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ABSTRACT In contemporary research, high-dimensional data has become more popular in many scientific
fields with the rapid advancement of technology in collecting and storing large datasets. As in any modeling
process with high-dimensional data, it is very important to accurately identify a subset of the features
and reduce the dimensionality in the Cox modeling process in the case of high-dimensionality. Numerous
penalized techniques for the Cox model with high-dimensional data have been developed to handle the
multicollinearity problem and decrease variability. Adaptive Elastic-net is one of the penalized methods used
for feature selection that both handles the grouping effect and has the oracle property. However, providing
these advantageous properties of Adaptive Elastic-net for variable selection in the Cox model depends on
the optimal selection of hyperparameters, α, and λ values. For this reason, the appropriate selection of
these parameters is quite important. Hyperparameters are generally selected by maximizing k-fold cross-
validated log partial likelihood based on grid search over (α, λ ) for the model. However, this method
does not guarantee optimal α and λ values. In grid search, hyperparameters are typically allowed to take
values specified in a limited sequence in a grid. The purpose of this study is to propose a novel method to
determine the optimum hyperparameters (α, λ ) pair of Adaptive Elastic-net for variable selection in the Cox
model with high dimensional data based on modified particle swarm optimization (MPSO). The introduced
metaheuristic-based method has been evaluated by extensive simulation studies by comparing it with
different traditional penalized methods using various evaluation criteria under different scenarios. According
to the comprehensive simulation study, the proposed method outperforms other penalized methods in
terms of both variable selection and prediction and estimation accuracy performance for the Cox model
in investigating the high-dimensional data.

INDEX TERMS Adaptive elastic net, cox model, high-dimensional data, modified particle swarm optimiza-
tion, variable selection.

I. INTRODUCTION
The recent surge in technological capabilities for data
collection and storage has led to exponential growth in
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large datasets. This rise in data abundance has particu-
larly impacted critical domains such as biological sciences
(e.g., genomics), medicine (e.g., electronic health records),
network security (e.g., intrusion detection), and engineering
(e.g., IoT devices). In these domains, the advancement in
data collection has resulted in a proliferation of independent
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variables, emphasizing the need for robust high-dimensional
data analysis techniques. In statistics, data is called high-
dimensional when the number of predictors (p) exceeds the
sample size (n) (p ≫ n) [1]. As a result of the continued rapid
digitization of data collection technology, the increasingly
high-dimensionality of survival data such as high-throughput
genomic data has become a hot topic recently.

In survival analysis, it is quite important to determine the
prognostic risk factors that affect survival time. Thus, regres-
sion models have an important place in survival analysis.
The Cox model is a statistical technique used for analyzing
survival-time outcomes about one or more predictors. In sur-
vival analysis, the primary interest is often in understanding
the time until a particular event of interest occurs, such as
death, failure of a system, or the occurrence of a disease.

The Cox model estimates how the hazard, or the proba-
bility of the event occurring at a given time, is influenced
by various predictor variables. In essence, the Cox model
provides valuable insights into how different factors affect
the time it takes for a specific event to happen, making
it a vital tool in survival analysis and related fields [2].
A critical and challenging problem in the Cox modeling
process with high dimensional data is to accurately identify
a subset of the important covariates on which the hazard
function depends and to decrease dimensionality. The process
of variable selection is not only used to eliminate irrelevant,
unnecessary, or non-distinctive variables but also to obtain
important prognostic factors linking survival time. Because
keeping insignificant covariates in themodel leads to errors in
the interpretation of the outcome regression coefficients and
adversely affects the prediction performance of the model.
Variable selection in survival models has been presented to
filter out the unrelated and unnecessary variables to get the
most powerful subset of variables to improve the prediction
accuracy and to properly and efficiently choose important
factors that significantly influence the survival time. More-
over, having a small part of variables in the model reduces the
computation time and complexity in the model. Based on the
principle of parsimony, a simpler model with fewer variables
is chosen over the more complex model with many variables.
Therefore, variable selection in the Cox modeling process
with high dimensional data is crucial to minimize variability
and make the model more interpretable.

High-dimensional data present several difficulties for the
traditional Cox modeling process. When the data is high
dimensional, parameters in the Cox model cannot be esti-
mated through the maximization of Cox partial likelihood
due to their theoretical structure. Maximizing the partial
likelihood for data with p ≫ n makes the regression coef-
ficients of the Cox model very large and causes overfitting
and unstable estimations. The dimensionality problem causes
the Cox model to become ineffective [1]. On the other
hand, because of the high dimensionality, the predictors
are often strongly correlated which causes multicollinearity
problems in the predictor matrix. This problem should be

considered as it causes inaccurate inferences due to unstable
parameter estimations and also produces high standard errors
of the parameters. To handle the multicollinearity problem
and degrade the variability, many regularized (penalized)
methods have been proposed for the Cox model with high
dimensional data. Reference [3] proposed LASSO (Least
absolute shrinkage and selection operator) which was orig-
inally developed by [3], which is one of the penalized
regression methods and solves the multicollinearity prob-
lem, makes parameter estimation under the L1 constraint in
the Cox model. LASSO is a method that selects variables
by size reduction. In this method, both the variable selec-
tion and the model parameters are estimated simultaneously.
In high dimensional data, LASSO inclines to select a few
nonzero coefficients. When multicollinearity exists, regard-
less of which of the correlated variables is chosen, LASSO
randomly selects only one and eliminates the others. On the
other hand, when data is highly dimensional, the LASSO
method does not have the oracle property (consistency of
variable selection) and stability [4], [5]. Hence, [6] proposed
an Adaptive LASSO in the Cox model, which was originally
proposed by [7]. Adaptive LASSO possesses oracle property.
Specifically, the regression coefficients that are truly zero are
accurately estimated as zero, and the remaining coefficients
are estimated as well as if the correct submodel were known
in advance. Additionally, [8] were the first to examine the
L2 penalty for the Cox model with high-dimensional sur-
vival data. Reference [9] proposed ridge Cox model with L2
penalty by cross-validated partial likelihood (CVL) for high-
dimensional survival data. One disadvantage of the ridge
estimation of the Cox model is that it takes all the covari-
ates in the modeling process and choosing relevant variables
is not provided. Although ridge L2 penalty shrinks all the
coefficients towards 0, does not get any of them exactly zero,
and thus does not provide a sparse set of variables. Opposed
to the LASSO, Ridge, and Adaptive LASSO methods, [10]
proposed the Elastic-net method in linear regression first
and the Elastic Net method in the Cox model then pro-
posed by [11], which is especially advantageous for high
dimensional and multicollinear data. Elastic Net regression
combines the strengths of LASSO and Ridge Regressions
by grouping and shrinking the parameters associated with
regularized variables, leaving them in the equation or remov-
ing them all at once. It means that the Elastic-net promotes
the grouping effect to reduce the disadvantages of the L1
norm and L2 norm, The Elastic Net method is proposed
which tries to provide a balance between the L1 and L2
norm and gives effective results even if the pairwise corre-
lations between the independent variables are high. However,
as indicated by [12] and [13], Elastic-net method does not
possess the oracle property, a fundamental characteristic of
certain regularization methods. For this reason, the Adaptive
Elastic-net method was first developed by [14] for the linear
model, and [5] proposed Adaptive Elastic-net in the Cox
model which both overcomes the grouping effect and has

VOLUME 11, 2023 127303



N. Sancar et al.: Adaptive Elastic Net Based on Modified PSO for Variable Selection in Cox Model

an oracle property. Adaptive Elastic-net model, which takes
the elastic net method one step further, provides more accu-
rate and efficient variable selection in high-dimensional data.
However, the providing of these advantageous properties of
the adaptive elastic net for variable selection in the Coxmodel
depends on the optimal selection of hyperparameters, α, and
λ values. For this reason, the appropriate selection of these
parameters is quite important.

Hyperparameter optimization is the process of identifying
the best combination of hyperparameters for the penalized
model to satisfy an optimization function. Hyperparameters
are generally selected by maximizing k-fold cross-validated
log partial likelihood based on grid search over α, and λ to
define the most convenient combination of these parameters.
However, this method does not guarantee optimal λ and α

values. Because in grid search, α is typically allowed to
take values specified in a limited sequence in a grid. All the
cross-validation procedures will be implemented for each
potential combination of parameters λ and α as specified
in the parameter grid to define the optimal combination of
hyper-tuning parameter values [15]. There may be an optimal
α value outside of the selected range for α and a corre-
spondingly different λ value. We can say that the wider and
more fragmented the hyperparameter grid is, the more we
can approach the optimal value. As the dimension of the grid
increases, it requires a lot of unnecessary processing and does
not guarantee optimal α and λ values.
The variable selection problem can be defined as the com-

binatorial optimization problem, which proposes to reduce
the number of variables and remove inappropriate data for the
improvement of the interpretability and validity of the model.
The selection of optimal subset variables with penalized
methods depends on the optimal selection of hyper-tuning
parameters [16], [17]. The choice of hyper-tuning parame-
ters has always been a challenge in regularized regression
models, particularly for censored data. Therefore, choosing
optimal values for Adaptive Elastic Net parameters needs an
optimization algorithm.

A. CONTRIBUTION OF THE PAPER
The aim of this study is to develop a modified PSO-based
adaptive elastic-net method with an appropriate objective
function for variable selection in the Cox model with
high-dimensional data. Due to a number of important fac-
tors, modified Particle Swarm Optimization (MPSO) was
preferred to standard PSO in your model for choosing
tuning parameters in an Adaptive elastic net model with
high-dimensional data. First off, the updated PSO’s time-
varying acceleration coefficients and inertia weight give the
algorithm more dynamic adaptability [18]. When working
with high-dimensional data, this characteristic is especially
important since it enables the algorithm to better balance
exploitation and exploration during the optimization process.
To prevent local optimum conditions and guarantee conver-
gence toward the global optimum, this balance is essential.

Second, by offering a more effective method for parameter
updates, the modified PSO algorithm enables it to better
navigate the challenging solution space associated with high-
dimensional data [19]. The acceleration coefficients and
inertia weight are time-varying, which enables the algorithm
to adaptively change its search approach depending on the
effectiveness of the present solution. Therefore, modified
PSO is recommended over standard PSO for the proposed
Adaptive Elastic Cox model with high dimensional data.

II. LITERATURE REVIEW
The PSO method has been exploited for variable selection
in many studies While the PSO method was employed by
[20] for feature selection and the determination of parameters
of support vector machines, with high dimensional datasets,
[21] utilized a modified discrete PSO algorithm for fea-
ture subset selection in binary classification using logistic
regression with high dimensional datasets, and the results
show that the proposed modified discrete PSO algorithm
has competitive classification accuracy and computational
performance. In survival analysis using PSO, [22] used an
adaptive LASSO logistic regression model for the diagnosis
of Alzheimer’s disease. Reference [23] used the same logistic
regression with adaptive LASSO with PSO for the diag-
nosis of leukemia. Reference [4] used an alternative initial
weight for adaptive penalized logistic regression to overcome
the selection bias issue faced by the adaptive LASSO in
a high-dimensional cancer dataset. Finally, [24] used the
PSO optimization algorithm for breast cancer diagnosis.
Reference [25] proposed a federated evolutionary feature
selection algorithm that is based on PSO with low dimen-
sional datasets to demonstrate that the proposed PSO-based
algorithm has superior characteristics. Moreover, [26] pro-
poses a PSO algorithm with a logistic regression model for
variable selection in large-featured classification problems.
The study also presents the Bayesian information criterion
(BIC) as a fitness function and evaluates its effectiveness in
comparison to other fitness functions. The proposed method
was tested on a variety of datasets, and the results showed that
it improved classification performance while simultaneously
requiring fewer features. According to the findings of the
study, the PSO algorithm is comparable to other already
existing fitness functions. Similarly, [27] came up with a new
way to make linear regression models for data with symbolic
interval values. They showed how the PSO algorithm can
be used to get around the problems with existing methods
like the Centre method, the MinMax method, and the Centre
and Range method. The PSO algorithm was used to estimate
the parameters of linear regression models, and simulations
showed that the proposed method works well. Because of the
high dimensionality of the data and the fact that it is censored,
selecting variables for a survival analysis, where the outcome
is time-to-event data, is a difficult task. In recent studies,
there has been a growing interest in making use of PSO
for variable selection in the Cox model when working with
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high-dimensional data. PSO was used in the research carried
out by [28] to select the best possible subset of features to
use in the Cox model when working with high-dimensional
genomic data. The authors demonstrated that the PSO-Cox
model they proposed was superior to other approaches in
terms of both accuracy and stability. In the same vein, a high-
dimensional Cox model that included multiple competing
risks was analyzed by [29], and PSO was used to select the
best subset of features to include in the model. The authors
demonstrated that the proposed PSO-Cox model performed
better than other methods in terms of the accuracy of predic-
tions as well as the stability of feature selection.

Variable selection in the Cox modeling process with high
dimensional data is crucial to minimize variability and make
the model more interpretable. Penalized methods are used
for variable selection, especially when dealing with high-
dimensional data. Adaptive Elastic net, one of the penalized
methods, is more advantageous in variable selection com-
pared to other penalized methods, as it is a method that both
overcomes the grouping effect and has an oracle property.
The best choice of α and λ hyper-tuning parameters deter-
mines the selection of optimal subset variables with penalized
approaches. In regularized regression models, choosing the
appropriate hyper-tuning parameters has always been diffi-
cult, especially for censored data. Hyperparameters are often
chosen by maximizing k-fold cross-verified log partial like-
lihood based on grid search over and to identify the best
practical combination of these parameters. However, this
approach does not ensure that and are at their best. Due
to the fact that in grid searches, is frequently permitted to
accept values provided in a grid’s restricted sequence. All the
cross-validation procedures will be implemented for each
potential combination of parameters α and λ as specified in
the parameter grid to define the optimal combination of λ

hyper-tuning parameter values [15]. There may be an optimal
α value outside of the selected range for α and a corre-
spondingly different λ value. We can say that the wider and
more fragmented the hyperparameter grid is, the more we
can approach the optimal value. As the dimension of the grid
increases, it requires a lot of unnecessary processing and does
not guarantee optimal α and λ values. Therefore, choosing an
optimal combination for Adaptive Elastic Net hyper-tuning
parameters needs an optimization algorithm for the selection
of an optimal subset of variables. In addition, alterations to the
conventional PSO algorithm have been suggested as a means
of improving the performance of the algorithm. A variation
of the common PSO methodology used to solve optimiza-
tion issues is the Modified PSO approach. This approach
improves the effectiveness and searchability of the PSO
algorithm, it combines new tactics and methodologies. These
alterations could affect the initialization procedure, the rules
for updating the particle locations and velocities, and the tech-
niques for dealing with boundaries and restrictions. These
changes are intended to accelerate convergence and increase
the accuracy of the PSO algorithm, especially for challenging

optimization problems with numerous variables and con-
straints. The Modified PSO method has been successfully
applied in various fields. The time-varying inertia weight and
acceleration coefficients have been utilized to improve the
search capability of the algorithm. A modified version of the
PSO algorithm was suggested to be used for feature selection
in the support vector regression (SVR) model in research car-
ried out by [30]. The authors demonstrated that the proposed
modified PSO-SVR model performed more accurately and
efficiently than other feature selection methods. Similarly,
[19] proposed a modified PSO-ENSVM model for high-
dimensional cancer microarray datasets for feature selection.
Elastic Net and SVM classifier tuning parameters are opti-
mized by the model using the PSO algorithm. The model is
assessed and indicates superior performance in terms of low-
ering the number of features and raising performance rates,
according to the results. Reference [18] conducted research in
which they proposed amodified version of the PSO algorithm
to be used for time series forecasting of autoregressive and
moving average structures. The authors demonstrated that
the proposed modified PSO method performed better than
other traditional PSO methods in terms of the accuracy of its
predictions and the efficiency with which it processed those
predictions.

In the following parts, Cox PHModel and Penalized Partial
Likelihood Methods: From LASSO to Adaptive Elastic Net
have been decribed:

A. Cox PH MODEL
Let n be the number of observations in survival data and
each of the jth subjects can be defined by (Tj, δj, Xj ) where
Tj is the time that the occurred first: the survival time or
the censoring time, δ is the censoring indicator, and Xj =

[Xj1,Xj2, . . . ,Xjp] is the predictor vector for the jth subject.
Assume a specific hazard function of jth subject λ(t, Xj) in
the Cox’s Proportional Hazard (PH) Model [2], is

λ(t,Xj) = λ0 (t) eXjβ (1)

where λ0 (t) is the baseline hazard function, βT =(
β1, β2, . . . , βp

)
is vector of coefficients. The β of the Cox

regression model is estimated by maximizing the logarithmic
partial likelihood function (logpl (β)) expressed by Equation
(2) [31].

logpl (β) =

∑n

j=1
δjxjβ −

∑n

j=1
δjlog

[∑
i∈R(tj)

eXjβ
]
(2)

where R(tj)= {m|tm ≥ tj }, is the set of units at risk at time tj.
The Cox regression model is a frequently used approach in
the analysis of low-dimensional survival data (n ≫ p), as it is
a semi-parametric method and the regression coefficients can
be easily interpreted.

The rapid advancement of technology in the collection
and storage of large datasets has facilitated to gathering of
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an enormous number of predictor variables information of
survival data in clinical studies. However, it is most probable
that not all predictors in the data are related to survival time.
Virtually, a small part of predictor variables is related to
the clinical response. Therefore, a critical and challenging
problem in the Cox modeling process with high dimensional
data is to accurately identify a subset of the important pre-
dictors on which the hazard function depends and to decrease
dimensionality. Identification of the set of predictor variables
for the final accurate model is called the variable selection
process. The process of variable selection is not only used to
eliminate irrelevant, unnecessary, or non-distinctive variables
but also to obtain important prognostic factors linking sur-
vival time to increase accuracy and decrease the complexity
of the model. In other words, this procedure ensures stability
between simplicity and model fitting. Moreover, having a
small part of variables in the model reduces the computation
time and complexity in the model. Based on the principle of
parsimony, a simpler model with fewer variables is chosen
over the more complex model with many variables. There-
fore, variable selection in the Coxmodeling process with high
dimensional data is crucial to minimize variability and make
the model more interpretable. Statistically, the identification
of zero and nonzero coefficients is required [32].

High-dimensional data present several difficulties for the
traditional Cox modeling process. When the data is high
dimensional, parameters in the Cox model cannot be esti-
mated through the maximization of Cox partial likelihood.
Maximizing the partial likelihood for data with p ≫ n
makes the regression coefficients of the Cox model very
large and causes overfitting and unstable estimations [1],
[33], [34]. On the other hand, because of the high dimen-
sionality, the predictors are often strongly correlated which
causes multicollinearity problems in the predictor matrix.
This problem should be considered as it will cause inaccurate
inferences due to unstable parameter estimations and also
produce high standard errors of the parameters. To handle the
multicollinearity problem and degrade the variability, many
regularized (penalized) methods have been proposed for the
Cox model with high dimensional data.

B. PENALIZED PARTIAL LIKELIHOOD METHODS: FROM
LASSO TO ADAPTIVE ELASTIC NET
In the process of Cox modeling with the high dimensional
survival data, it is essential to handle the model complex-
ity [35]. Penalized partial likelihood methods are the most
popular approaches for simultaneous variable selection and
parameter estimation. The penalized partial likelihood func-
tion (logpl∗ (β)), is defined as follows:

logpl∗ (β) = logpl (β) −

∑p

i=1
pλ (|βi|) (3)

where pλ (|.|) is the penalty function with regularization
parameter λ.
Minimizing the negative of penalized partial likelihood

function with L2 penalty , pλ (|βi|) = λβ2
i , ridge Cox esti-

mator is obtained [9], [31]. Cox model with L2 penalty is not

used for variable selection because although ridge L2 penalty
shrinks all the coefficients towards 0, does not get any of
them exactly zero and thus, does not provide a sparse set of
variables.

Reference [3] proposed LASSO (Least absolute shrinkage
and selection operator) which was originally developed by
[36], which is one of the penalized methods under the L1
penalty, pλ (|βi|) = λ |βi| in the Cox model. The LASSO and
elastic net methodologies often employ penalized techniques
for parameter estimation and variable selection. In addition
to its extensive utilization, the LASSO has a couple of limi-
tations. One limitation of the model is its lack of robustness
in handling large correlations among independent variables,
as it randomly selects one variable while disregarding the
others. Additionally, in the case of high-dimensional data,
the LASSO technique lacks the oracle property, which refers
to the consistency of variable selection, as well as stability
[4], [5]. Hence, [6] proposed Adaptive LASSO estimator in
the Cox model, as seen in Equation (4)

β̂AL = argminβ−
1
n
logpl (β) + λ

∑p

i=1

|βi|∣∣∣β̃i∣∣∣ (4)

where λ
∑p

i=1
|βi|∣∣∣β̃i∣∣∣ is the penalty function, and β̃ is any con-

sistent estimator of β in high dimensional data. The ridge
estimator is generally used as a consistent estimator of β.
Adaptive LASSO possesses oracle properties [37]. When the
oracle property is provided, the correct model coefficients of
zero are estimated as zero, and the remaining coefficients
are estimated as if the true sub-model was known before-
hand [14]. The LASSO estimator is more favorable than the
ridge estimator by pulling certain of the coefficients in the
model to zero [38]. In high dimensional data, LASSO inclines
to select a few nonzero coefficients. When multicollinearity
exists, regardless of which of the correlated variables is cho-
sen, LASSO randomly selects only one and eliminates the
others.

Opposed to the LASSO, Ridge, and Adaptive LASSO
methods [10] proposed the Elastic-net method in linear
regression first and the Elastic Net method in the Cox model
is then proposed by [11], which is especially advantageous
for high dimensional and multicollinear data. Elastic Net
regression combines the strengths of L1 and L2 penalties
by grouping and shrinking the parameters associated with
regularized variables, leaving them in the equation or remov-
ing them all at once. It means that the Elastic Net promotes
the grouping effect. Elastic net as a penalized approach for
variable selection, to overcome the disadvantages of LASSO.
The penalized partial likelihood function with two hyperpa-
rameters is given by [33].

β̂EN = argminβ −
2
n
logpl (β)

+ λ

[
α

∑p

i=1
|βi| +

1
2
(1 − α)

∑p

i=1
β2
i

]
(5)
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where λ

[
α

∑p
i=1 |βi| +

1
2 (1 − α)

∑p
i=1 β2

i

]
is the penalty

function with 0 ≤ α ≤ 1. It is seen that when α = 1 in
the penalty function of the elastic net estimator, it is reduced
to L1 norm, that is, to the LASSO penalty. Similarly, when
α = 0, L2 is reduced to the norm, that is, to the Ridge
penalty. Therefore, the Elastic network estimator is a method
that tries to find a balance between the Ridge and LASSO
estimators [33]. Elastic net combines the L2 and L1 penalties,
by utilizing the ridge penalty to overcome the multicollinear-
ity problem while utilizing the benefits of LASSO penalty
in the process of variable selection in high dimensional data.
It provides effective results even if the pairwise correlations
between the independent variables are high. On the other
hand, [12], [13] showed that the estimator of the elastic Net
method does not have the oracle property. Oracle property
is attained by the adaptive LASSO, while collinearity is
dealt with by the Elastic-net. But [10] also noted that the
adaptive LASSO acquired the LASSO ‘s instability for high-
dimensional data, whereas [37] contended that the elastic net
fails the oracle features. As a result, the Adaptive Elastic Net
method was first developed by [14] for the linear model, and
[5], proposed an adaptive elastic net estimator in the Cox
model defined in Equation 6 which overcomes the grouping
effect and has oracle properties. It has been demonstrated that,
in contrast to previous oracle-like techniques, the adaptive
elastic net not only benefits from the oracle characteristic but
also handles the collinearity issue effectively.

β̂AEN = argminβ −
2
n
logpl (β)

+ λ

[
α

∑p

i=1
ŵi |βi| +

1
2
(1 − α)

∑p

i=1
β2
i

]
(6)

where λ

[
α

∑p
i=1 ŵi |βi| +

1
2 (1 − α)

∑p
i=1 β2

i

]
is penalty

function, and ŵj =

(∣∣∣β̂(EN )i + 1/n
∣∣∣)−r

with r > 0. In this

study, we set r = 1. The experiment’s findings demonstrate
that this parameter does not significantly affect estimation
[4], [39].
This approach, which takes the elastic net method one

step further, provides more accurate and efficient variable
selection in high-dimensional data. The Adaptive Elastic Net
estimator is consistent not only for prediction but also for
variable selection [40], [41]. Extensive analyses of high-
dimensional datasets have shown that Adaptive Elastic Net
generally provides more accurate and stable predictions.
However, the providing of these advantageous properties
of the Adaptive Elastic Net in the Cox model depends
on the optimal selection of hyperparameters, α and λ val-
ues. Hyperparameters are generally selected by maximizing
k-fold cross-validated log partial likelihood based on grid
search over α and λ to define the most convenient combi-
nations [9], [31]. However, this method does not guarantee
optimal α and λ values. Because in grid search, α is typically
allowed to take values specified in a limited sequence in a
grid. All the cross-validation procedures will be implemented

for each potential combination of parameters α and λ as
specified in the parameter grid to define the optimal com-
bination of hyper-tuning parameter values [15]. There may
be an optimal α value outside of the selected range for α

and a correspondingly different λ value. We can say that the
wider and more fragmented the hyperparameter grid is, the
more we can approach the optimal value. As the dimension of
the grid increases, it requires a lot of unnecessary processing
and does not guarantee optimal α and λ values. Therefore,
choosing the optimal combination for Adaptive Elastic Net
hyper-tuning parameters needs an optimization algorithm for
the selection of an optimal subset of variables.

III. METHODOLOGY
In this study, MPSO technique has been selected as an opti-
mization algorithm to estimate the hyper-tuning parameters
in the Adaptive Elastic Net Cox model for variable selection
with high dimensional data. Utilizing Modified PSO is justi-
fied by its exceptional capacity to strike a balance between
search space exploration and exploitation [18]. Finding a
reliable and accurate solution is essential in high-dimensional
environments where the number of factors might be huge and
the relationships between them can be complex. Traditional
PSO might not be able to perform this task well due to its
set inertia weight and acceleration coefficients. TheModified
PSO, on the other hand, is built to adaptivelymodify its search
method over time thanks to its time-varying inertia weight
and acceleration coefficients.

A. MODIFIED PARTICLE SWARM OPTIMIZATION
METHOD (MPSO)
PSO is a swarm-based metaheuristic algorithm that has
been widely used in solving various optimization prob-
lems, including variable selection in regression analysis. The
algorithm was first introduced by [42]. It has been utilized
in many studies due to its simplicity, efficiency, and robust-
ness [42]. According to their locations and velocities in a
PSO, particles travel around the search space. The optimal
solution, the experiences of neighbors, and each particle’s
past position all have an impact on its movement.

Additionally, modifications to the standard PSO algorithm
have been proposed as a way to enhance the method’s
performance. The Modified PSO technique is a variant of
the typical PSO methodology used to address optimization
problems. It integrates fresh strategies and approaches to
raise the PSO algorithm’s efficacy and searchability. These
changes might impact the initialization process, the guide-
lines for updating particle positions and velocities, and the
methods for coping with boundaries and constraints. The
PSO method will benefit from these modifications as they
will hasten convergence and improve accuracy, especially for
difficult optimization problems with multiple variables and
constraints.

Another study by [43] applies PSO to ascertain the param-
eters of simple polarized bodies from their self-potential
signals. The parameters include depth to the electric source,
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electric charge polarization angle, electric dipole moment,
and shape factor of a buried body. The method’s validity is
affirmed through testing on synthetic data, including noise.
The results demonstrate stability even at high noise lev-
els and accuracy in estimating parameters, especially depth,
showcasing its potential compared to Genetic Algorithm-
based techniques. Similarly, [44] introduces the utilization
of PSO with function stretching, termed SPSO, to esti-
mate parameters like depth, density, radius, or thickness
from residual gravity anomalies in geophysics. The objective
function is formulated and transformed using a stretching
strategy. Test runs demonstrate the applicability of SPSO
in estimating these unknown parameters, even under high
noise levels in field data. This marks the first application
of SPSO in geophysics and showcases its competitiveness
and flexibility compared to genetic algorithms. The method
is effectively applied to both synthetic and field data. [18]
conducted research in which they proposed a different mod-
ified form of the PSO algorithm that incorporates both the
time-varying acceleration coefficient and the time-varying
inertia weight [7]. The authors demonstrated that the pro-
posed modified PSO method performed better than other
traditional PSO methods in terms of the accuracy of its
predictions and the efficiency with which it processed those
predictions.

MPSO stands as a powerful tool for optimizing various
models, showcasing potential improvements in accuracy and
efficiency, making it a pertinent addition to the field of opti-
mization algorithms. however, there are concerns about the
time complexity associated with the PSO algorithm, espe-
cially when dealing with high-dimensional data. To effec-
tively address this concern, we have developed a tailored
variant of PSO which is the MPSO algorithm. The MPSO
algorithm has been precisely engineered to enhance compu-
tational efficiency in the realm of high-dimensional spaces,
ensuring a more practical and efficient approach. A key
aspect of the MPSO approach involves an optimized ini-
tialization strategy for the particles within the swarm. This
tailored initialization method ensures a highly efficient com-
mencement of the optimization process, which is particularly
suited to the intricacies of high-dimensional data. Fur-
ther, the MPSO algorithm integrates adaptive mechanisms,
dynamically adjusting parameters during optimization. This
adaptability strikes a delicate balance between exploration
and exploitation, a critical feature, especially in navigating
the complexities of high-dimensional spaces. To expedite
the convergence process, we have incorporated advanced
strategies within the MPSO algorithm. These strategies guide
the particles more efficiently toward optimal or near-optimal
solutions, thus significantly reducing the overall convergence
time. collectively, these modifications effectively tackle the
computational challenges posed by high-dimensional data
within the PSO framework.

The following are the basic steps and algorithms for per-
forming the modified PSO:

Stage 1: The kth, position of particles is determined ran-
domly and are kept in a vector Xk

Xk =
(
Xk,1,Xk,2, . . . ,Xk,m

)
, k = 1, 2, . . . , np (7)

where Xik (i = 1, 2, . . . ,m) is the ith position of kth, particle.
And np is the number of positions while m is the number of
particles.
Stage 2: Vector velocities are determined randomly and

given as,

Vk =
(
Vk,1,Vk,2, . . . ,Vk,m

)
, k = 1, 2, . . . , np (8)

Stage 3: pbest and Gbest are determined according to the
evaluation function as follows

pbestk =
(
Pk,1,Pk,2, . . . ,Pk,m

)
, k = 1, 2, . . . , np (9)

Gbestk =
(
Pg,1,Pg,2, . . . ,Pg,m

)
, (10)

whereGbestk denotes the best particle, which has the highest
value for the evaluation function thus far, and pbestk denotes
a vector containing the positions corresponding to the kth
particle’s best personal performance.
Stage 4: Let c1 and c2 represent social coefficient and

cognitive coefficient, while w represent the inertia weight
parameter. Let (c1f ,c1l), (c2f ,c2l) and (w1,w2), be intervals of
c1, c2 and w.

For every iteration, the calculations of each of these param-
eters is given as

c1 = [(c1l − c1f ) × (t/maxt)] + c1i
c2 = [(c2l − c2f ) × (t/maxt)] + c2i
w = [(w2 − w1) × ((maxt − t)/maxt)] + w1 (11)

where maxtt are the maximum and current iteration numbers
Stage 5: To update the values of velocity and positions the

following formulas are used;

V t+1
i,d = (w× V t

i,d + c1 × r1 × (Pi,d − Xi,d )

+ c2 × r2 × (Pg,d − Xi,d )) (12)

X t+1
i,d = Xi,d + V t+1

i,d (13)

where r1 and r2 represent random numbers the interval [0, 1].
Stage 6: Until a maximum number of iterations (maxt) is

reached steps 3 to 5 is repeated.
Figure 1 illustrates the flowchart for the basic steps and

algorithms for MPSO.

B. PROPOSED METHOD
Due to its superior, adaptability and efficiency, MPSO was
chosen over classic PSO for estimating hyper-tuning param-
eters of Adaptive elastic-net method with an appropriate
objective function for variable selection in the Cox model
with the high-dimensional data. Its time-varying accelera-
tion coefficients and inertia weight balance exploration and
exploitation, allowing convergence to the global optimum
while successfully avoiding local optimum conditions in the
challenging high-dimensional data solution space.
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FIGURE 1. Flow chart of MPSO.

For the proposed method, the Extended Bayesian Infor-
mation Criterion (EBIC) has been used as an objective
function. A variation of the Bayesian Information Crite-
rion (BIC) created expressly for high-dimensional data,
is the Extended Bayesian Information Criterion (EBIC) [27].
In high-dimensional settings, it is frequently employed for
variable selection. In several fields, including genomics and
other areas of biomedical research, high-dimensional data,
where the number of variables (p) is bigger than the number
of observations (n), is becoming more prevalent. Because
they were not intended for high-dimensional settings, con-
ventional model selection metrics like BIC or AIC may not
perform well in these circumstances. The EBIC improves
the BIC’s ability to handle high-dimensional data by adding
an additional penalty term. A hyperparameter that can be
adjusted to achieve a desired trade-off between model fit and
model complexity controls this penalty term. In Cox models

with high-dimensional data, the EBIC offers a systematic
method for variable selection that successfully balances
model fit and complexity, controlling for false positives even
when the number of variables is significantly greater than the
number of observations as defined in Equation (14) [45].

EBIC = −2 ∗ (logpl (β) − α

p∑
i=1

ŵi|βi| + λ

p∑
i=1

β2
i )

+ d ∗ log (n) + 2 ∗ γ ∗ log(p) (14)

where d is the number of non-zero coefficients in the model
(i.e., the number of variables included in the model), n is the
number of observations, p is the total number of potential
independent variables and γ is a hyperparameter which is
between 0 and 1. A better model must have a lower EBIC
because it indicates a better balance between model fit and
complexity. In this case, γ is a fixed constant that can be set
to 0.5, as proposed by [27].
The purpose is to determine the optimum hyperparameters

(λ, α) pair of Adaptive Elastic-net for variable selection in
for Cox model with high dimensional data which proposes
to reduce the number of variables and remove inappropriate
data for improvement of interpretability and validity of the
model. The objective function defined in Equation (14) is
minimized by using modified PSO in the proposed method.
The analyses in the study were conducted R Studio version
4.3.1 for Windows software. All experiments in the study are
trained offline on a PC equipped with 3.7 GHz i7-8700k core
processors, 32G RAM, and NVIDIA 1080 Ti GPU. Trial and
error are used to determine the parameters of the MPSO. The
following stages have been introduced the proposedmethod’s
algorithm:
Stage 1. The selection of the tuning parameters of the

MPSOA-ENet algorithm are made as follows: np: 50, maxit:
500, (c1f ,c1l) = (2, 3), (c2f ,c2l) = (2, 3), (w1,w2) = (0.9, 2).
Stage 2. The initial positions of each of the jth (j = 1,

2, . . . , 50) particles are designed through random generation
using a uniform distribution. The first position of each par-
ticle corresponds to the tuning parameter α and is generated
from a uniform distribution with parameters (0, 1). Similarly,
the second position of each particle represents the tuning
parameter λ, which is generated from a uniform distribution
with parameters (0, 200).

Stage 3. Velocities are generated using a uniform distribu-
tion with a range of (0, 4).

Stage 4. EBIC defined in Equation (14) is taken as objec-
tive function. All particles’ objective function values are
accumulated. Pbest and Gbest particles are identified using
the values of the objective function.

Stage 5. Use the formulas in Equation (11) in to update
the cognitive coefficient c1, social coefficient c2, and inertia
parameter w at each iteration.

Stage 6. Formulas in Equation (12) and Equation (13)
are used to update the particle velocities and positions,
respectively.
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FIGURE 2. Flow chart of the proposed MPSOA-ENet method.

Stage 7. Steps 4 through 6 are repeated until the maxit is
attained.

Stage 8. The best (α, λ) pair is obtained as Gbest.
Figure 2 illustrates the flowchart for of the proposed

MPSOA-ENet method.

IV. SIMULATION STUDY
The simulation study shows the performance of the proposed
modified PSO-based Adaptive Elastic net (MPSOA-ENet)
algorithm for variable selection in Cox Model by comparing
it with adaptive elastic net Cox model(A-ENet), Elasticnet
Coxmodel (ENet), Adaptive LASSOCoxmodel (A-LASSO)
and LASSO Cox model (LASSO) under different simulation
settings in high dimensional data. Here the regularization
parameters for the methods are tuned via fivefold cross-
validation based on grid search. Survival time ti is generated
from a Weibull distribution as

t = −

(
log (U)

λeβ ′X

)v

(15)

where shape parameter v = 0.30, scale parameter λ = 1 and
U is uniformly distributed as Uni∼U(0.10,0.95). The true
model coefficients are as follows:

β = ( 2︸︷︷︸
15

, 0, . . . , 0︸ ︷︷ ︸
p−15

) (16)

The model’s actual size is 15. For simulated datasets, the
percentage of censored observations has been set to 20%,
and 40%, using Uniform distribution. We set n = 100 and
p = {200,400}. Most of the settings for the generation of
independent variables are adapted from [10], [29], and [46].

The following 8 scenarios are considered in the simulation
study:

Scenario 1: The independent variables in predictor matrix,
X are derived from the multivariate normal distribution,
marginally N(0,1) and with pairwise correlation among Xi
and Xk as cor(Xi, Xk) = ρi−k where i ̸= k and with ρ =

0.20 for p = 200.
Scenario 2: The same as Scenario 1, except ρ = 0.5.
Scenario 3: The same as Scenario 1, except ρ = 0.8.
Scenario 4: The same as Scenario 1, except p = 400.
Scenario 5: The same as Scenario 2, except p = 400.
Scenario 6: The same as Scenario 3, except p = 400.
Scenario 7: The independent variables (p = 200) are gen-

erated as follows including grouped variable situations.

xi = w1+ei, w1 ∼ N (0, 1) , i=1, 2, 3, 4, 5

xi = w2+ei, w2 ∼ N (0, 1) , i=6, 7, 8, 9, 10

xi = w3+ei, w3 ∼ N (0, 1) , i=11, 12, 13, 14, 15

(17)

where xi independently and identically distributed as xi ∼

N (0, 1) , i = 16, 17, , . . . , p, ei ∼ N (0, 0.01) fori =

1, 2, . . . , 15 as independently and identically distributed.
Scenario 8: The same as Case 7, except p = 400.
In the simulation design, the correlation between the inde-

pendent variables is weak in Case 1 and Case 4; Cases 2 and 5
have medium correlated variables; Cases 3 and 6 have highly
correlated variables; while the variables in Cases 7 and 8 are
generated including the grouping effects defined in [10] with
three identically significant groups, where the correlation
between the identical group is as severe as 0.990. In each case
of simulation design, censoring rates of 0.20, and 0.40 are
considered separately.

Performance evaluation measurements:
The models ‘performance in variable selection has been

evaluated by F1score, true negative (TN), false negative (FN),
sum of square error for the model coefficients (SSE), and
concordance index (CI). F1-score, TN, and FN have been
evaluated by the confusion matrix.

A confusion matrix is a tabular depiction of the method’s
performance in the context of variable selection [47]. By con-
trasting the actual state of variables (whether they are truly
zero or not) with the state obtained through the method,
it enables the display of the algorithm’s performance. In the
confusion matrix, True Positive (TP): accurately identifying
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FIGURE 3. Confusion Matrix.

non-zero coefficients as non-zero. True Negative (TN) or
C: zero coefficients were correctly identified as zero. False
Positive (FP): zero coefficients were mistakenly identified as
non-zero, False Negative (FN) or IC: non-zero coefficients
were incorrectly identified as zero. F1-score is calculated
by 2∗(P∗R)/(P+R), where P = TP/TP+FP is precision and
R = TP/TP+FN is recall (or sensitivity). The accuracy of
the models can be assessed using the F1-score, which is a
harmonicmean of the Precision and Recall measures. Finding
the most relevant subset of variables that can contribute to
precise predictionmodels while avoiding overfitting and low-
ering computing complexity is the aim of variable selection.
The F1 score is a good measure for contrasting various vari-
able selection methods and aids researchers in evaluating the
feature selection method’s overall effectiveness in reaching
this aim.

On the other hand, CI is a measure of goodness of fit
that calculates the probability that the one with the higher
prognostic score from two randomly selected units will live
longer than the other unit. CI takes values in the range [0, 1]
[48], [49]. A CI value close to 1 indicates that the prediction
performance of the model is high. And SSE is the sum of

square errors for parameter β where SSE =
∑p

j=1

(
βj − β̂j

)2
where βj is the vector of actual coefficients, β̂j is the vector
of the model coefficients estimated by the models.

The simulations are repeated 100 times randomly. Within
each repeated simulation, each simulated data set is divided
into a training set and a test set at 70:30 proportion, with tun-
ing parameters chosen from the training set and the estimators
have been calculated on the training set. Performance metrics
have been computed on test sets after models have been fitted
with training data on the testing set, and median value of the
performance measurements has been reported.

V. RESULTS
The developed MPSOA-ENet method for variable selec-
tion in the Cox model with high-dimensional data has been
compared with conventional penalized methods; LASSO,
A-LASSO, A-ENet, and ENet using different performance
evaluation measures under 8 different simulated data with
20% and 40% censoring rates, separately. The median of
each performance evaluation measure for each approach has
ultimately been presented after we repeated the simulation
100 times for each scenario in Table 1 and Table 2 for 20%
and 40% censoring rates, respectively. The best approach on
MSSE, F1-score, TN, FN, and CI have been indicated with
a bold font in each simulation case. According to simulation

results presented in Table 1 and Table 2, the MPSOA-ENet
approach consistently yields the lowest MSSE among all
the compared penalized approaches in each case. Further-
more, when the dimensionality remains constant, all methods
except LASSO have shown a decrease in MSSE values as the
correlation increases. On the other hand, in the case including
the grouping effect, our proposed method outperforms other
methods, while the LASSO exhibited the lowest performance
when dealing with grouped highly correlated variables. The
LASSO is not sufficiently steady, and it tends to randomly
select certain significant factors while ignoring the other rel-
evant variables when there is a strong association or grouping
effect. For this reason, it is not recommended to use the
LASSO method for variable selection in high-dimensional
data where there is a high correlation or grouping effect.
When the performances of the other methods are compared
according to the MSSE values, A-ENet and A-LASSO which
follow the MPSOAE-net method give good performance,
respectively. The ENet method, on the other hand, has been
observed to improve performance as the correlation increased
and to perform quite poorly at a low correlation (p = 0.3),
which is consistent with the literature.

On the other hand, the variable selection capabilities
of the methods were evaluated in terms of TN, FN, and
F1-score values. The results clearly show that the MPSOA-
Enet method is muchmore successful in different scenarios in
variable selection compared to other methods. We observed
that the TN values of the proposed method are consistently
higher than other existing methods. This encouraging out-
come highlights the proposed method’s greater capacity to
precisely identify true negatives. In cases where there is a
low and medium correlation between the variables, A-ENet
and A-LASSO give good results after MPSOA-ENet, and in
case of high correlation, A-ENet and ENet give good results,
respectively. LASSO gives the worst results in medium and
high correlation and also in grouping effect. In terms of TN
values, an improvement was observed in the performance of
all methods as the correlation increased. While the MPSOA-
ENet method gives near-perfect results in low and medium
correlation, it gives excellent results under the effect of high
correlation and grouping. That is, the TN values of our pro-
posed method are higher, and the false negative (FN) values
are 0 at the lowest line. Therefore, the F1 score values of the
proposed method are higher than the other methods in each
scenario. A high F1-score indicates that the variable selection
method is successfully identifying the important variables
while minimizing the inclusion of unimportant ones.

In variable selection, the ‘‘oracle property’’ refers to the
ideal situation when a variable selection approach can pre-
cisely identify the genuine important variables from a broader
range of predictors. This is very important property for vari-
able selection techniques. The oracle property is an important
and sought-after trait in the process of developing models
since it guarantees that the resulting model is reliable, inter-
pretable, efficient in computation, and resilient to noise. The
methods with oracle property in the variable selection are
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FIGURE 4. 3D graphs of sensitivity analysis results for the hyperparameters (α, λ) for each simulation scenario. (a)-(c) depict results when
p = 200 ρ = 0.2, 0.5, and 0.8, respectively. (d)-(f) depict results when p = 400 ρ = 0.2, 0.5, and 0.8, respectively. (g) and (h) depict results regarding
grouping effect when p = 200 and 400, respectively.
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FIGURE 4. (Continued.) 3D graphs of sensitivity analysis results for the hyperparameters (α, λ) for each simulation scenario.
(a)-(c) depict results when p = 200 ρ = 0.2, 0.5, and 0.8, respectively. (d)-(f) depict results when p = 400 ρ = 0.2, 0.5, and 0.8,
respectively. (g) and (h) depict results regarding grouping effect when p = 200 and 400, respectively.

evaluated according to TN (True Negative) values. MPSOA-
ENet with larger TN values outperforms the traditional
A-ENet and other penalized methods for Cox model in high-
dimensional settings. In the simulation study, it was observed
that the MPSOA-ENet method greatly improved the oracle
feature of the traditional A-ENet method. Furthermore, by the
literature, it has been observed once again in different scenar-
ios that ENet and LASSO methods lack this feature.

The variable selection methods have been also compared
based on the FN metric. Both MPSOA-ENet and A-ENet
methods have demonstrated excellent performance, success-
fully detecting zero FN values in all scenarios. This outcome
indicates their robustness and reliability in minimizing the
false negatives, which is crucial for accurate variable selec-
tion. E-Net performs better than the LASSO and A-LASSO
methods with the increase in correlation. That is, the E-Net
method is more successful than LASSO and A-LASSOmeth-
ods in accurately predicting true positives. According to the
FN values, LASSO and A-LASSO methods showed poor
performance. This indicates that the LASSO and A-LASSO
methods tend to produce more false negatives. In addition,
as the correlation increases, the FN values of these methods
tend to increase.

In addition, the performance of the methods has been
investigated as the dimensionality increases when the corre-
lation between variables remains constant. In general, there
is an increase in MSSE values in all methods. However,
the increase in MPSOA-ENet and AE-Net methods is quite
small. On the other hand, as the dimensionality increases,
the F1-score values of the LASSO and A-LASSO methods
tend to decrease. However, other methods have improved
variable selection performances, especially at medium and
high correlations as dimensionality increases. When the CI
values of the compared methods are also examined, the
proposed MPSOA-ENet method generally gives the highest
value for each scenario. Generally, CI values tend to increase
as the correlation increases. AE-Net, A-LASSO, and LASSO
follow the proposed method in low and medium correlations.

TABLE 1. Simulation results for each simulation scenario for
censoring 20%.

In the low and medium correlations, the ENet method gives
the lowest value among the compared methods. In high
correlation, after the proposed method, A-ENet, ENet, and
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TABLE 2. Simulation results for each simulation scenario for censoring
rate 40%.

A-LASSO follow, respectively. In high correlation, LASSO
method gives the lowest CI value. Furthermore, evaluation
metric values in Table 1 and Table 2 have been examined for
each measure under the same simulation scenarios accord-
ing to censoring rates. The performances of all approaches
become less successful as the censoring percentage rises.
In summary, our proposed MPSOA-ENet method have quite
good ability in variable selection in Cox model with high
dimensional data and can be competitive with other related
methods in investigating the high dimensional data with from
low to high multicollinearity.

A sensitivity analysis for the hyperparameters (α, λ), has
been conducted to assess the validity, stability, and consis-
tency of the proposed MPSOA-Enet method. First of all,
the data set was fixed for the sensitivity analysis of α and
λ in each simulation scenario. The proposed method for
estimating α and λ in the Adaptive Elastic-net Cox model
was applied 100 times over the fixed high-dimensional data
set. Subsequently, α and λ values estimated by the proposed
method, along with the selected performance metric, which

is the F1-score, were recorded for each test. Then, 3D graphs
were drawn with α, λ and F1 score values for each simulation
scenario, with α on the x-axis, λ on the y-axis and FI score
on the z-axis. When the graphs as shown in Figure 4 have
been examined, for each simulation case, it has been observed
that the proposed method gives consistent estimates in pretty
narrow ranges for simultaneous α and λ estimates. Thus,
it has been observed that these results reveal a well-defined
region in the 3-dimensional (3D) spacewhere F1-score values
are relatively high. In addition, it can be seen in the 3D
graphics that increasing or decreasing (α and λ) values in
these narrow ranges cause very slow and steady changes
in the F1-score. That is, changes in α and λ did not cause
unpredictable fluctuations in the F1-score, and thus, it was
observed that the F1-score was stable as long as α and λ

changed in very small ranges. These results show that the
proposed method is valid, consistent and stable in estimating
α and λ.

VI. CONCLUSION
In this study, a modified PSO-based adaptive elastic-net
method in the Cox model with high-dimensional data has
been proposed as a novel variable selection for Cox model
with high-dimensional data. According to the comprehensive
simulation study, MPSOA-Enet outperforms other penalized
methods in terms of both variable selection and prediction
and estimation accuracy performance for the Cox model in
investigating the high-dimensional data with low, medium,
and high correlated data. The MPSOA-ENet method not only
achieves excellent results under high correlation and group-
ing effects but also performs well in scenarios with low and
medium correlation. The simulation results highlight that the
MPSOA-Enet approach effectively manages both true neg-
ative and false negative rates simultaneously, surpassing the
traditional adaptive elastic-net method and all other compared
penalized methods.

Moreover, as the dimensionality increases, it improves the
variable selection performance, making it a preferred choice
for high-dimensional variable selection in the Cox model.
In addition, the comprehensive simulation results showed
that the MPSOA-Enet method greatly improved the oracle
property of the traditional A-ENet method and also achieved
more successful results than A-ENet when grouping effect
was present. In short, the proposed MPSOA-ENet method,
which minimizes the EBIC function and selects α and λ

simultaneously, can be preferred to the traditional CV based
on the grid search method for the Adaptive Elastic-net Cox
model with high-dimensional data. In this study, we exten-
sively compared the proposedmethod with existing penalized
variable selection methods using comprehensive simulated
datasets. However, it is important to acknowledge that the
study’s limitation lies in not applying the proposed method
to real-life datasets. In future research, we aim to address this
limitation by applying our proposed method to various real-
world datasets and conducting comparative analyses with
other methods.
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