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ABSTRACT Robotic platforms that can efficiently collaborate with humans in physical tasks constitute a
major goal in robotics. However, many existing robotic platforms are either designed for social interaction or
industrial object manipulation tasks. The design of collaborative robots seldom emphasizes both their social
interaction and physical collaboration abilities. To bridge this gap, we present the novel semi-humanoid
NICOL, the Neuro-Inspired COLlaborator. NICOL is a large, newly designed, scaled-up version of its
well-evaluated predecessor, the Neuro-Inspired COmpanion (NICO). NICOL adopts NICO’s head and facial
expression display and extends its manipulation abilities in terms of precision, object size, and workspace
size. Our contribution in this paper is twofold—firstly, we introduce the design concept for NICOL, and
secondly, we provide an evaluation of NICOL’s manipulation abilities by presenting a novel extension
for an end-to-end hybrid neuro-genetic visuomotor learning approach adapted to NICOL’s more complex
kinematics. We show that the approach outperforms the state-of-the-art Inverse Kinematics (IK) solvers
KDL, TRACK-IK and BIO-IK. Overall, this article presents for the first time the humanoid robot NICOL,
and contributes to the integration of social robotics and neural visuomotor learning for humanoid robots.

INDEX TERMS Humanoid robotics, neuro-genetic visuomotor learning, neuro-robotics.

I. INTRODUCTION
What are the main prerequisites for a collaborative robot
to act and work alongside humans? On the one hand, the
robot needs to be able to perform precise and reliable object
manipulation in a large workspace, but on the other hand, the
robot also needs to be able to interact with human coworkers
on a social level. This requires auditory communication
as well as the understanding and synthesis of both social
cues and non-verbal communication like gestures and facial
expressions.

Social interaction is one of the crucial factors for intuitive
human-robot collaboration and the ability of robots to learn
from humans [1], [2], [3]. Gaze, as a non-verbal social cue,
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facilitates shared attention, which can signal future actions
or draw attention toward an object or location [4]. Likewise,
facial expressions can be used to give feedback or warn about
dangers. Speech output also offers an intuitive way to request
aid and instructions, or to suggest a course of action. There
exist only very few robots, however, that integrate social
interaction with reliable manipulation of adult-scale objects
while remaining affordable. A robot is desirable that bridges
this gap (see Fig. 1). See Section II-A for an overview of
related platforms.

The social interaction capabilities of NICOL are based on
the well-evaluated design of its predecessor, the humanoid
child-sized Neuro-Inspired COmpanion (NICO) [5]. Like
NICO, NICOL has an articulated head that can express
stylized facial expressions and focus its gaze on interaction
partners or relevant elements of the shared workspace.
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FIGURE 1. NICOL is an affordable robot platform that bridges the gap
between social robotics and reliable object manipulation in a large
workspace.

While NICO has limited low-precision object manipulation
abilities, NICOL can manipulate objects using two Robotis
OpenManipulator-P arms with adult-sized five-fingered Seed
Robotics RH8D hands attached. It has a workspace similar to
an adult person and can handle everyday objects.

In addition to the hardware, NICOL also features a
software framework that is directed towards two groups
of users—the roboticists that wish to work at a low level
with a high degree of control, and the users from different
backgrounds, like artificial intelligence, machine learning,
cognitivemodelling and human-robot interaction, that require
a simpler and more abstract interface. Low-level control
is delivered via the Robot Operating System (ROS) and
provides a rich control interface with great customizability
and extensibility. Manipulating and developing within a ROS
workspace often requires many non-trivial software cross-
dependencies and requires a certain level of expertise to
navigate, use andmaintain. For users with little background in
robotics, a more lightweight system is desired. Furthermore,
such users often demand a lightweight simulated version
of the robot for performing rapid iterations of parallelized
deep reinforcement learning experiments. NICOL meets the
demands of both groups—roboticists and AI researchers.
Its software offers a full ROS interface, but users can also
connect to a front-end Python interface running on top of
ROS, which enables them to directly use the robot without
having to explicitly deal with ROS. In addition, we provide a
simulated virtual version of NICOL.

We introduceNICOL as a novel robot platform; we provide
a thorough evaluation of themain advances of NICOL over its
predecessor, NICO, its enhanced manipulation abilities and a
novel extension to a visuomotor learning approach. In detail,
our contributions are:

• We place NICOL in context by examining existing
related platforms (Section II). This demonstrates how
our robot fills the gap between social robotics and object
manipulation in an affordable manner.

• Section III presents the hardware and software concept
for NICOL, the Neuro-Inspired COLlaborator. Herein,

we also introduce the social interaction capabilities
of NICOL, including face and emotion generation
capabilities as well as auditory and visual capabilities.

• Section IV presents a thorough evaluation of NICOL’s
kinematics. We adapt and extend different neural and
hybrid neuro-genetic visuomotor approaches initially
developed for NICO to the larger NICOL and its
more complex kinematics. We show the challenges
of neural end-to-end learning for complex kinemat-
ics and successfully evaluate a hybrid neuro-genetic
approach.

• Section V introduces a novel neuro-genetic visuomotor
learning approach that improves the learned grasping
accuracy of NICOL to over 99%, and contributes to the
growing research on neuro-robotic approaches that are
suitable for transfer between platforms with different
morphologies [6]. Here, we also present experiments
to show that the grasp accuracy of NICOL improves
to over 99%, outperforming the state-of-the-art inverse
kinematics (IK) solvers KDL, TRACK-IK and BIO-IK.

Overall, this article presents for the first time NICOL,
which serves as an affordable research platform that inte-
grates social robotics and humanoid manipulation, and as a
testbed for neural visuomotor learning.

II. RELATED WORK
A. RELATED ROBOTIC PLATFORMS
NICOL combines the capabilities of dexterous robotic
manipulation and social interaction, and so has different types
of robots as related platforms.

There are many robotic manipulators for industry and
research. Some common platforms are the UR-5 [7] and its
related designs fromUniversal Robots, as well as the KUKA-
DLR Lightweight Robot arm [8], and the Franka Research 3
[9]. These robotic arms have at least six degrees of freedom
(DoF) to ensure solvable inverse kinematics for general
6-dimensional poses. These manipulators and their various
end-effectors are primarily designed to handle objects and
lack the social interaction capabilities that enable intuitive
learning from, or teaching by, humans.

On the other side of the spectrum are platforms designed
for social interaction with no, or limited, manipulation
capabilities. For instance, the iCub [10] is available as a stand-
alone 3-DoF head that can display facial expressions and
perform gaze shifts. The Furhat [11] robot head is another
example and can project animated or recorded faces for
interaction purposes.

Infant-sized or toy-sized humanoids form another type of
social platform. Their small size is advantageous for research,
they have an affordable price, and they are inherently safe
due to low motor speeds and weight. Well-known examples
are the Softbank Robotics NAO (formerly Aldebaran) and the
ROBOTIS OP3 (descendant of the DARwIn-OP) [12]. While
infant-sized platforms often have humanoid manipulators,
they are too small to manipulate adult-sized items or reach
them in domestic-scale environments.
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TABLE 1. Robotic platforms for social interaction and object manipulation. Price ranges are estimated; a low price range is below 10,000 EUR, a medium
price range is below 100,000 EUR and a high price range is above this. Few platforms are designed for both social interaction and physical tasks while still
being affordable. NICOL fills the gap of a robotic platform with both an upper humanoid body and humanoid head, capable of facial expressions,
gestures and object manipulation in an adult-sized workspace at an affordable price tag.

The next larger category of humanoids is child-sized.
A popular platform for developmental research is the iCub
[10]. Its size resembles a child of about 90 cm, it is well-
actuated with 53 DoF, features human-like hands and gaze
shifts, and can display stylized facial expressions. NICOL is
significantly more affordable and simple than the iCub, and
is thereby less challenging to modify and/or customize for
particular needs. The NimbRo-OP family of robots [13], [14],
[15] are designed for the RoboCup soccer league, and focus
on bipedal walking with arms for balance as well as getting
up, but not on manipulation. As such, they do not even have
hands that can be actuated. Softbank’s Pepper robot [16] fea-
tures a humanoid torso on top of an omnidirectional wheeled
platform. It has 20 DoF in the upper body, but its arms
and hands are designed for gesturing, not grasping. Poppy
is an open-source 3D-printed robot designed for education,
artists, and scientists [17]. It is completely customizable
and comes with a display to show facial expressions and
other information. Poppy can perform bipedal locomotion,
but in its primarily advertised configuration, it features
only very limited grasping functionalities. The concept of
NICO is quite similar to that of Poppy. NICO is an open
platform for researching neuro-robotic models for human-
robot interaction, as well as visuomotor learning [5]. Its
head adapts the open iCub design, and, in contrast to Poppy,
integrated LED arrays display stylized facial expressions.
Furthermore, NICO has quite sophisticated grasping abilities
to manipulate small objects, provided by two 6-DoF arms
with fully functional child-sized anthropomorphic hands
produced by Seed Robotics.

Adult-sized humanoids with manipulation abilities can
generally handle real-life objects. However, such platforms
are often expensive and difficult to maintain—like PAL’s
Talos [18], which was introduced at a price of about

1 million euros—or their design is too non-humanoid for
social interaction, like the Atlas initially developed by Boston
Dynamics, and the PR2 from Willow Garage. Some adult-
sized platforms lack object manipulation abilities entirely,
like the Hanson Robotics Sophia robot. The ARMAR-6 from
the KIT [19] is designed for complex collaborative tasks in
industrial environments, but it neither features a human-like
face nor can it display facial expressions. Likewise, the
TOMM [20] and the one-armed Fetch robot [21] focus on
manipulation and wheeled mobility, but not on social cues.
The R1 from the IIT [22] is a wheeled platform with grippers
that can display an animated face on a screen. A related
design is the Rethink Robotics Sawyer, the successor of the
well-known humanoid Baxter robot. It features a tablet for
displaying animated eyes, but it only has a single end effector
and is not humanoid.

Table 1 summarizes our analysis of robotic platforms. It
is evident that there is a gap in available platforms that are
designed for both social interaction and adult-sized object
manipulation tasks. The few platforms that fulfill these two
criteria are prohibitively expensive. We propose the open
NICOL design to address this gap in the state of the art.
In this article, we show that the NICOL is capable of social
interaction tasks by extrapolating from previous work on the
NICO, its ‘‘smaller brother’’. NICO and NICOL share the
design of their head and facial expression mechanism(s), but
importantly, the latter possesses a significantly increased arm
strength and workspace size, allowing for more real object
scenarios.

III. SEMI-HUMANOID ROBOTIC PLATFORM NICOL
NICOL is designed for research on robots that learn from
and collaborate with humans. It can serve as a platform for
integrating neuro-robotic visuomotor models combined with
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FIGURE 2. NICOL semi-humanoid platform. Left: NICOL jointly works on a grasping task with an experimenter (in the upper-right corner thereof, different
facial expressions of NICOL are shown that can give feedback during the task). Right: NICOL object manipulation and expression in real life (top) and
simulation (bottom).

affective interaction, joint attention, and shared perception.
NICOL, depicted in Fig. 2, consists of three main compo-
nents: two manipulators with anthropomorphic hands, and
the head with a facial expression display. NICOL adapts the
head design of the child-sized humanoid NICO and combines
it with two Robotis manipulators with five-fingered hands.
NICOL can naturally collaborate with human partners on
physical tasks, thanks to its ability to manipulate adult-size
domestic objects and to use non-verbal cues like gaze or facial
expression.

A. SOCIAL INTERACTION CAPABILITIES OF NICOL
The interaction capabilities of NICOL are based on the
design of NICO. Here, we summarize the main findings and
studies. The seven facial expressions of NICO, which are
now shared by NICOL, are evaluated by Churamani et al.
[23]. In a study with twenty participants from eleven different
countries, five expressions (neutral, happiness, sadness,
surprise and anger) are recognized by the participants with
an accuracy of over 75%. The positive effect of the emotion
display on the robot’s subjective user rating is verified with
a Godspeed questionnaire [24]. The freely programmable
LED arrays are also used in learning emotion expression
via reinforcement learning [25]. Ng et al. [26] use facial
expressions in combination with neurocognitive models for
social cue recognition and behavior control, and report that
a natural language dialogue system benefits from the robot
directly looking at the face of its interaction partner. Together
with a more personalized conversation, this behavior made
participants perceive NICO as more intelligent and likable.
Beik-Mohammadi et al. [27] show that using social gestures
and more socially engaging dialogue enhanced the robot’s

perceived likeability and animacy. Finally, Kerzel et al. [3]
show that participants guided by NICO in a visuomotor
learning scenario via verbal requests and facial expressions,
as compared to instructions by a human experimenter, rated
the human-robot interaction as more positive and engaging.
This increased engagement can improve the outcome of the
learning scenario.

In summary, the studies strongly suggest that the design of
NICOL’s head, which is adapted from NICO, can effectively
create social cues in terms of facial expressions and gaze.
They also show that these social cues positively affect human-
robot interactions.

B. ARMS AND HANDS
The arms of NICOL consist of two Robotis OpenManipu-
lator-P1 arms with 6 DoF and a payload of 3 kg. As end-
effectors, two SeedRobotics RH8D adult-sized robot hands2

with a manipulation payload of 750 g are used. All five
fingers in the hand are tendon-operated. Each three-segment
finger is operated by a single tendon. Each hand has eight
actuated DoF—three in the wrist for rotation,3 flexion, and
abduction, two DoF in the thumb for abduction and flexion,
and one DoF each for index finger flexion, middle finger
flexion and combined flexion of the ring and little finger.
The tendon mechanism allows the hand to coil around objects
without further fine control. The arms of NICOL can reach up
to 100 cm and therefore have a workspace slightly larger than
that of an adult sitting at a table.

1https://www.robotis.us/openmanipulator-p
2https://www.seedrobotics.com/rh8d-adult-robot-hand
3Note that the wrist rotation is redundant and therefore not used.
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FIGURE 3. Left: Size comparison between an adult human’s hand, NICOL, and NICO. Upscaling the hands of NICO allows NICOL to manipulate everyday
objects and tools. Right: NICOL in a virtual Gazebo environment during a dexterous manipulation task and dropping a baseball into a basket.

C. HEAD AND AUDIOVISUAL SENSING
The design of the shell of NICO’s head is based on a modified
version of the open-source iCub design [10]. The design
balances human features with enough abstraction to avoid
the uncanny valley effect [28]. Stylized facial expressions
can be displayed by NICOL using three LED arrays that are
placed behind the eyes (two 8 × 8 LED arrays) and mouth
(one 16 × 8 array). Due to the head’s material properties,
the individual LEDs form lines shining through the head’s
material, as shown in Fig. 2. An internal speaker is used
to facilitate spoken communication. The head is articulated
with two DoFs for pitch and yawmovements. Two See3CAM
CU135 cameras with a 4096 × 2160 (4K) resolution are
mounted in the eye sockets of NICOL. Their fisheye lens has a
field of view of 202 degrees. Two SoundmanOKM II binaural
microphones are placed at the sides of NICOL’s head; due to
the absence of head-internal fans or mechanics, the robot’s
ego noise is very low.

D. TABLE ENVIRONMENT AND SAFETY MEASURES
The table environment measures 100 × 200 cm and is
located at a height of 74 cm. The head and arms of the
NICOL are mounted to a vertical support at the rear center
of the table. Scaffolding at the corners of the table creates a
visible delimitation for the workspace of the robot. A human
interaction or collaboration partner is thereby implicitly made
aware when actively reaching into the robot’s workspace.
For additional safety, two emergency shutdown buttons are

integrated within the operator’s workspace. The scaffolding
can further be used to mount external sensors or devices, like
cameras or light sources.

E. SOFTWARE AND SIMULATION ENVIRONMENT
The NICOL API is based on the Robot Operating System
(ROS) middleware. All functionalities are provided through
a modified version of the hardware controller delivered with
the Robotis arms, extended to support the Seed Robotics
hands, additional sensors, as well as drivers for custom
hardware (facial expressions). The API integrates the MoveIt
planning framework and provides a Python-based client. For
prototyping and development, as well as for simulation of
real-world scenarios, NICOL is realized in both the Gazebo
simulation environment (see Fig. 3) and CoppeliaSim (see
Fig. 2). The robot description is based on a URDF model,
making it possible to import NICOL inmany other simulators
and environments.4

IV. VISUOMOTOR LEARNING AND STATE-OF-THE-ART IK
SOLVERS
To evaluate NICOL as a research platform for neuro-
robotic visuomotor learning, we first transfer an end-
to-end neural visuomotor learning approach from NICO,
a smaller humanoid robot, to NICOL. Based on the results,

4Software and CAD/URDF files, including everything needed to
run the CoppeliaSim simulation, are available at https://www.inf.uni-
hamburg.de/en/inst/ab/wtm/research/neurobotics/nicol.html
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FIGURE 4. Neural architecture for end-to-end visuomotor learning.

FIGURE 5. Three architectures for visuomotor learning.

we propose two variations of a modular neuro-hybrid
approach. In these modular approaches, we use a neural
network for image processing and different IK solvers
for the kinematics. We evaluate the baseline performance
of state-of-the-art IK solvers that are established in the
robotics community and suggest a novel hybrid neuro-genetic
approach that can handle the added kinematic complexity of a
humanoid.

A. STATE-OF-THE-ART IK APPROACHES
Solving IK is a well-known and studied problem in the
robotics community. The MoveIt planning framework [29],
as part of the ROS middleware, offers the required flexibility
to utilize different IK solvers for an experimental setup. It
enables a plug-in-based configuration of inverse kinematics
solvers as well as high-level motion planners. Mainly third-
party kinematics libraries, contributed by foundations or
private sector organizations are available, and these have
become state-of-the-art due to the popularity of the ROS

framework. The inverse kinematics and planning functional-
ities are provided in the form of ROS services and offer a
variety of parameterized kinematics calculations.

The Kinematics and Dynamics Library (KDL) by Orocos
[30] is de facto the most widely adapted inverse kinematics
solution in the ROS ecosystem. It supports kinematic chains
with a minimum of 6 DoF. KDL utilizes the well-known
pseudo-inverse Jacobian method to determine suitable joint
configurations. As the Jacobian matrix holds the partial
derivatives between joint space and Cartesian space, the
difference between the so-called seed state (typically the
initial joint configuration) and the target state can be
calculated in Cartesian space. Forward kinematics are used
on the seed state to determine the current end-effector pose.
A suitable joint configuration for achieving the target Carte-
sian end effector pose can then be obtained by calculating
the error between the initial pose and the target pose, and
multiplying it with the inverted Jacobian. The algorithm
makes use of the Newton-Raphson method and iteratively
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minimizes the error between the previous and next target
poses.

With the intention of improving the coverage of the
robot workspace, TracLabs identified key issues in the KDL
framework and proposed TRAC-IK in 2015 [31]. Remarkable
about the approach is that two IK solvers are executed in
parallel. One is a modified reimplementation of KDL called
KDL-RR. The method additionally checks for local optima
during the iterative improvement step and moves the next
seed far enough away from them. The second solver, SQP-
SS, formulates the IK problem as a non-linear sequential
quadratic programming optimization problem. TRAC-IK
returns the solution of the solver that first terminates with
a valid joint configuration. In contrast to the pseudo-inverse
Jacobian, SQP-SS is particularly capable of directly handling
constraints, such as the joint limits, during the optimization
step. This ability is particularly relevant for humanoid robots
likeNICOL,whose joints are constrained tomimic the human
range of motion.

Starke et al. introduced the Bio-IK method [32], [33].
The algorithm combines multiple bio-inspired optimization
methods, most importantly evolutionary and particle swarm
optimization, in order to solve the inverse kinematics
problem. In difference to KDL and TRAC-IK, it does
not rely on any Jacobian mathematics. The evolutionary
algorithm is fundamental to the approach. Every individual
in the population corresponds to a joint space robot pose.
Momentums are assigned to every individual by hybrid
particle swarm optimization, and these momentums are
continuously updated during runtime. Besides selection,
mutation and recombination, also elitism is used to prevent
the deterioration of already-found solutions. Local search is
executed on the elites, and simulates mutations on single
genes. The classical MoveIt interface only allows setting the
pose or position goals. Bio-IK additionally offers extended
functionality in a separate service [34], where multiple
custom goal types are available, e.g. linear end-effector
trajectories or minimal joint displacement configurations.
The various custom goal types can be combined into a single
request, as each custom goal type is treated as a weighted
partial cost function by the algorithm. The service also offers
an approximate mode, leading to lower precision in the IK
solutions but enabling higher coverage of the workspace.

B. END-TO-END NEUROROBOTIC VISUOMOTOR
LEARNING
The supervised neural end-to-end visuomotor approach, first
introduced in [35], learns to map a single object’s visual
input in the robot’s workspace to joint configurations for
reaching for the object. The approach was evaluated with a
grasp success rate of approximately 85% on NICO with 5
DoF in a workspace of size 30 × 40 cm and a training set of
400 samples. In this paper, we evaluate if the larger workspace
and more complex NICOL kinematics influence the learning
outcome. The neural architecture is shown in Figure 4. In
Section V-B we report experimental results.

C. HYBRID NEURO-GENETIC VISUOMOTOR LEARNING
Genetic algorithms are based on evolutionary selection,
recombination and mutation processes of a population of
individuals, modelled by their chromosomes [36]. Each
chromosome encodes a potential solution to a task. Following
Kerzel et al. [37], the chromosomes encode a joint config-
uration to reach a given pose. During each iteration, these
chromosomes, expressed as individuals, are ranked according
to their fitness, i.e., the position and orientation error
compared to the goal pose. Successful individuals are copied
into the next generation, with possible random mutations to
their chromosome-encoded joint configuration. Niching is
used to preserve diverse chromosomes; on every CPU of the
computer system, a different evolution is implemented, thus
fully utilizing multiple cores with minimal overhead.

While genetic algorithms are adept at escaping local
minima, they often have issues further optimizing found solu-
tions. To overcome this limitation, we hybridize the genetic
algorithm with gradient-based Sequential Least SQuares
Programming (SLSQP). This computationally expensive
procedure is only applied to the n-best individuals of the
population. While preliminary experiments have indicated
that SLSQP is prone to be attracted by local minima, the
initialization with solutions found by the genetic algorithm
can overcome this shortcoming. Optimized hyperparameters
for the genetic algorithm and SLSQPwere adapted from [37],
where they yield good results for NICO.

While the hybrid genetic algorithm provides IK solutions,
a neural component is utilized to determine the position of the
grasp object from visual input. The architecture is shown in
Fig. 5, and experiments are reported in Section V-B.

V. IK AND VISUOMOTOR LEARNING EXPERIMENTS
We first curate a new dataset (Section V-A) for visuomotor
learning on the NICOL platform. A first analysis of the
dataset allows us to get an insight into NICOL’s workspace. In
Section V-B, we evaluate how well our neural end-to-end and
a hybrid neuro-genetic visuomotor learning approach can be
transferred from the child-sized humanoid NICO to the adult-
sized NICOL. We evaluate how the significantly increased
workspace and the more complex manipulator affect the
learning outcome. In Sections V-C and V-D, we present a
modular neuro-hybrid approach in which we evaluate state-
of-the-art IK solvers and a neuro-generic approach based on
GAIKPy.

A. DATASET FOR VISUOMOTOR LEARNING ANALYSIS OF
NICOL’S WORKSPACE
We collect three datasets,5 each consisting of 10,000 samples
in a virtual environment. The datasets differ in the number
of active joints of NICOL, ranging from six to eight. As
the joints of NICOL are constrained to mimic the human
range of motion, we hypothesize that the additional degrees

5The datasets are available at https://www.inf.uni-hamburg.de/en/inst/
ab/wtm/research/corpora.html
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of freedom beyond six will increase the number of reachable
grasp poses. Each sample contains the following: 1) an image
from the egocentric perspective of NICOLwith a grasp object
placed onto the table on the right side of the workspace in
a 100 × 100 cm area; the images are cropped and resized
to 63 × 96 pixels. 2) The x- and y-coordinates of the grasp
object on the table. 3) The configuration of NICOL’s 8 arm
joints that result in a grasp pose. The grasp pose has the hand
pointing forward with the palm touching the grasp object at
themiddle of its height, as shown in Fig. 4 (right side).We use
a genetic algorithmGAIKPy introduced in [37] for computing
the joint configuration for grasping the object that is placed at
a random position within the robot’s workspace. If no suitable
joint configuration can be found with the genetic algorithm,
the sample is rejected, and another random object position is
generated.

Fig. 6 shows the distribution of all successful grasp
samples in NICOL’s workspace for the three experimental
conditions. Due to the rigid mechanical constraints of our
defined grasping pose, the joint configuration and self-
collision avoidance, the area within the defined workspace
for which grasp poses can be found increases with the number
of active joints. Only with eight active joints, good coverage
of the workspace can be achieved. Therefore, we focus our
analysis on this dataset.

B. END-TO-END NEUROROBOTIC VISUOMOTOR
LEARNING EXPERIMENTS
First, we evaluate a neural end-to-end learning approach
using the neural architecture adopted from [35]. The input
to the neural network is a 96 × 64 pixel image from
NICOL’s perspective of its workspace with a single object
placed in it. Depending on the dataset, the output of the
network is the seven or eight joint values of NICOL’s right
manipulator. The hyperparameters were optimized using
Hyperopt [38]. The model was trained with an Adam
optimizer and a batch size of 35, and the MSE over the joint
configuration as a loss function on a random 90-10 split of the
entire dataset. Hyperparameter ranges and results are shown
in Table 2, and the resulting architecture is shown in Fig. 4.

TABLE 2. Ranges and results of hyperparameter optimization of the
end-to-end visuomotor architecture for 8 DoF.

We use 10-fold cross-validation to obtain our results.
For evaluation, we denormalize the joint output values
and calculate the robotic hand’s pose using the known
forward kinematics of NICOL. The mean position error

is 0.42 ± 0.21 meters and the mean orientation error is
7.72 ± 5.88 degrees. Based on previous work [35], [37],
we count a grasp as successful if the position error of the
resulting pose is < 10 mm and the sum of orientation
errors is < 20 degrees. These limits are regularly exceeded.
Table 3 summarizes the results with a single-digit grasp
accuracy. We conclude that the end-to-end approach cannot
be transferred directly to NICOL. We attribute this result
to several factors: The workspace of NICOL with 100 ×

100 cm is larger than the workspace of NICO with 30 ×

40 cm; more importantly, the arms of NICOL afford more
complex motions and more diverse joint configurations
during grasping.

C. MODULAR APPROACH WITH CLASSICAL IMAGE
PROCESSING, NEURAL COORDINATE TRANSFORMATION
AND IK SOLVERS
Next, we analyze if the low accuracy of neural end-to-end
visuomotor learning can be attributed to issues in visually
locating the grasp object in the image, transforming the
image coordinates to world coordinates or the computation of
inverse kinematics. In previous work, we address this issue
using a modular, hybrid neuro-genetic approach [37]. We
adopt this approach to the NICOL and use three modules
as shown in Fig. 5: Classical image processing to locate
the object in the image, a neural-network to transform the
image coordinates into world coordinates, and existing state-
of-the-art and novel generic IK solvers. To extract the grasp
object’s position from the non-downsampled image (4208 ×

3120) using classical image processing, we detect the top
and the bottom of the grasp object with a standard color-
based detector, resulting in the x, y position and the radius
of the base and top parts of our grasp object. These 6 input
parameters are fed into an MLP, which outputs the x- and
y-coordinates of the object on the table. The network consists
of one dense layer with 180 neurons and ReLU activation;
the architecture is based on [37] and was optimized with
Hyperopt [38]. Table 4 shows the optimization ranges and
results.

We use 10-fold cross-validation for all reported results.
First, we evaluate the error of the transformation. As shown
in the first line in Table 5, the resulting mean position error is
0.0039 ± 0.0023 m, and the median position error is 3 mm.
Applying the above-established criteria for a successful grasp
(obviously without considering orientation) resulted in a
grasp accuracy of 98.47%. Next, we evaluate the complete
grasp architecture by using IK solvers to compute the robot’s
joint configuration based on the predicted object coordinates.
Table 5 summarizes the results for the state-of-the-art IK
solvers KDL, TRACK-IK andBIO-IK aswell as for our novel
genetic IK solver GAIKPy. Again, we apply the criteria for a
successful grasp (position error is < 10 mm, and the sum of
orientation errors is < 20 degrees). We achieved accuracies
of 90.52%, 90.29% and 89.60% for KDL, TRAC-IK and
BIO-IK respectively. In both conditions, GAIKPy shows the
highest accuracy with 98.45% and 92.85%.
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FIGURE 6. Left: Placement of the 10,000 collected samples (green) versus the rejected samples (red) for 6 (left), 7 (middle) and 8 (right) DoF. The images
show the continuity of the IK map, i.e., to what extent a smooth IK trajectory ends up as a smooth joint trajectory if each instantaneous pose is
individually passed through the IK algorithm.

TABLE 3. Results for the neural end-to-end approach for 8 DoF. Results indicate that the neural end-to-end approach cannot be transferred to the more
complex kinematics of NICOL.

TABLE 4. Ranges and results of hyperparameter optimization of the
neural image-to-coordinate transformation.

D. NOVEL NEURAL IMAGE-TO-COORDINATE
TRANSFORMATION AND GENETIC ALGORITHM
To evaluate the limits of neural visuomotor learning, wemod-
ify the end-to-end architecture presented above to regress
directly the x- and y-coordinates of the object on the table
instead of the joint configurations. We then use state-of-the-
art IK solvers and GAIKPy to compute a joint configuration
that reaches for the output coordinate with a given hand
orientation.

We use 10-fold cross-validation to obtain the results
in Table 6. Applying the criteria for a successful grasp,
96.51%, 96.2% and 95.71% for KDL, TRAC-IK and BIO-
IK. GAIKPy shows the highest accuracy with 99.17%.

E. DISCUSSION
In Section V-A, we show that 8 DoFs are needed to cover
sufficiently large parts of NICOL’s intended workspace. In
contrast, non-humanoid industrial robot arms often only
need 6DoF to cover their workspace.We attribute this finding
to the NICOL design mimicking humanmotion, resulting in a
more humanoid distribution of DoF along the arm and, more
importantly, severe constraints on its joints. Next, we show
that the increased kinematic complexity of NICOL cannot
be handled by an end-to-end neural visuomotor learning
approach in Section V-B. However, we successfully apply

a hybrid modular approach using image processing and
a neural coordinate transformation with an IK solver in
SectionV-C.We also demonstrate that NICOL integrates well
with the state-of-the-art IK solvers KDL, TRACK-IK and
BIO-IK. However, the best results were achieved by using our
genetic algorithm-based GAIKPy IK solver. We attribute this
finding to the combination of more than 6 DoF in conjunction
with joint constraints, posing a challenge for traditional state-
of-the-art IK solvers, as shown in Tables 5 and 6. Finally, in
Section V-D, we positively evaluated a novel hybrid approach
that uses a convolutional neural network to extract target
grasp positions from an image in conjunction with an IK
solver. Again, our GAIKPy approach yields the highest grasp
accuracy with a success rate of over 99%.

This added accuracy comes at the cost of longer processing
times.We give each IK solver 1 second to compute a solution.
While GAIKPy fully utilizes this time, the state-of-the-art
solvers show a different behavior: In cases, where they can
find a good solution, this often happens much faster, however,
they don’t utilize the time budget to find suitable solutions for
difficult poses.

We argue that in human-robot collaboration, these slower
IK solutions are less problematic. For a humanoid robot,
collaborating with a human, we face different challenges
compared to an industrial robotic arm. For human-robot
collaboration, safe andmore importantly, predictablemotions
are essential. For safety reasons, we need to limit the
technical possible maximum joint speed of the humanoid
anyway. The slower but more accurate hybrid neuro-genetic
approach yields better accuracy scenarios, while still ful-
filling the time constraints for collaborative human-robot
scenarios.
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TABLE 5. Results for the modular approach with Classical Image Processing, Neural Coordinate Transformation and IK solvers for 8 DoF. GAIKPy achieves
the highest grasp accuracy of all evaluated IK solvers.

TABLE 6. Results for our novel hybrid approach combining neural image-to-coordinate transformation and genetic IK with GAIKPy for 8 DoF. Again,
GAIKPy achieves the highest grasp accuracy.

VI. CONCLUSION AND OUTLOOK
We present NICOL, a novel semi-humanoid robotic platform
designed for research in social robotics and physical human-
robot collaboration. NICOL, combining the well-received
social interaction features of the NICO platform [5] with
adult-sized manipulators, fills a gap in the current state
of the art. It offers an affordable and open platform for
research involving robots collaborating with and learning
from humans in scenarios demanding advanced object
manipulation and interaction abilities.

Our evaluation of NICOL primarily focuses on its inverse
kinematics capability in the context of a reach-for-grasp task,
which is an essential skill for humanoid robots. We positively
evaluate our main design goal for NICOL as a successor of
the child-sizedNICO, and to create a robotic platform that has
a workspace and can handle objects comparable to an adult
human, thus being able to be used in physical collaboration
scenarios. We also address the issue of standard IK solvers
having problems with kinematic chains that have more than 6
DoF, while at the same time having strict constraints on the
individual joint limits to mimic the human range of motion.
We evaluate neural end-to-end learning approaches for
visuomotor learning and compare state-of-the-art IK solvers
against a novel hybrid neuro-genetic IK approach. We show
that neural end-to-end learning is challenging due to the more
complex kinematics of NICOL, and overcome this challenge
with a neuro-genetic approach. Furthermore, we demonstrate
that our novel hybrid neuro-genetic approach outperforms
classical IK solvers in terms of accuracy by taking advantage
of the relaxed time constraints in human-robot collaboration
scenarios.

In future work, we will thoroughly evaluate NICOL’s
abilities in different collaborative real-world tasks where it
will learn from and assist human participants. One such task
is assembly, where NICOL will be asked to pick up and hand
over different components to a human participant. Besides
the motoric challenge, such tasks required shared attention
on objects, social cues regarding the handover and verbal
communication to coordinate efforts. A second research
scenario is learning from a human through observations

of actions. To this end, we will design neurocognitive
architectures that can segment perceived demonstration into
meaningful units and relate them in a semantic way to objects
on the table so that NICOL can perform the demonstrated
actions from its perspective, even in a changed environment,
e.g., with objects placed on the table differently. Both
scenarios combine NICOL’s motor abilities with social
interaction capability. Furthermore, we will use NICOL as a
platform for ongoing research for neural and neuro-hybrid IK
and motion planning approaches for robots with a restricted,
human-like range of motion.
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