can be
expressed as the ratio of 2e to n(n−1). A graph is considered
complete if δ(G) = 1. Graph density measures, including
internal and external cluster densities, can be used to assess
the clustering quality. The inter density (ID), denoted by
δint (Ci) measures the cohesiveness of a cluster as a subgraph
within a graph, as described in [63]. ID can be determined
using 5 following equation, where Cn represents the number
of nodes in a cluster:

δint (Ci) =
intdeg(Ci)

Cn(Cn − 1)/2
(5)

Similarly, the external density (ED) of a cluster represented
by δext (Ci) is determined by calculating the ratio of edges that
link the nodes within cluster Ci to those outside the cluster.
The cluster external degree δext (Ci) refers to the number
of edges connecting cluster nodes (Ci) outside the cluster
|{(v1, v2) ∈ E | v1 ∈ Ci, v2 ∈ V \Ci}|, and can be determined
using 6. where e denotes the total number of edges in the
graph.

δext (Ci) =
extdeg(Ci)
Cn(e− Cn)

(6)

When considering an arbitrary cluster (Ci), δint (Ci) is
expected to be significantly larger than δ(G), whereas
δext (Ci) is expected to be significantly smaller than δ(G).
Specifically, a good cluster should satisfy the condition that
δext (Ci) < δ(G) < δext (Ci). Whether explicitly stated,
the primary objective of most clustering algorithms is to
achieve an optimal balance between maximizing δint (Ci)
(internal cluster density) and minimizing δext (Ci) (external
cluster density), as discussed in [25]. Equation 7 calculates
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theAverage Internal EdgeDensity (AIED) for a given number
of clusters (k) within a graph.

δint (G|C1,C2, . . . ,Ck ) =
1
k

k∑
i=1

(δint (Ci)) (7)

3) TRIANGLE PARTICIPATION RATIO (TPR)
The triangle participation ratio (TPR) is a quality metric
that measures the internal connectivity of cluster nodes by
considering the presence of triangular patterns. Cluster TPR
denoted by TPR (Ci), is defined as the fraction of nodes
within a cluster that participate in at least one triangle:
|{v1 : v1 ∈ Ci, (v2, v3) : v2, v3 ∈ Ci, (v1, v2) ∈
E, (v1, v3) ∈ E, (v2, v3) ∈ E} ̸= ∅| over Cn [64]. TPR is
well suited for community detection when the ground truth
is known. A higher TPR value suggested a better community
in terms of location prediction. Clique-based clustering, such
as the Clique Augmentation Algorithm (CAA), yields a
significantly higher TPR than other techniques [27]. The
average TPR (ATPR) of the graph is determined by 8 below.

TPR(G|C1,C2, . . . ,Ck ) =
1
k

k∑
i=1

TPR(Ci) (8)

4) FRACTION OVER MEDIAN DEGREE (FOMD)
The fraction of nodes with an over-median degree (FOMD)
for a cluster is defined as the ratio of nodes within the
cluster with an internal degree greater than the median degree
(dm : |v1 : v1 ∈ Ci, |(v1, v2) : v2 ∈ Ci| > dm|) to the total
number of nodes in the cluster. A high FOMDnumber implies
that a considerable fraction of the cluster nodes is densely
interconnected, which is often indicative of a high-quality
cluster. The average FOMDof a graph can be determined by 9
below.

FOMD(G|C1,C2, . . . ,Ck ) =
1
k

k∑
i=1

FOMD(Ci) (9)

5) AVERAGE EMBEDDEDNESS
Embeddedness is a frequently used metric that provides
an understanding of a cluster’s tightness and connection
to the overall graph. This is achieved by calculating the
embeddedness of the individual nodes. The embeddedness
of a node in a cluster is defined as the ratio of its internal
degree int_deg(v) to the total degree deg(v) within the graph.
This metric measures the degree to which a node’s immediate
neighbors are members of its own cluster. A cluster with
high embeddedness is considered to good cluster, which
also indicates well-isolated clusters. Higher embeddedness
values ware directly correlated with better detectability for
all methods [65]. Equation 10 provides a means to determine
the embeddedness of individual nodes within a cluster,
denoted as emb(v,Ci). Meanwhile, 11 determines the average
embeddedness (AE) of a cluster, and is denoted by emb(Ci).
Finally, 12 calculates the average embeddedness (A-Emb) of

a set of clusters within the graph.

emb(v,Ci) =
intdeg(v)
deg(v)

(10)

emb(Ci) =
1
Cn

n∑
i=1

intdeg(v)
deg(v)

(11)

emb(G|C1,C2, . . . ,Ck ) =
1
k

k∑
i=1

emb(v,Ci) (12)

B. EXTERNAL CONNECTIVITY CLUSTERING QUALITY
METRICS
The external connectivity evaluation of clustering provides
a method for determining how well a clustering method can
separate data points into distinct clusters. Effective clustering
is characterized by a minimal number of edges connecting
clusters, signifying successful data point separation and high
quality clustering. To assess this aspect, numerous metrics
have been proposed to capture the notion of inter-cluster
sparsity. These metrics rely on the edges connecting a cluster
to other clusters or to different portions of the graph.

1) CUT RATIO
The cut ratio (CR) metric originated in the domain of circuit
partitioning [66], and it is well-known that optimizing this
metric is a recognized NP-hard problem. Nevertheless, spec-
tral clustering has demonstrated effectiveness in achieving
a significant complexity reduction in cut ratio [67]. The
cut ratio of a cluster, denoted as CR(Ci), was calculated
using the 13. This equation measures the fraction of edges
connecting nodes in different clusters, relative to the total
number of edges in the graph. The average cut ratio (A-CR)
for the clusters in the graph is computed 14 as below.

CR(Ci) =
intdeg(Ci)
Cn(n− Cn)

(13)

CR(G|C1,C2, . . . ,Ck ) =
1
k

k∑
i=1

CR(Ci) (14)

2) EXPANSION
Expansion (Exp) serves as a metric for evaluating the
performance of the clustering algorithms. It quantifies the
number of external edges of the nodes within a cluster.
Expansion is calculated as the average number of edges
per node that extends outside the cluster. A low expansion
value suggests that the nodes within the cluster are closely
connected and deeply integrated within the cluster, indicating
a high level of compactness.

Cluster expansionwas calculated using the 15. The average
expansion (A-Exp) can be determined by using 16, which
considers the expansion of a set of clusters.

Exp(Ci) =
extdeg(Ci)

Cn
(15)

Exp(G|C1,C2, . . . ,Ck ) =
1
k

k∑
i=1

Exp(Ci) (16)
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C. INTEGRATED QUALITY METRICS
Clustering quality metrics that consider both internal and
external connectivity are commonly employed to evaluate
the performance of clustering algorithms. These measures
typically examine the degree to which nodes within a cluster
are interconnected (internal connectivity), and consider
their connections with nodes outside the cluster (external
connectivity). In the field of graph clustering evaluation,
various metrics that encompass both internal and external
connectivity have emerged as widely adopted benchmarks.
Below are some common examples of these types of metrics
accompanied by a concise overview of widely usedmeasures.

1) CONDUCTANCE
Conductance (Con) is a widely adopted metric for evaluating
clustering quality and is, known for its simplicity and
effectiveness. It comprehensively accounts for both internal
and external connectivity within a cluster with various
definitions available in the literature.

The conductance of a cluster is generally computed by
considering two cluster parameters: the external degree
(extdeg(Ci)) and the total degree (totdeg(Ci)). These parame-
ters can be defined as either the number of edges (|E(Ci)|) or
the sum of node degrees within the cluster (

∑
v∈Ci deg(v)),

with the selection depending on the option that yields a
lower value. The resulting metric falls within the range of
0 to 1, where 0 is the least favorable value and 1 is the most
favorable. The total degree can be measured either by the
number of edges |E(Ci)| or by summing the degrees of the
nodes within the cluster

∑
v∈Ci deg(v).

Three common mathematical formulations for the con-
ductance of a cluster, denoted by φ(Ci), are presented
in 17,18,19 as described in [61] and [62]. To assess the overall
quality of the clustering process, the average conductance
(A-Cond) across all clusters is frequently employed and can
be calculated using the formula referenced in 20.

φ(Ci) =
extdeg(Ci)

min(totdeg(Ci), totdeg(V\Ci))
(17)

φ(Ci) =
extdeg(Ci)

min(totdeg(Ci), 2e− totdeg(Ci))
(18)

φ(Ci) =
extdeg(Ci)

2(totdeg(Ci))
(19)

φ(G|C1,C2..Ck ) =
1
k

k∑
i=1

φ(Ci) (20)

2) NORMALIZED-CUT
Identifying clusters with few external connections is akin to
addressing the maximum-cut minimization problem, which
is known for its high computational complexity. However,
the minimum-cut approach often results in numerous very
small clusters, providing limited insight into the underlying
structure of the graph [68]. A graph-theoretic criterion
called normalized-cut (NCut) was developed to address this
problem and determine the cluster quality. NCut partitions a

graph into subgraphs (or clusters) with well connected nodes
within each subgraph and weakly connected nodes between
subgraphs. NCut is a normalized variant of the cut metric
that quantifies the edges between the subgraphs. This metric
considers two parameters: the count of external edges and the
total number of edges within the graph.

The mathematical representation of the normalized cut for
a cluster, denoted as NCut(Ci), is defined mathematically
defined in 21. The average value (A-NCut) can be calculated
using 22 for a set of clusters.

NCut(Ci) =
extdeg(Ci)

2(totdeg(Ci))

+
extdeg(Ci)

2(e− intdeg(Ci))+ extdeg(Ci)

(21)

NCut(G|C1,C2, . . . ,Ck ) =
1
k

k∑
i=1

NCut(Ci) (22)

In practice, achieving a value of NCut(Ci) = 0 in a
connected graph is not possible because there must be at
least one inter-cluster edge. Therefore, the goal of clustering
is to obtain a solution with a low value of NCut(Ci), where
a smaller value indicates a better quality of the clustering
solution.

3) FLAKE-ODF
Out degree fraction (ODF) quantifies a cluster’s external
connectivity by assessing the percentage of nodes within the
cluster that exhibit a greater number of edges connected to
nodes outside the cluster than to nodes within the cluster,
as discussed in [30]. A lower F-ODF value indicates a higher
level of cohesion within the cluster, signifying that the nodes
within the cluster exhibit stronger connections with each
other compared to nodes outside the cluster. To calculate the
F-ODF for an individual cluster, we applied 23. In addition,
in the case of a graph containing k clusters, the average
(A-FODF) of the F-ODF can be computed by employing 24.

F-ODF(Ci) =
|v : v ∈ Ci, |(v, v1) ∈ E : v ∈ Ci| <

d(v)
2 |

Cn
(23)

F-ODF(G|C(1,)C2..Ck ) =
1
k

k∑
i=1

F-ODF(Ci) (24)

The assessment of clustering quality emphasizes a significant
concern; each metric is focused on limited aspects of
clustering outcomes, such as internal or external connectivity,
or a combination of both. Consequently, understanding the
aspects of clustering would allow appropriate metric(s) to be
employed. It must be borne inmind that it may not be possible
to obtain clustering results that satisfy all the quality metrics.
Among these metrics, conductance and coverage are popular
and tend to be selected as quality metrics(s). Nevertheless,
using these generic purpose metrics to result in suitably
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high quality, but they can be inappropriate with respect to
the objective(s) of the clustering or when the objectives(s)
is(are) not well understood. The opposite can also be true, for
example using ‘coverage’ to assess the clustering may result
in a relatively low value if the objective is to identify dense
areas in networks where isolated edges are not of concern.
This is particularly true in this study as the existing quality
metrics are deemed inappropriate. This aspect is discussed in
detail in Section VII.

V. PARTITIONING CLUSTERING WITH USER-SPECIFIED
RELATIVE DENSITY
As stated earlier, this study presents the first attempt to
partition the clustering of a connected, undirected, and
unweighted graph that allows users to specify their desired
cluster density. The density of a cluster in this study is taken
from the widely recognized concept of ‘‘Relative Density’’,
which is further elaborated in the subsequent section. It is
assumed that the clusters are not apparent or visible at first
glance. In such cases, clustering of these type of graphs
belong to density based clustering such as ‘‘DBSCAN’’
algorithms. Additionally, the requirement for a cluster to
have a certain density may not be meaningful. Suitable
graphs (networks) for the application of this study are
discussed in Section I and some illustrations are presented in
Section VI.
The methodology in this study also employs fundamental

principles from graph theory, including the utilization of
Spanning Trees, to effectively decompose a connected graph.
These concepts allow the identification of cliques of size
three within the main graph. Subsequently, the algorithm
expands from a clique while considering neighboring cliques
to determine the desired level of density. To provide a
comprehensive of the research methodology being proposed,
this section is organized as follows: first, it provides an
explanation of the terminology and symbols employed in this
study, followed by an in-depth examination of the primary
algorithms that have been put into practice. In addition,
it includes a systematic demonstration of the algorithmic
approach, along with an instance featuring a randomly
connected network.

A. DEFINITIONS AND NOTATIONS
To aid in the comprehension of the proposed partitioning
clustering approach, the following notation is used:

1) SPANNING TREE
A spanning tree is often used as a starting point for analyzing
the sub-components of a network. Consider a graph G =
(V ,E), and let T (V ,E ′) be a spanning tree of G, where
E ′ ⊆ E . Notably, T (V ,E ′) is acyclic and has the same
number of nodes as G. Fig. 4(a) depicts an arbitrary simple
graph, whereas Fig. 4(b) illustrates a possible spanning tree
of the graph. It is important to note that several spanning trees
mare possible for a connected graph.

FIGURE 4. (a) Arbitrary graph (b) Possible spanning tree.

2) FUNDAMENTAL CYCLE
The addition of an edge from the graph G = (V ,E) to the
spanning tree T (V ,E ′) may or may not result in a cycle,
known as a fundamental cycle. The formation of a cycle
depends solely on the graph topology. The procedure for
obtaining a fundamental cycle associated with a spanning tree
T (V ,E ′) is illustrated in Figs. 5 (a)_(c).

FIGURE 5. Three fundamental cycles: (a) F1 = (1,2,3,4), (b) F2 = (3,4,5),
and (c) F3 = (2,3,4) from the Spanning Tree in Fig. 4 (b).

3) CLIQUE DEGREE
The computation of a clique degree, denoted as Kdeg,
involves the summation of node degrees within a clique
(K ), with the exclusion of duplicate edges that might lead
to double counting. The clique degree is determined by
using 25:

Kdeg =
3∑
i=1

deg(vi)− 3 (25)

4) AVERAGE DEGREE CLIQUE
The formation and density of partitioned clusters may be
influenced by several factors, among which the degree
of cliques plays a significant role. This paper proposes
the use of cliques with an average degree as an initial
reference point for both cluster initialization and expan-
sion clustering. The following mathematical expression
represents the identification of cliques with an average
degree.

Adeg(K ) =
1

|G(K )|

Kn∑
Ki

Kdeg (26)

where |G(K )| = (Ki . . .Kn).
Intuitively, a clique with an exact degree of Adeg(K ) may

not be present. In such instances, the algorithm selects
the clique that has the closest value to Adeg(K ) to ensure
the optimal initialization of the clustering process. This
approach is further discussed in subsection II, in which
the identification of cliques from a spanning tree is
elaborated.
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5) RELATIVE DENSITY
The notion of relative density has been extensively stud-
ied from two perspectives: identifying dense clusters and
assessing the effectiveness of graph clustering methods,
as discussed in [69]. The first notable application of relative
density is the identification of clusters with various goals,
as referenced in [2] and [25]. Nonetheless, in the study
presented by [70], it was proposed that density and cut-size
based metrics are appropriate choices primarily for networks
characterized by densely connected nodes or cliques. Their
performance is less optimal when dealing with star-like
structures or graphs that exhibit a sparsity. The second
application involves employing density estimates derived
from minimum spanning trees, which aids in the detection
of clusters within dense regions in multi-scale datasets [71].
The algorithm outlined in [72], known as Identifying Diverse
Density Clusters (IDDC), is a technique based on the
relative density. It identifies clusters of different densities and
effectively manages outliers. Additional studies that utilized
the relative density also include [73] and [74]. However,
it should be noted that relative density favors introverted
clusters, which are subgraphs with minimal connections
to the rest of the graph. This characteristic may limit
the effectiveness of relative density as a fitness measure
for community-detection algorithms in highly complex
networks. The relative density is adopted as a metric for the
user-defined density specification, where the relative density
of a cluster (Ci), denoted as δr (Ci), is determined as the ratio
of its internal edges to its total degree or edges (cluster total
degree), as described by 27 below.

δr (Ci) =

∑
v∈Ci intdeg(v)

totdeg(Ci)
(27)

where totdeg(Ci) is the total degree of cluster Ci referred
to (3). This total degree can alternatively be expressed as:

totdeg(Ci) =
∑
v∈Ci

intdeg(v)+
∑
v∈Ci

extdeg(v) (28)

Relative density parameter ranged from 0 to 1. An entire
graphwith no intrinsic substructure has a relative density of 1,
whereas a single node as a stand-alone node has a relative
density of 0.

6) USER-SPECIFIED RELATIVE DENSITY
Referring to 27, the user-specified input parameter, denoted
as U (δr ) is employed through the concept of relative density
in this study. This indicates that the equation considers a
user_Specified parameter to assess the relative density of a
given cluster within the context of the entire network.

B. PROPOSED APPROACH TO PARTITIONING
CLUSTERING
The proposed clustering approach involved a two-phase
strategy. In the first phase, all cliques in a graph are identified,
and in the second phase, the graph is partitioned based
on the user-specified density parameter. The processes for

identifying cliques and partitioning clusters are described in
the subsequent section.

1) DETERMINATION OF CLIQUES IN A GRAPH
To initiate the clustering process, the first step is to determine
all cliques in the graph. The simplest way to determine all
cliques (i.e., triangles) within a graph is to determine all
possible cliques connected to each node and have a list of
cliques encountered so far. This process is iterative, and
several cliques may be unnecessary determined more than
once as each node is processed (hence the need for the
encountered cliques). Determination of all cliques in this
work takes the advantage from the method to decompose
all substructures (cycles) hidden in the composite graph.
While not all substructures are cliques, it still a more efficient
method in general. Also note that, even if there exists a way to
calculate number of cliques within a graph, this information
is not sufficient as position of each clique within the graph
must be known to facilitate the clustering. This involves
constructing a spanning tree and identifying the fundamental
cycles, followed by finding all remaining cycles in the
graph. The desired output of this phase is cliques (triangles),
consisting of three edges that form a triangular structure.
Algorithm 1 presents step-by-step for identifying cliques and
their respective degrees. Following the identification of all
cliques in the initial phase, they were utilized in the second
phase of the partitioning clustering process.

2) DETERMINATION PARTITIONING CLUSTERS
After identifying all cliques in the first phase of the clustering
process, the partitioning clustering process commences with
the following steps: As it is important to note that, this work
adopts an expansion approach from a single clique, where the
relative density δr of the cluster is continuously monitored
until reaching the desired value of U (δr ), or the closest value
to it. Once a cluster has been determined, the process is
repeated to form new clusters using the remaining cliques and
edges. This iterative process continues until all the cliques and
edges are considered.

In the second phase of the clustering process, the initial
consideration is to determine the most appropriate clique
for starting the clustering process. Four potential scenarios
were examined to select a clique as the starting point:
the lowest total degree, average total degree, highest total
degree, and random choice of the clique. However, extensive
experimentation has revealed that prioritizing cliques with
the highest or lowest total degree can lead to uneven cluster
sizes despite having almost the same relative density δr .
This observation merits further investigation, particularly in
cases in which clusters of varying sizes with identical U (δr )
values are desired. For example, situations in which the
order of clusters from the highest number of nodes with
lower densities to the lowest number of nodes with higher
densities is of interest. However, such investigations were
beyond the scope of this study. Therefore, to initialize the
clustering process and cluster expansion, a clique with an
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Algorithm 1 Pseudo Code for Cliques Identification
Require: Undirected and Unweighted Connected Graph.
Ensure: List of Cliques (Triangles) with respective degrees.
1: Finding a spanning Tree from the graph;
2: Number of Fundamental cycles (Fn) = 0;
3: Number of Cliques (Cn) = 0;
4: repeat
5: Add an edge that is in the graph but not in the Spanning

Tree
6: if cycle occurs (i.e., Fundamental Cycle is found) then
7: Record this as a Fundamental Cycle;
8: Increment the value of (Fn) by 1;
9: if this cycle is a new desired clique (i.e., a triangle)

then
10: Record this cycle as a Clique;
11: Determine the total degree of this clique;
12: Increment the value of (Cn) by 1;
13: end if
14: end if
15: until (no more edges in a graph to consider)
16: Number of combinations (C) = 2;
17: repeat
18: Perform ‘‘Exclusive OR’’ to all Fundamental Cycles

of combination (C) (to determine remaining cliques);
19: if (The ‘‘Exclusive OR’’ operation results in a Clique)

then
20: Record this Clique;
21: Determine the total degree of this Clique;
22: Increment the value of (Cn) by 1;
23: end if
24: Increment the value of (C) by 1;
25: until (C = Fn)
26: List the Cliques in accordance with their respective

degrees (i.e., all the possible cliques are determined);

average (or closest to average) total degree was selected
as the initial cluster seed. If multiple cliques exist, one is
randomly selected, although there are typically few cliques
from which to choose. In addition to selecting cliques with
average total degrees for the clustering process initialization,
prioritizing cliques for cluster expansion is critical. The
random selection of adjacent cliques can lead to linear-shaped
clusters, which are undesirable. Therefore, the selection of the
next clique or edge during expansion is based on the degree
of nodes shared with the existing cluster, which is set as
follows:

1) Priority_1: Cliques with all three nodes in common
with the existing cluster have the highest priority.

2) Priority_2: Cliques with two nodes in commonwith the
existing cluster have the second-highest priority.

3) Priority_3: Cliques with one node in common with the
existing cluster have the third-highest priority.

4) Priority_4: Edges adjacent to the existing cluster are
considered based on the average total degree of nodes

that do not belong to the existing cluster if no adjacent
cliques exist.

By following this prioritization strategy, cluster expansion
is carried out effectively, while avoiding the formation of
linear clusters. Extensive experimentation has demonstrated
that this approach leads to tightly knitted and highly
embedded clusters of nearly identical size. However, it may
not always be possible to identify a cluster with the exact
user_specified density (U (δr )) during the expansion process.
In such a situation, the strategy is to accept an existing cluster
with a relative density close to U (δr ). Specifically, the most
recent addition is accepted if it brings the relative density
of the existing cluster, δr (Ci) closer to U (δr ). Algorithm 2
illustrates the determination of partitioning clusters in the
second phase.

As partitioning clustering in this study assumes that the
network is static, it is assumed that the computation time
is not a constraint. This assumption may not be possible if
the network is dynamic; for example, communication among
moving vehicles, where it is mobile ad_hoc in nature. A basic
analysis suggests that the number of cliques (|G(K )|) is
likely greater than the number of fundamental cycles (Fn).
In practice, the availability of open-source software, such as
NetworkX, makes it possible to determine the substructures.
In this study, this implies the determination of all the triangles
(i.e., cliques). The worst case in partitioning clustering in this
study is when the network is fully connected (as this possesses
the largest number of cliques) and has a density of 1 (i.e.,
the entire graph is a large cluster). The computation time
is then dominated by the expansion of a one larger (whole
graph) cluster. This has a time complexity of O(|G(K )|),
where |G(K )| = Kn denotes the number of cliques in the
network.

3) AN ILLUSTRATION ON A RANDOM GRAPH
To illustrate the partitioning clustering process proposed
in this study, a simple random graph featuring 12 vertices
(v0, v1, . . . , v11) and 19 edges was generated, as depicted
in Fig. 6(a). In this demonstration, it was presumed that all
cliques were identified, and the target U (δr ) was set to 0.45.

FIGURE 6. An illustration of partitioning graph clustering on a simple
arbitrary graph.
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Algorithm 2 Graph Partitioning Clustering Algorithm
Require: List of cliques with their respective degrees,

Undirected and Unweighted Connected Graph
Ensure: Collection of partitioning clusters with equal or

close to U (δr )
1: Set Collection of Partitioning clusters to empty
2: while not all cliques and edges are considered do
3: A new cluster is set to an average degree clique
4: Calculate δr of the cluster: δr (Ci)
5: while there exist clique(s) adjacent to the cluster do
6: Find all the adjacent clique(s) with an average

degree to the cluster
7: Consider the cliques with common nodes in

descending order to the cluster
8: for each clique do
9: temp_cluster← (cluster with the addition of the

clique)
10: Calculate δr of temp_cluster: δr (tempCi )
11: if δr (tempCi ) = U (δr ) then
12: cluster← temp_cluster
13: Mark this clique as considered
14: // an ideal cluster is found
15: goto 99
16: else if δr (tempCi ) < U (δr ) then
17: cluster ← temp_cluster - (a cluster is

expanded)
18: Mark this clique as considered
19: else if δr (tempCi ) > U (δr ) then
20: Diff_tempCi_U (δr )← |δr (tempCi )− U (δr )|
21: Diff_Ci_U (δr )← |δr (Ci)− U (δr )|
22: if Diff_tempCi_U (δr ) < Diff_Ci_U (δr ) then
23: cluster ← temp_cluster – (a cluster is

expanded); – Higher but closer to U (δr )
24: Mark this clique or edge as considered
25: goto 99 (Proceed to the next cluster)
26: else
27: Diff_tempCi_U (δr ) ≥ Diff_Ci_U (δr )
28: // This clique or edge is rejected;
29: cluster← cluster without the addition of this

clique or edge – Lower but closer to U (δr )
30: goto 99 (Proceed to the next cluster)
31: end if
32: end if
33: end for
34: end while
35: while there exist edge(s) adjacent to cluster do
36: Carry out a similar expansion process of all clusters

with cliques until no more edges to consider
37: end while
38: 99 – A partitioning cluster with δr closest to U (δr ) is

now determined
39: Add cluster to the Collection of partitioning Clusters
40: end while

The clustering process begins by selecting a clique with an
average degree (v0, v1, v2) as the initial cluster, as illustrated
in Fig. 6(b). The cluster then expanded with the inclusion of
the most suitable adjacent cliques (v1, v2, v3), as shown in
Fig. 6(c). As the resulting cluster (C1) = (v0, v1, v2, v3) had
a relative density δr (C1) of exactly 0.45, it was determined to
be a cluster.

Next, a new cluster is initiated by selecting a clique with
average degrees (v5, v8, v10) from the remaining cliques,
as shown in Fig. 6(d). Once all the available cliques have been
considered for inclusion in this cluster, the clustering process
considers adjacent edges based on their average degree in
relation to the cluster for potential inclusion (i.e., edges
(v7, v9) in Figs. 6(e) and (f)). Note that edges (v7, v9) are
considered for inclusion but are rejected because this makes
U (δr ) 0.56. Therefore, the partitioning clustering process
resulted in two clusters with relative densities of 0.45 and
0.44, respectively, as illustrated in Fig. 6(h).

VI. PARTITIONING CLUSTERING RESULTS
From the perspective of using networks to validate the
proposed algorithms, there are two main approaches: using
real networks available from various public websites, and
generating synthetic networks with the required characteris-
tics. Both approaches were used in this work. However, in this
section, real-world networks are presented in the evaluation
and synthetic results are omitted. In addition to the fact
that real-world networks exist, they also allow comparisons
for future work from the same and different perspectives.
These network datasets were obtained in Graph Modeling
Language (GML) format from the Network Repository
(https://networkrepository.com) and transformed into graph
structures using NetworkX 3.0. These were selected to
reflect the variety of structures, average degrees, and other
characteristics necessary for ensuring the validity of the
proposed algorithm. Table 2 summarizes their statistical
characteristics. The minimum degree (Mindeg) identifies the
least connected node. The maximum degree (Maxdeg) is the
most highly connected, the average degree (Avgdeg) of a graph
is the mean number of edges connected to each node within
a graph, the standard deviation (σ ) quantifies variability in
connectivity relative to the mean.

A. EXPERIMENTAL SETTING
According to Section II, the user-specified density U (δr ) can
be set between 0 and 1. To validate the proposed method,
U (δr ) values of 0.4 and 0.6 are selected for demonstration
as they are not too sparse or too dense (i.e., one below
and another above 0.5). The clustering results obtained
from the eight real-world networks are summarized in
Tables 3 and 4. To visually demonstrate the resultant clusters
generated by the proposed approach within a reasonable
space, three networks, namely Zachary’s Karate Club (ZKC),
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TABLE 2. Key characteristics of eight selected real-world networks.

FIGURE 7. The real structure of the selected networks (a) Zachary’s karate club (b) American college football and (c) US grid power.

American College Football Network (ACF), and US-Grid
Power Network (USGP), were selected. These networks were
chosen based on their diverse properties and structures (e.g.,
number of nodes, number of edges, Avgdeg etc). Figs. 7(a)-(c)
illustrate the actual connectivity structures of the selected
networks.

1) PARTITIONING CLUSTERING RESULTS WITH
USER-SPECIFIED DENSITY OF 0.4
Table 3 presents the key findings of the partitioning clustering
outcomes obtained from the eight real-world graphs with a
user_specified density parameter U (δr ) of 0.4. The average
relative density (denoted as Avgδr

(C) is shown for each
dataset, rather than showing δr of each cluster for brevity.

TABLE 3. Partitioning clustering results with a U(δr ) of 0.4.

The findings in Table 3 reveal that, across all networks,
Avgδr

(C) is equal to or nearly identical to the user-specified
relative density for a given U (δr ) of 0.4. However, the
number of clusters (Ck ) varies among datasets owing to
various factors, such as the network size and structure
and U (δr ) among others. Fig. 8 graphically depicts the
clustering outcomes of the three selected networks. Clusters
are color-coded, whereas unclustered nodes are shown in
grey, following a consistent color scheme used throughout the
study.

Referring to the results in Table 3 and Fig. 8, the number
of unclustered nodes varied depending on the structural
characteristics of the network. Notbaly, the number of
unclustered nodes in the US-Grid Power results was relatively
high (2, 880 nodes out of all 4, 941 nodes). This is because the
average degree of the nodes is considerably small, (Avg(deg)
= 2.7), resulting in a relatively low number of cliques. The
density used in this study is the ’relative density’; hence, the
total number of external degrees of a clique (or any cluster
considered) may be relatively small or close to the total
number of internal degrees. Another factor is that this work
focuses on partitioning clustering. If overlapping clustering is
the objective, it is anticipated that the number of unclustered
nodes in cases such as the US-Grid Power network will
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FIGURE 8. Graphically representation of partitioning clustering results of three selected networks at U(δr ) of 0.4. (a) Zachary’s Karate Network,
(b) American college football network, (c) US-grid power network.

be much less. Partitioning clustering of Facebook-Pages-
Food also resulted in relatively high unclustered nodes
(approximately 10% of the total edges). This pattern is
likely due to the relatively high number of total cliques
(|G(K )|), in conjunction with the relatively low Avg(deg),
when compared to the total number of edges in the graph. The
Zachary Karate Club network results represents an example
of a relatively small network with good spread results. The
results for American college football also spread relatively
well because of the well-balanced ratio between the total
number of nodes (115) and edges (613), as well as the fact
that Avg(deg) is relatively high (10.8).

2) PARTITIONING CLUSTERING RESULTS WITH
USER-SPECIFIED DENSITY OF 0.6
Table 4 presents the key findings of the partitioning clustering
outcomes obtained from all eight real-world networks with
a user-specified relative density U (δr ) value of 0.6. Again,
Avgδr

(C) was used to denote the average relative density of
the set of resulting clusters for each dataset.

TABLE 4. Partitioning clustering results with a U(δr ) of 0.6.

Overall, the results for U (δr ) of 0.6 exhibit consistency
with those of 0.4 (i.e., a smaller number of clusters and a

smaller number of unclustered nodes asU (δr ) is higher). This
trend is illustrated in Fig. 9 for the three selected datasets.
The Political Books network, however, yielded less favorable
results for both U (δr ) values of 0.4 and 0.6, with Avg(δr )(C)
values of 0.35 and 0.45, respectively, compared to the ideal
values of 0.4 and 0.6. The observed results are most likely
influenced by the significant variation (σ = 5.4) in the degree
of nodes within the graph, with its lowest degree at 2 and
highest at 25, a relatively high Avg(deg) of 8.4 and a high
number of |G(K )|.

In comparison with Fig. 8 which depict U (δr ) of 0.4, the
results for both Zachary’s Karate Club and the American
College Football networks align with the expectations.
However, the results for the US-Grid Power network display a
noticeable variation in the number and size of clusters. These
variations can be attributed to the distinctive characteristics of
the US-Grid Power network, including the ratio of total nodes
to total edges and the relatively low Avgdeg, in conjunction
with the chosen value of U (δr ).
The results presented in Tables 2 (for U (δr ) of 0.4) and 3

(for U (δr ) of 0.6) illustrate that the proposed partitioning
method in this work performs reasonably well, effectively
creating clusters that closely match the user-specified density
U (δr ). It is worth noting that the key determinant of these
outcomes lies in the network’s inherent characteristics,
as discussed in Section VIII, which provides a more detailed
analysis of these findings.

B. PERFORMANCE ANALYSIS USING PRE-EXISTING
METRICS
Similar to other processes, finding an appropriate method
(metric) to evaluate an algorithm is essential, and the
proposed clustering algorithm is no exception to this.
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FIGURE 9. Graphically representation of partitioning clustering results of three selected networks at U(δr ) of 0.6. (a) Zachary’s karate network,
(b) American college football network, (c) US-grid power network.

However, identifying a suitable metric is an indispensable yet
challenging task. Section VIII elaborates on several widely
recognized qualitymetrics that are frequently used to evaluate
the efficacy of graph clustering techniques. However, the
existing quality metrics are limited in their ability to evaluate
clustering algorithms with different objectives. Therefore,
they should be applied according to their objectives. This
point is well_stated in [75]. To demonstrate the relevance
of having an appropriate metric to evaluate the proposed
graph clustering, the existing metrics were applied to the
experiments. Tables 5 and 6 list the values of their application
to the proposed partitioning clustering of all eight networks
with respect to the internal and external connectivity,
respectively.

TABLE 5. Resultant clusters with a U(δr ) of 0.4 internal connectivity
evaluation.

Note that the values of the internal connectivity metrics
their values range from 0 to 1 (1 is the best value). Among
the existing metrics, the average TPR (Average Triangle
Participation Ratio) yields the best value. The TPR metric
favors the clique shape adopted in this study, but it may not
necessarily hold true for all clustering methods.

Similarly, the external connectivity metrics also ranged
from 0 to 1 (with 0 being the best value). Among the existing

TABLE 6. Resultant clusters with a U(δr ) of 0.6 internal connectivity
evaluation.

TABLE 7. Resultant clusters with a U(δr ) of 0.4 external connectivity
evaluation.

TABLE 8. Resultant cluster with a U(δr ) of 0.6 external connectivity
evaluation.

metrics, cut_ratio yielded the best value. This is because
of external degrees of each cluster, together with the other
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parameters, as stated in equations 13 and 14 Section IV, favor
this metric. In addition, coverage and conductance metrics
are well-known internal and external connectivity metrics,
respectively, because their meanings are simple, intuitive,
and easy to understand. However, it will be manipulative to
simply try to find the metric(s) that yield the best results for
any proposed approach.

VII. MEAN RELATIVE DENSITY DEVIATION COEFFICIENT
(MRDDC)
As discussed in the previous section, it is debatable whether
existing qualitymetrics that focus only on one or both types of
connections, are inadequate and inappropriate for evaluating
the density proximity of clusters. This limitation impedes a
comprehensive evaluation of the proposed partitioning clus-
tering, particularly when the specific density of the resultant
clusters is the objective. To address this shortcoming, a new
quality metric was required. This study proposes the Mean
Relative Density Deviation Coefficient (MRDDC) as a novel
metric for evaluating graph_clustering processes. MRDDC
considers user-specified density requirements and cluster-
computed densities, enabling a more specific evaluation of
the clustering process. It determines the proximity between
the user-specified relative density and density of the clusters
obtained by the algorithm. MRDDC can be determined
using 29.

MRDDC = 1−
1
k

k∑
i=1

∣∣∣∣U (δr )− δr (Ci)
U (δr )

∣∣∣∣ (29)

where δr (Ci) is the density of cluster Ci, and k is the number
of clusters.

The deviation from the ideal value for each cluster is
zero (i.e., U (δr ) − Ci(δr ) is zero). The maximum deviation
(which is very unlikely to occur and should not be considered
a cluster) is U (δr ) where the cluster is a single node.
By dividing this deviation by U (δr ) and taking the absolute
value, this metric lies between zero and one. Hence, the
average deviation, 1

k

∑k
i=1

∣∣∣U (δr )−δr (Ci)
U (δr )

∣∣∣ also lies between
zero and one. However, in the case of the best clustering, this
average deviation yielded a value of zero, and the worst case
yielded a value of one. This is somewhat unintuitive, as most
people are likely to associate a value of one as being the best
and zero as vice versa. Therefore, the proposed MRDCC is
the value of 1 subtracted by the average deviation (as stated
in 29) to return the intuitive value of 1 for the best clustering
and 0 for the worst. In summary, MRDCC identifies how
close the overall resultant clusters are to U (δr ) and hence
reflects the graph clustering process. In addition, MRDCC
should be applicable beyond this study. Any evaluation of
a graph’s clustering can benefit from MRDDC when the
density deviation of the clusters relative to the graph’s overall
density is of interest. Table 9 presents the evaluation of the
resultant clusters using MRDDC for the eight networks and
for both user-specified densities.

TABLE 9. Mean relative density deviation coefficient (MRDDC).

The proposed MRDDC reflects the proposed graph
clustering in this study more appropriately than all existing
metrics. The Aves-Weaver has the lowest value for U (δr ) at
0.4, and the Political-Books for both U (δr ) at 0.6. Both share
the common characteristic that |G(K )| (number of cliques) is
relatively low. This is most likely due to the topology of the
proposed partitioning clustering method.

VIII. DISCUSSION
Although only three real-world networks were selected in
the illustration, the results in Tables 3 and 4 should be
considered together with the metric values listed in Table 9
to comprehend the proposed overall partitioning clustering
approach. The entire network has a U (δr ) of 1, whereas a
single node has a U (δr ) of 0. Therefore, specifying a low
value of U (δr ) value is likely to result in a high number
of clusters, and the same can be said for the opposite. One
aspect that has a direct influence is the topology of each
network (e.g., Avgdeg, etc.), as shown in Table 2. In general,
if Avgdeg of a network is high, this implies a relatively dense
network (i.e., a high ratio of numbers of edges to the number
of nodes), and if the network is relatively sparse (i.e., a low
ratio of the number of edges to the number of nodes), where
Avgdeg is low. Therefore, the former is likely to comprise
more cliques than the latter is. In addition, if the σ of the
degrees of the nodes is low, this suggests that the network is
relatively dense (not necessarily in one location). However,
if the σ of the degrees of the nodes is high, this suggests that
the network is relatively sparse. Therefore, for the same value
of U (δr ), fewer but perhaps more nodes in each cluster can
be expected from a dense network, whereas more clusters and
perhaps fewer nodes in each cluster may appear in a sparse
network.

During partitioning clustering, cliques with an average
total degree were prioritized during expansion. Numerous
experiments have been conducted on this topic. Priorities
were tested on cliques with minimum and maximum total
degrees as well as randomly selected. It was found that using
the average total degree was preferable. Randomly selected
cliques for expansion were proven unreliable and their
results were unexpected and unjustifiable. When maximum
or minimum total degrees were experimented with, they
unfavorably resulted in clusters of various sizes (even though
δr may be similar), but more importantly, the number of
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unclustered nodes was relatively high. Hence, they were
rejected, and are not discussed in depth here.

In relation to the number of unclustered nodes, the outcome
is significantly influenced by the topology, particularly
the Avgdeg. Although it may be desirable to have as few
unclustered nodes as possible, the combination of both
Avgdeg, and U (δr ) had a direct influence on partitioning
clustering in this study. This renders the well-known coverage
metric inappropriate because it is not intended for use if the
specific density is of interest in clustering. Among the three
selected networks, the American College Football network
was the densest, the US-Grid Power network was the least
dense, and Zachary’s Karate Club network was in between.
The results of unclustered nodes for these networks for both
U (δr ) of 0.4 and 0.6 (i.e., Tables 3 and 4) reflect this nature.
It may also be impossible to expect the exact value ofU (δr )

in each cluster; however, the proposed MRDDC has proven
to be a suitable and meaningful metric for this study. It also
verifies that the proposed approach to partitioning clustering
is effective, as their values are close to the ideal value of
1 for all selected networks. In practice, it may be prudent to
conduct a quick analysis of the characteristics of the network
of interest before specifyingU (δr ). Many such networks have
been reported in the literature, in which large clusters are
already visible. In such cases, the requirement for a specific
density from the clustering may be inappropriate. However,
if these obvious clusters can be extracted as subgraphs
where a specific density within large clusters is required, the
proposed partitioning clusteringmay still have an application.

Bearing in mind that this work is about discovering clusters
with a specific density in a network that was not initially
apparent or visible. The application of this work allows
the efficient deployment, management, and monitoring of
resources to clusters within networks. Such networks can be
large social communities, wireless communication networks,
or hardware device networks.

IX. CONCLUSION
The cutting of graphs at appropriate locations can be
an intuitive approach if the clusters are clearly visible.
However, in practice, many scenarios can be transformed into
connected graphs, where hidden clusters may not be obvious.
Hence, graph clustering has gained significant importance
owing to its diverse range of applications. The research
community in this field has developed numerous clustering
algorithms and methods to assess them. Nevertheless, the
community has not yet come up with a clustering approach
that allows the type of density in the resulting clusters
to be specified. This study presents the first attempt at
partitioning the clustering of an unweighted undirected
graph that allows users to specify the required density
using the concept of ‘relative density.’ The work begins
by classifying existing graph clustering algorithms into
parameter-free and parametric categories and categorizing
existing quality metrics from the perspectives of internal
connectivity, external connectivity, and both. The major

contribution of this study is the approach to partitioning
clustering, which allows users to specify relative density.
It consists of two phases: determining all simple cliques
within the graph and partitioning clustering based on the
expansion of a cluster by adding cliques while monitoring
its relative density. To evaluate the proposed approach, eight
real-world networks were selected and three were chosen for
visual illustration. This paper discusses the essential findings
and major factors that influence partitioning clustering. The
study also revealed that existing quality metrics are deemed
inappropriate for evaluating the proposed approach because
they are developed for other specific objectives. Therefore,
a new and appropriate metric, known as the Mean Relative
Density Deviation Coefficient (MRDDC), was introduced to
assess the proposed approach. The results demonstrate that
the proposed approach is satisfactory with respect to the
MRDDC.

X. FUTURE WORK
As this study represents the first attempt in this area, there are
numerous possibilities for further research. It may be benefi-
cial to conduct an in-depth analysis of the proposed approach,
particularly from the sensitivity perspective. Because priority
is given to cliques with total average degrees, situations in
which several total average-degree cliques exist naturally
imply multiple starting points. Therefore, it is important
to explore the impact of different starting points on the
partitioning clustering results, which may lead to valuable
insights into the influence of the network topology. This
requires the selection of appropriate networks and relative
densities for further exploration. From a graph clustering
perspective, this study primarily focused on partitioning
clustering. Another possibility for this type of clustering is
overlapping clustering, which may not be a complex task
because the concept of clustered nodes can be disregarded,
and each node or edge can be allowed to be a member of
multiple clusters. This poses greater challenges owing to the
need to determine an appropriate level of hierarchy, which
may be difficult on its own, especially given the higher
relative density at deeper levels. In addition, two commonly
used approaches (i.e., Agglomerative and Divisive) can be
investigated. Another important consideration is determining
whether to use partitioning or overlapping clustering at
each level. From a technical perspective, this study adopted
clique-based and expansion-based approaches. However,
other approaches may be possible, such as a simple edge-
based approach, in which a single edge (i.e., the sum of the
degrees of nodes at both endpoints) merits consideration.
In addition, the mathematics of edge centrality may be
combined with the current approach to develop a more
efficient graph clustering algorithm.
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