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ABSTRACT The rising deployment of software in automation and the cognitive skills of machines indicate
a machine revolution in modern human civilization. Thus, diagnosing and predicting software faults is
crucial to software reliability. In this paper, we first preprocessed four real datasets offered by National
Aeronautics and Space Administration with twenty-one features using the Synthetic Minority Oversampling
Technique and Label Encoding techniques. Subsequently, we experimented with thirteen software fault
diagnosis Machine Learning (ML) models, i.e., Random Forest Regression, Linear Regression, Naïve
Bayes, Decision Tree Classifier, Logistic Regression, KNeighbors Classifier, AdaBoost, Gradient Boosting
Classifier, Gradient Boosting Regression, XGBR Regressor, XGBoost Classifier, Extra Trees Classifier and
Support Vectors Machine after that, we compared each ML Model to select the best diagnostic model.
Among them, XGBR outperformed, considering the accuracy, mean square error, and R2 score. We also
used Explainable Artificial Intelligence (XAI), Local Interpretable Model (LIME), and SHapley Additive
exPlanations (SHAP) to determine software fault features. We observed that Number of static invocations
(nosi), Depth Inheritance Tree (dit), and Coupling Between Objects (cbo) features are the most affected
software faults feature from datasets. For LIME, the average True positive of nosi is 40%, dit is 15%, and
cbo is 20%; on the other hand, the SHAP average true positive value of nosi is 36%, cbo is 15%, and the
norm true negative value of dit is 5%. Thus, LIME can afford the greatest impact on the model outcomes to
identify features that are the most significant reasons for software defects.

INDEX TERMS Software defect prediction, features selection, software reliability, software fault diagnosis,
explainable AI, SHAP, LIME.

I. INTRODUCTION
As people rely a growing amount on software in their daily
lives, such as education, environment, and economic sectors,
the complexity of software is increasing [1]. On the other
hand, as the use of the internet in all domains has expanded,
existing methods to accurately detect software defects have
become more challenging. Relevant researchers proposed a
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software defect prediction system to ensure software quality
and quickly identify as many defect modules as possible.
In [2], they used the different types of neural network
architectures to find the prediction interval for the total
number of software defects found during the testing phase.
They also looked at how the number of input and hidden
nodes affected the reliability of the prediction using the
principles of thumb.

Identifying the root causes of software defects are crucial
intervention in software development and maintenance.
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It can enable allocated resources effectively, prioritize testing
efforts, and improve software quality. By determining essen-
tial causes, researchers can address underlying problems,
thereby preventing the recurrence of defects and enhancing
the long-term reliability of software. Therefore, the timely
acceptance of modules with an elevated probability of defects
during the initial phases of the development process has
become more significant. ML-based strategies [3] have
been the most well-known. Despite their visible success,
they become black boxes, making it difficult for people to
understand the reasoning behind their judgments fully. Due to
the ‘‘black box’’ of ML-based strategies, the XAI approaches
like LIME [4], and SHAP [5] have recently gained popular
opinion. These strategies explain any decisions made by a
model.

Recent [6] research has demonstrated that the LIME and
SHAPmethodologies can provide insight by ranking features
according to their significance in black box decisions. Due
to the lack of reality, researchers typically utilize multiple
post hoc explanations to comprehend a single model deci-
sion. Such an atmosphere generates disagreement between
methods of explainability and negatively impacts conclusion
drawing. They proposed a method for merging LIME and
SHAP explanations that places fewer sights on disagreements
while emphasising areas of agreement. Consequently, they
are a versatile tool to complement the usual ML-based
methodology for software defect prediction. It determines
whether or not software modules have faults based on codes
or software characteristics. Therefore, ensuring the software
quality is a core issue by identifying the features of software
defects [7].
A Multilayer Perceptron (MLP) is a type of feedforward

artificial neural network that consists of multiple layers of
interconnected neurons arranged in a sequence. The authors
[8], described anMLPwith a one-stage look-ahead prediction
as an experiment in solving and predicting software faults
using Box-Cox Power Transformation. In [9], a combination
of machine learning and evolutionary computing techniques
was used to enhance the predictive performance of traditional
ANN models.

On the other hand, software release time heavily depends
on the appropriate diagnosis of a software fault, which has
become researchers’ primary concern. Begum and Dohi [10],
[11] presented various ANN strategies for identifying optimal
software release time. The limitation of employing a multi-
stage look-ahead prediction method in which the optimal
number of hidden neurons and transformation values were
determined.

In the last four decades, most of the researchers have
worked on software defect prediction. On the other hand,
predicting software defects is an important subject for ensur-
ing software reliability, maintenance, and cost minimization.
They did not clear the root of the issue of software faults. So,
in this concern we showed the prediction of software faults
then we chose the best model that performed a good score
overall after that we showed which features are important

for software faults. The contributions of this study are the
following.
• In our systems here, we have examined the fea-
tures of software fault diagnosis based on the accu-
racy, mean square error, and R2 score with thirteen
machine-learning algorithms Random Forest Regres-
sion (RF), Linear Regression (LR1), Naïve Bayes
(NB), Decision Tree Classifier (DTC), Logistic Regres-
sion (LR2), KNeighbors Classifier (KNC), AdaBoost,
Gradient Boosting Classifier (GBC), Gradient Boost-
ing Regression (GBR), XGBR Regressor (XGBR),
XGBoost Classifier (XGBC), Extra Trees Classifier
(ETC) and Support Vectors Machine (SVM) while
choosing the best algorithm. After that, the selected
algorithms used in LIME and SHAP techniques of
XAI are illustrated. Because it provides transparent and
understandable explanations for complex ML models,
enabling better decision-making, trust, and accountabil-
ity in AI systems.

• In addition, it makes a difference in the relative
importance of the main k characteristics that occur more
frequently than disagreements about their importance’s
direction. Based on this realization, we obtained the
LIME explanations as the novel way for finding the top
k features.

It is important to note that the effectiveness of any specific
method in software defect identification depends on various
factors, including the quality and quantity of the data used
for training, and the choice of ML algorithms. Additionally,
the integration of XAI techniques ensures that the results are
not only accurate but also interpretable, which is crucial for
gaining trust and insights from stakeholders in the software
development process.

The rest of the paper is organized as follows: Section II
discusses relatedworks, the gap in the field, and the papers for
the motivation behind our study. The proposed methodology
is explained in Section III for software fault diagnosis by
applying various statistical and machine-learning methods
with suitable block diagrams. In Section IV, the theoretical
formulation of all machine learning algorithms is explained in
detail, and the numerical illustration of our proposed systems
is briefly described in Section V, which includes the analysis
of the results by different performance metrics.

II. LITERATURE REVIEW
In contemporary society, the software is a vital part of our
everyday existence. Under the circumstances, various works
regarding software fault prediction with different methods
have been proposed, which involve using specific statistical
techniques such as Multivariate Regression (MR), LR, and
Univariate Regression (UR). These techniques are effective
in identifying faults in researchers. However, they may not be
helpful for novel research; as a result, scholars have devised
the implementation of ML and its methodologies.

Additionally, academics look into many facets of ML
to address software fault diagnosis. They came up with
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a high-level design class cohesion measure that is based
on reasonable assumptions, works with expected math,
and can be used to automatically check the quality of
designs early on using UML models. They proved that
similarity-based class cohesion is based on well-thought-out
theoretical principles, works with reasonable assumptions,
and can rapidly identify faults [12]. On the other hand,
the aim of software fault diagnosis is to identify and
rectify errors in computer programs as well as ensure
optimal software release time. Regarding this, they compared
their method to non-homogeneous Poisson process (NHPP)
based software reliability models (SRMs) and demonstrated
that their method provides more precise and adaptable
decision-making. Using ANNs and software defect count
data, the authors proposed an original method to estimate
the optimal software release time and find software fault
prediction [13].

In [14], we discussed the models and metrics of soft-
ware, using classification, regression, and other significant
techniques for predicting software fault issues. However, DT
calculations may become substantially more complex and
unstable due to minor modifications to the data; therefore,
the training process takes longer time. Recently, in [15],
they introduced long short-term memory (LSTM) networks
as a novel approach for predicting software errors using
Min-Max Scalar and Box-Cox Transformation to normalize
software fault count data and showed the dispersion of
data. However, for simplicity, they have worked on a small
number of epochs and neurons of the LSTM network for
simplicity.

The ML technique has been used for discovering faults
by collecting information from software archives and com-
prising messages and source code proposed in [16]. Many
assessment metrics were used for finding the accuracy of
different techniques, such as the probability of detecting
False Positive (FP), True Negative (TN), and True Positive
(TP) costs, precision, G measure, and F measure, and so on.
They did not conduct a comprehensive study of issues of
software test cases within publicly available source code. The
authors [17] used the optimized artificial immune networks
(Opt-aiNet) approach to choose the features for forecasting
faults. Finally, the results are evaluated with ML classifiers
using the AUC and accuracy metrics. The individuals
in question did not demonstrate care in identifying the
underlying causes of software issues.

Additionally, a software failure prediction model was
recently provided with a variety of data transformation
strategies from Poisson data to Gaussian data. Then, in order
to predict long-term bugs in the software, LR1 was used
and compared with Nave Gauss and exponential smoothing
time series forecasting models in terms of average relative
error. Data transformation methods were employed to convert
Poisson data into Gaussian data. However, the ideal value of λ
for the Box-Cox and Yeo-Johnson power transformation was
not determined presented by Begum, M. et. al. [18].

The purpose of research is to improve the accuracy of
literature studies. Our main objective is to identify software
defects’ root causes, and is the process of pinpointing
the underlying reasons behind defects in software systems.
Researchers are very concerned about finding the problem
definition of this domain. Most of them are focused on
investigating methodologies, tools, or approaches that allow
efficient and accurate identification of root causes. This
research aims to reduce software development costs, improve
software quality, and enhance the overall software develop-
ment process by addressing the challenges of identifying and
mitigating defects effectively.

Firstly, we preprocessed our datasets using Synthetic
Minority Oversampling Technique (SMOTTech) and Label
Encoding (LE) techniques after examining the processed
data through several ML algorithms. Then, we evaluated
all algorithms using different simulation criteria. XGBR
Regression ML Model goes to a good score. Next, the best
model was used in XAI for specific main finding features for
software faults. Here, we work with SHAP and LIME in XAI
techniques. Finally, compared with both techniques, LIME
provides a more accurate diagnosis of software faults.

III. PROPOSED METHODOLOGY
Software developers focus on the accuracy of software func-
tions and reliability, as individuals cannot survive without
it in a single day. Software diagnosis has become more
challenging over the last several decades as the complexity
and volume of software have increased. In this paper, we have
found appropriate features for causing software faults via the
best architecture of ML with XAI.

Figure 1 explains the proposed structure for identifying top
k features for software faults diagnosis. At first, we collected
datasets from different resources. After that, we used
SMOTTech and LE techniques for data preprocessing. There
are two distinct groups in our data. Thirteen ML algorithms
are used for analysis, and we ‘‘trained’’ our models using
80% training data and then ‘‘tested’’ using 20% testing
data from datasets. Consequently, we have considered many
metrics while assessing our models, such as Mean Absolute
Percentage Error (MAPE) and Explained Variance. After
exhaustively comparing all available options, we exported
the most optimal model and obtained XGBR as the best
model. Then, we apply LIME and SHAP techniques to
analyze software faults. Afterward, we compare which
technique is most acceptable. Lastly, we decide on finding
the top k features for software faults based on the accuracy of
techniques, where LIME provides the best accuracy.

A. DATASETS
In this investigation, we have used four open sources of
real project datasets PC1, Baseline, CM1, and JM1 from
the PROMISE software engineering database [26], where
twenty-two features have been considered for diagnosing
software faults. Here, twenty-one independent features; the
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TABLE 1. Contributions and limitations of different studies in the literature.

TABLE 2. Details of datasets.

remaining one depends on which reveals whether there is
a software fault or not. Table 2 presents the details of all
datasets and their properties.

In PC1, the total number of instances is 4714, and the class
distribution is composed of such a dataset that the dependent

feature has 2360 faults and 2354 no faults. In addition,
Baseline data sets consist of 6052 faults, and no faults are
the same, 3026. As well as CM1 and JM1 data sets are given
as 6992 and 6029 instances, respectively. It should be noted
that all data sets are McCabe, Halstead, Miscellaneous, True
or False type.

B. PREPROCESSING
In this paper, we have preprocessed our datasets using LE and
SMOTTech techniques for data normalization and balancing.
Chawla et. al. emerged with the SMOTTech regular approach
[27] in 2002. In this method, the minority class is made
up of fake samples of the minority class that have equal
distribution around the originally identified positive cases.
SMOTTech makes fake samples from underserved groups by
running its business in the feature space. First, SMOTTech
finds the data points that are closest to the ones in theminority
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FIGURE 1. Proposed framework for finding top k features for software faults diagnosis.

group. Then, it makes a new point that is totally random
in relation to the other points. The marginalized group is
made up of numbers that are represented by these new dots.
Lastly, it will keep making new data until the problem with
the mismatch of data is fixed. fi stands for the feature vector
of the under-investigated minority class sample, and fnear is
one of fi’s is K closest neighbors. Equation (1) is a way to
show what the newly made fake sample fnew looks like.

fnew = f i + ( fi − fnear )× R (1)

Here, i = 1, 2, 3, . . . , n, n is the total number of data
points, and R is a random number that ranges from 0 to 1.
Additionally, we used the LE technique to convert categorical
data into numerical values. It assigns a unique integer to each
category or label in a categorical variable. The basic idea is to
represent categories with integers so that ML algorithms can
work with the data [28].

C. ML MODELS
1) LINEAR REGRESSION (LR1) AND LOGISTIC REGRESSION
(LR2)
LR1 describes a specific modeling scenario when there is
a singular independent variable. LR1 [29] can distinguish
between how dependent factors influence one other and how

independent variables influence each other. On the other
hand, LR2, also known as the logistic or logit model, is a
statistical methodology investigating the statistically signifi-
cant relationship between multiple independent variables and
a categorical dependent variable. The methodology seeks to
determine the probability of an event’s occurrence by fitting
the available data to a logistic curve.

2) SUPPORT VECTOR MACHINE REGRESSION (SVM)
An SVM is a powerful ML algorithm used for classification
and regression tasks. The primary objective of the SVM
algorithm is to ascertain mathematical functions that exhibit
a high degree of regularity with respect to the predictor
variables. Concurrently, it reduces the difference between
the predicted and actual values by a fixed threshold for all
training data points. The time complexity of SVM increases
at a rate greater than quadratic as the number of samples
increases [30].

3) NAIVE BAYERS (NB)
The NB classifier is a supervised machine learning algorithm
applied for classification tasks such as text classification. In
addition, it has several advantages, including a straightfor-
ward methodology and high reliability.
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4) RANDOM FOREST REGRESSION (RF) AND DECISION
TREE CLASSIFIER (DTC)
The RF algorithm is an ensemble technique that practices
randomized decision trees. The outcome is a collective
methodology derived from several DTC scores produced
using techniques such as bagging or bootstrapping, subsam-
pling, or RF. Regarding regression, the unexpected outcome
of the forest is determined by the average scores obtained
from the randomized decision trees.

In contrast, the DTC methodology involves dividing the
predictor variable field into distinct subsets based on the
similarity of their corresponding target variables. It creates
a tree-like structure where each internal node represents a
feature, and each leaf node corresponds to a class label. It is
popular for its simplicity and ability to handle both numerical
and categorical data. On the other hand, a random variable
determines the optimal partitioning strategy at each node in a
randomized decision tree [31].

5) ADAPTIVE BOOSTING (ADABOOST)
AdaBoost, also known as Adaptive Boosting, is a very
successful technique utilized for enhancing the performance
of learners who are struggling [32]. This technique can
be utilized with various learning algorithms, such as DT,
neural networks, and SVM. The strategy is based on training
weak learners repeatedly and assigning more significance to
incorrectly classified samples.

The process mentioned above is iterated until the necessary
degree of precision has been attained or until the maximum
threshold of struggling learners has been reached. The
ultimate result is obtained by calculating the weighted
total of the predictions made by the learners that have
been weakened. This methodology has notable advantages
when the dataset consists of a considerable amount of
heterogeneous examples through a limited amount of factors,
and the division of the dataset is either ineffective or
non-uniform.

6) GRADIENT BOOSTING CLASSIFIER (GBC) AND GRADIENT
BOOSTING REGRESSION (GBR)
GBC, or Gradient Boosting, is an additional ensemble
machine learning algorithm that is effective for regression
and characterization problems. It implements the boosting
procedure, combining several weak learners to form one
strong learner. Calculation of this algorithm can rapidly
overfit a preparing dataset. It may gain an advantage from
regularization techniques that execute various parts of the
calculation. Finally, enhance the calculation’s presentation by
reducing overfitting [33].

On the other hand, a GBR is an ensemble model consisting
of several tree models placed sequentially. Each subsequent
model in the sequence learns from the errors made by the
previous model. It uses ‘‘boosting’’ to generate predictions
and combines multiple weak prediction models. At last,

it creates decision trees, for a more resilient and accurate
model. The output of fn (x) for input x can be written of n
trees as the sum:

fn (x) =
n∑
i

γihi (x) (2)

where hi represents an average learner that exhibits an
individual performance, and γ i is a scaling factor that
accounts for the effect of a tree on the overall model. GBR
employs the gradient descent loss function to minimize
errors through the iterative process of updating the original
estimation with the new measurement [34].

7) EXTREME GRADIENT BOOSTING (XGBOOST)
XGBoost implements gradient boosting machines (GBM),
a popular supervised learning technique. This technique can
be employed in both regression and classification scenarios.
Data scientists favor XGBoost due to its remarkable capacity
for high-speed execution in out-of-core computation [35].
It is extremely fast and may be executed on distribution
platforms. In addition, the library of XGBoost is faster
than other gradient-boosting libraries, which is a significant
advantage. The machine learning system, XGBoost, is robust
and flexible, making it suitable for various contexts. XGBoost
is widely utilized in both industrial and research settings.

8) EXTRA TREE CLASSIFIER (ETC)
The ETC is an ensemble learning technique based on
decision trees. In the ETC, the source of irregularity does
not stem from data scaling but rather from the randomization
component in selecting all predictors [36]. It operates by
reducing variance and increasing perception simultaneously.
One significant advantage of ETC compared to conventional
DT is to enhance computational efficiency and reduce
variance.

9) KNEIGHBOARS CLASSIFIER (KNN)
The supervised algorithm KNN is used for classification pur-
poses. It has been utilized extensively for disease prediction,
data classification, etc. The KNN algorithm can generally
classify datasets using a training model similar to the testing
query by considering the K training data points (neighbors)
closest to the query [37].

IV. EXPERIMENTAL RESULT AND ANALYSIS
We used various evaluation techniques during the experi-
mental result analysis, including MAE, RMSE, R2 score,
EV, maximum error, and accuracy. This section has been
separated into two subsections. In the first section, the criteria
employed for performance measurement were analyzed.
Subsequently, the ML algorithms were evaluated based on
these criteria, leading to the identification of the most optimal
method.
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A. PERFORMANCE METRICS
1) MEAN ABSOLUTE ERROR (MAE)
MAE measures errors between matched observations rep-
resenting the same phenomena. This value is calculated by
averaging the absolute mistakes. The fact that the MAE units
are the same as the predicted goal makes determining if the
error level justifies concern easier. By studying the MAE,
the sum of these mistakes, we can better analyze the model’s
performance throughout the entire dataset. Error is one way
to compare forecasts with actual results. The MAE is defined
as:

MAE =
1
n

n∑
i=1

∣∣yi − ŷi∣∣ (3)

where, i = 1, 2, 3, . . . , n, yi actual value, ŷi predicted value,
and n is the total number of data points.

2) ROOT MEAN SQUARE ERROR (RMSE)
RMSE, similar to mean square error (MSE), desires square
rooting the MSE. RMSE behaves similarly to the standard
deviation of the residuals, which indicates how evenly
distributed the residuals are [38]. It is represented as:

RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 (4)

3) R2 SCORE (R2)
In a regression model, the R2 statistic represents the variance
difference that can be attributed to the independent variables.
The number falls between zero and one, where one means
the model thoroughly explains the variance, and zero means
it does not explain any variance.

R2 =
SSR
SST
=

∑ (
ŷi − ȳ

)2∑
(yi − ȳ)2

(5)

where ȳ is the mean of actual value. The SSR measures how
far the actual values deviate from the projected values. The
SST is calculated as the summation of the average squared
deviations between the predicted and actual values. The
coefficient of R2 is widely employed as a metric to assess
the degree of adequacy in linear regression models, although
its applicability extends beyond such models. It measures the
goodness of fit of a model to the data. A higher R2 value
indicates a better match between the model and the data,
whereas a lower value shows a poorer score between the
model and the data.

4) EXPLAINED VARIANCE (EV)
The concept of EV is used in statistical analysis to quantify
the proportion of the overall variability in the dependent
variable of a regression model. It can be accounted for by
the variations in the independent variables. Typically, it is
represented as a numerical value ranging from zero to one.
A score of one indicates that the model accounts for all

variations in the dependent variable, while a zero value
suggests that the model does not account for any variations.
The R2 statistic is generally used to calculate the explained
variance, as described in [39].

EV(yi, ŷi) = 1−
Var(yi − ŷi)
Var(yi)

(6)

where, Var(yi − ŷi) and Var(yi) are the standard deviations
of prediction errors and actual values, respectively. The EV
score close to 1.0 is a positive indicator of a well-fitting and
reliable model.

5) D2 TWEEDIE SCORE (D2 SCORE)
The D2 score consists of a range of probability distributions,
such as the continuous normal, gamma, inverse Gaussian
distributions and the discrete scaled Poisson distribution.
Additionally, this family includes the compound Poisson-
gamma distributions, which demonstrate a positive mass
at zero but are otherwise indefinite. Tweedie distributions
are a subclass of exponential dispersion models commonly
employed as probability distributions within the framework
of generalized linear models.

B. PERFORMANCE ANALYSIS
We performed an investigation using Python code for every
dataset separately and thirteen ML algorithms. Listed below
are our findings for each of the datasets.

KNC and NB have the most significant mean and root
mean square Errors in Table 3. However, RFR and XGBC
performed moderately well. This table showed that LR1,
DTC, LR2, AdaBoost, and GBC achieved the most signifi-
cant mean square error. However, its RMSE and R2 values are
marginally higher. Concerning the concepts of EV, maximum
error, and D2 score, the obtained score can be classified
as moderate. Nevertheless, the XGBR model demonstrates
superior performance across all evaluated criteria. Based on
a comprehensive analysis of many parameters, our research
findings suggest that the XGBR model exhibits the highest
level of performance among all the models shown in the table.

Our insights are tabulated in Table 4, XGBR, despite
having a lower RMSE score with the top max error.
Among the other ML models, ADC and LR1 performance
was notable. However, XGBR’s performance was the most
superior.

The CM1 dataset is shown in Table 5. Though the
XGBoost Classifier was the superior-performingmodel in the
previous datasets, its performance decayed here. Except for
GBR, the remaining ML algorithms performed much better.
Furthermore, the DTC approach exhibits the lowest values for
mean squared and absolute percentage errors. Based on our
research, it has been determined that the XGBR model has
more significant advantages in this particular subject area.

Table 6 shows what we discovered. Even though RFR did
the best in the software fault predictions, it has the most
significant mean squared error in this stream, even though it
has an average RMSE score. AdaBoost Classifier and LR1
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TABLE 3. Performance evaluation for PC1.

TABLE 4. Performance evaluation for baseline.

results stood out among the other ML models. On the other
hand, XGBR did the best job.

C. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)
XAI aims to improve the performance of individuals applying
AI-driven systems by enhancing their comprehension of the
underlying reasoning processes employed by these systems.
It can potentially serve as a practical appearance of the
social superiority to explanation. Although the absence of
an obligatory right, the integration of XAI can potentially
enhance the user experience of a given service. It provides
transparency and comprehension of the decision-making
processes of the underlying AI system. XAI endeavors to
comprehensively explain past, ongoing, and future actions

and the underlying information upon which these actions are
predicated. Additionally, it can help understand a model’s
behavior and create faith in the model itself. Several
well-known strategies in the field of XAI include SHAP,
activation maximization, saliency map visualization, layer-
wise relevance back-propagation (LRP), and LIME. This
article provides a comprehensive analysis of the LIME and
SHAP methodologies.

1) LOCAL INTERPRETABLE MODEL AGNOSTIC
EXPLANATIONS (LIME)
LIME is model-independent which is applicable for explain-
ing the expected results of ML models of their architecture
or underlying assumptions [40]. Due to the method’s model

VOLUME 11, 2023 132757



M. Begum et al.: Software Defects Identification: Results Using ML and XAI Techniques

TABLE 5. Performance evaluation for CM1.

TABLE 6. Performance evaluation for JM1.

independence, it can clarify any ML strategy’s predictions. It
accomplishes this by providing a reduced and interpretable
model only valid in the area surrounding the instance under
consideration. This functionality enables users to compre-
hensively comprehend the rationale behind the model’s
predictions for a given instance. Therefore, the model’s
overall behavior is intricate as well as hard to comprehend.
The approach operates by altering the provided input sample
and producing a new dataset that is contextually equivalent to
the original instance.

Then, it applies a simple and readily interpretable model,
such as a linear model or a decision tree, to the new dataset.
The coefficients of the LIME may be used to ascertain
the significance of each attribute in predicting the original
instance. Furthermore, it gives human-readable explanations
of a model’s behaviour. Additionally, it demonstrates efficacy
in evaluating and interpreting predictions generated by ML
models and facilitating the development of more transparent
and dependable models. While working with LIME, we uti-
lized the model that provides the best fit.
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2) PSEDOCODE FOR LIME
In Algorithm [1] we showed model construction for the
proposed LIME in XAI techniques. At first, we selected
our best model M compared with thirteen ML techniques.
After training the selected M Model, created a LineTabu-
lar_Explainer object called explainer .When created an object
passes 3 parameters, firstly X is an independent feature then
passes the feature name, and lastly passes ML type regression
or classification that assigns to the variable predictFnName.
Then call the exp (explain_instance) method on the explainer
object. This object has information about the data features’
importance. When calling this method then pass another
3 parameters, X , predict function predictFnName, and finally
how many features want to show declare it starts from 1 to
N , where N is the length of independent features size. The
‘show_in_notebook()’ method on the Explanation Object
should be called. This will make a graph that shows which
characteristics helped with the prediction. Other retrieval
techniques are available for obtaining feature importances
in various formats ‘as_list()’, ‘as_map()’, ‘as_html()’, and
‘as_pyplot_figure()’.

Algorithm 1Model Construction for Proposed LIME in XAI
Require: M best ML-MODEL with fit by XTrain, YTrain

data and X independent features
1: M ← best ML-Model compare other algorithms
2: ifM is regression then
3: mode = regression, predictFnName = M .predict
4: else
5: mode = classification, predictFnName =
M .predict_fn

6: end if
7: explainer ← lime.lime_tabular.LineTabular_Explainer

(X, features_names = X.columns, mode = mode)
8: exp ← explainer.explain_instance(X , predictFnName,

num_features = 1, 2, 3, . . . , n)
9: exp.show_in_notebook()

10: Return: visualizes feature importance by highlighting
the most influential input features for an ML model’s
predictions.

3) RESULT ANALYSIS OF LIME
Table 7 and 8, represent the discovery of the features of
software faults using LIME, where, Figure a.1 and a.2 (in
Table 7) show the structure of dataset PC1. The visualization
of the true value is 0.7035, whereas our model predicted
0.7468 presented in Figure a.1. LIME has successfully
outlined the most essential characteristics in producing these
expected results. Among 22 features in the dataset, the dit
feature showed the highest impact on the model’s estimation
ability. However, our approach adequately anticipated its
outcome, as seen in Figure a.2. The actual value was 0.2486,
while the value predicted by the model was 0.1373. It can
be found that cbo, mathOperationsQty, and the LOC features

have the most favorable values. We can realize that by
using LIME, the above three attributes have become essential
reasons for diagnosing software faults.

Figure b.1 and b.2 (in Table 7 ), we depict the major fea-
tures for reasoning the software faults of the dataset Baseline.
In Figure b.1, ourmodel predicted 0.6449, but the actual value
is 0.7397. This modest misconception of the prediction is due
to the variablesQty, the number of mathOperationsQty, and
stringLiteralsQty features. In addition, Figure b.2, features
nosi, cbo, LOC, variableQty, and assignmentQty of this
dataset’s software defects have been positively impacted,
which results in its model predicting 0.7082 when the actual
value is 0.9146.

Additionally, in Figure c.1 and c.2 (in Table 8) shown by
CM1, and here in Figure c.1, the predicted value is 0.1827,
and the true value is 0.1342 on the other side, Figure c.2,
the predicted value is 0.6828, and the true value is 0.7065.
Finally, in JM1, as in Figure d.1 and d.2 (in Table 8),
Figure d.1, depicts that predicting the outcome local value is
0.2112, whereas our model predicted 0.1371. Also, the most
negative features are nosi, dit, and stringLiteralsQty.

4) SHAPLEY ADDITIVE EXPLANATIONS (SHAP)
The SHAP approach is applied to explain individual forecasts
andmake a prediction approach using the model for a specific
instance. After that, the overall prediction is achieved by
measuring the individual features. It computes shapley values
derived from coalitional game theory, providing a method for
equally distributing the predicted outcome among the various
attributes. One advantage of SHAP is the representation of the
shapley value explanation as an additional feature attribution
technique, which can be conceptualized as a linear model.

5) PSEDOCODE FOR SHAP
In Algorithm [2] we showed model construction for the
proposed SHAP in XAI techniques. At first, we selected our
best M model compared with thirteen ML techniques. After
training the SelectedM Model, create a TreeExplainer object
called explainer and pass in parameters independent feature
ofM . Then create the shap_values object as shapValues pass
value of X independent features for data examples using
the explainer object. It have been built to produce charts
using both matplotlib and JavaScript. Using the JavaScript
backend, we’ll produce a chart. We must initialize shap
by using the initjs() function in order to do so. The force
plot illustrates the contributions of the shap values used
in an additive force layout to get the overall prediction.
When calling this method pass 3 parameters firstly pass
expected_value which takes the base value, to which the
shape values are appended. Then pass shapeValues and X for
an individual sample of data. Other retrieval techniques are
available for obtaining feature importance in various formats
‘Bar Plot’, ‘Waterfall Plot’, ‘Decision Plot’, ‘Dependence
Plot’, ‘Embedding Plot’, ‘Summary Plot’, and ‘Partial
Dependence Plot’.
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TABLE 7. LIME Agnostic Explanations Prediction. Here, PC1 by (a.1) and (a.2), Baseline by (b.1) and (b.2).

6) RESULT ANALYSIS OF SHAP
In 3. (a) (in Table 9) base value is 0.4493, the average of
all predictions made by the model on the training dataset

is also known as null model prediction (model without
any features). Here, the output value is 0.16, called a
prediction value. Features in red color influence positively,
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TABLE 8. LIME Agnostic Explanations Prediction. Here, CM1 by (c.1) and (c.2), and finally, JM1 by (d.1) and (d.2).

dragging the prediction value closer to 0. Assuming that
the assignmentsQty feature is detached, the prediction will

reduce from 0.16 to 0.088. On the other hand, features in blue
color influence negatively, i.e. drag the prediction value closer
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TABLE 9. SHapley Additive exPlanations Prediction. Here, PC1 by (a), Baseline by (b), CM1 by (c), and finally, JM1 by (d).

Algorithm 2Model Construction for Proposed SHAP in XAI
Require: M best ML-MODEL with fit by XTrain, YTrain

data and X independent features
1: M ← best ML-Model compare other algorithms
2: explainer ← shap.TreeExplainer (M )
3: shapValues← explainer .shap_values ( X )
4: shap.initjs()
5: shap.force_plot(explainer .expected_value, shapValues

[0,:], X .iloc[0,: ])
6: Return: visualization of the impact of individual features

on a model’s output, aiding feature importance analysis.

to 1. If the feature of nosi is removed, the prediction rate will
rise from 0.16 to 0.4993. Therefore, software faults will not
occur; thus, practitioners and stakeholders will benefit.

In 3. (b), the base value is 0.5026, and the output value
is 0.85. Whether the nosi feature is unfastened, then the
prediction will reduce from 0.85 to 0.6026, and if the dit
feature is separated, then the prediction will increase from
0.85 to 0.9026. In 3. (c), the base value is 0.4899, and the
output value is 0.19. If the nosi feature is removed, the
prediction will expand from 0.19 to 0.5219. Furthermore,

the last one, 3. (d) base value is 0.4982, and the output value
is 0.85. When the nosi feature is extracted, the prediction will
lessen from 0.85 to 0.6243, and if the dit feature is eliminated,
the prediction will be improved from 0.85 to 0.8680.

7) COMPARATIVE RESULT OF LIME AND SHAP
In our investigation, it has been observed that LIME exhibits
greater efficacy in detecting software defects within our
datasets, as compared to SHAP. LIME and SHAP can be
used to explain how any model works efficiently. On the one
hand, LIME builds a local explanation by fitting a simple
model to a prediction, which is lower in precision than the
complex model but simpler to understand. However, SHAP
measures the importance of every feature of a model by using
game theory. Finally, both methods are used to figure out
how different factors affect an expected result depending on
specific use cases and priorities.

V. CONCLUSION
This study aims to develop an ML model that helps
software engineers, analysts, and stakeholders find the best
features of software faults.The main advantages of finding
and addressing the root causes of software faults are
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essential for building high-quality, reliable, and maintainable
software. Moreover, it improves user satisfaction, optimal
cost savings and does not encounter frequent errors or
crashes. In this paper, we use SMOTTech and LE techniques
for the normalization and preprocessing of missing feature
values. Twenty-one characteristics were considered during
the prediction analysis.

Among the thirteen machine learning methods, EGBR
has a high level of accuracy in predicting the outcomes
of datasets. Here, we explored why XAI is essential, and
several facts about XAIwere analyzed for diagnosing faults in
software. Thenwe categorized it regarding scope and usage in
the context of identifying reasons for software faults. In XAI,
we performed on LIME and SHAP techniques, and LIME
is shown as the best valuable feature for reasoning software
faults or not for our datasets. The limitation of our research is
that a small number of features for software defects have been
selected. In subsequent investigations, the research scope
can be expanded by adding an essential amount of data and
utilizing current regression and classification techniques.

APPENDIX A
LIST OF ABBREVIATIONS
AdaBoost AdaBoost Classifier.
AUC Area Under the ROC Curve.
cbo Coupling between objects.
cbo Coupling Between Objects.
dit Depth Inheritance Tree.
DTC Decision Tree Classifier.
EGBR Extreme Gradient Boosting

Regression.
ETC Extra Trees Classifier.
EV Explained Variance.
GBC Gradient Boosting Classifier.
GBR Gradient Boosting Regression.
KNC KNeighbors Classifier.
LE Label Encoding.
LIME Local Interpretable Model.
LOC Lines of Code.
LR1 Linear Regression.
LR2 Logistic Regression.
MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
mathOperationsQty Number of Math Operations.
ML Machine Learning.
NASA National Aeronautics and

Space Administration.
NB Naïve Bayes.
nosi Number of static invocations.
RF Random Forest Regression.
RMSE Root Mean Square Error.
SHAP SHapley Additive exPlanations.
SMOTTech Synthetic Minority Oversampling

Technique.
SSR Sum of Squared Residuals.
SST Total Sum of Squares.

stringLiteralsQty String Literals.
SVM Support Vectors Machine.
variablesQty Number of Variables.
XAI Explainable AI.
XGBC XGBoost Classifier.
XGBR XGBR Regressor.

APPENDIX B
LIST OF USED SYMBOLS
R A random number that ranges from 0 to 1.
n Total number of data points.
i 1, 2, 3, . . . , n Number of iteration.
fi Feature vector of the under-investigated minority

class sample.
fnear fi’s is K closest neighbors.
hi Average learner that exhibits an individual

performance.
γ i Scaling factor that accounts for the effect of a tree

on the overall model.
yi Actual value of Y.
ŷi Predicted value of Y.
ȳ Mean of actual value.
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