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ABSTRACT Autonomous underwater vehicles (AUVs) are robots capable of operating underwater without
the need for human operators. Nonetheless, there is the essential requirement of remote operation capability
in case of exceptional situations, such as the encounter of unforeseen obstacles or malfunctions. The
corresponding robust controller design is a challenging task, especially due to limited communication
bandwidth to the land based control system as well as the exposure to disturbances like water currents. The
present study, therefore, proposes a Delta-Sigma-based 1-bit PID controller for such AUVs, which consumes
less communication resources and is robust to various disturbances arising in the underwater environment.
The proposed controller is designed using the Takagi-Sugeno (T-S) fuzzy model of the nonlinear AUV
systems. A comparative performance investigation of this controller is carried out with an output feedback
controller as reference design, which is based on the same T-S fuzzy model. The stability conditions of both
controllers are established. Obtained simulation results indicate that in case of extreme disturbances and
limited bandwidth, the reference controller could not stabilise the AUV system. In contrast, the proposed
Delta-Sigma-based 1-bit PID controller performed well under all conditions, while using less hardware and
communication resources compared to the reference design.

INDEX TERMS T-S fuzzy systems, 1-bit control, autonomous under water vehicles.

I. INTRODUCTION
During the past decade, autonomous underwater vehicles
(AUV) have attracted notable attention due to its ability to
operate autonomously in situations difficult or impossible
for human divers, improvements in sensors technologies
and propulsion systems leading to more efficient and
reliable operations, and increasing accessibility following
from reducing costs and easier operability [1]. Consequently,
AUVs are widely used in applications such as deep-
sea exploration, resource and area monitoring, military
operations, etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Wang .

Despite the fact that AUVs are designed to operate without
direct human control and to carry out missions independently,
they still require the capability to be remotely controlled
in exceptional situations. This includes, for example, the
encounter of unforeseen obstacles or the occurrence of
system malfunctions. Additional purposes for remote control
can be fine-tuning of the AUV operation and real-time
adjustments to the mission plan.

However, remote control of AUV is a challenging task
resulting from its exposure to the harshmaritime environment
and limited underwater communication [2]. For successful
local navigation of AUVs, various researchers have proposed
different control strategies for motion control of AUVs, such
as dynamic position control, trajectory tracking control, path
following control, heading control, etc. [3], [4].
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Following from advancement of communication technolo-
gies in recent years, the land based control of AUV is becom-
ing increasingly popular [2], [5], [6], [7]. This strategy is
similar to the networked control systems (NCSs) framework
which is widely employed by control engineers [8], [9].
NCSs are also cyber-physical systems and offer advantages
like easy operation, low effort system diagnosis, increase
in system agility, convenience and reduces system wiring
[10], [11]. However, having a communication channel in
the control loop can cause various other problems such as
delay in signals, quantisation errors and packet losses due
to network constraints. In underwater environment, these are
further aggravated by high signal attenuation.

One of the effective methods to represent highly nonlinear
systems such as AUV systems is using T-S fuzzy models,
which have been proven to be very effective [12]. It could be
shown that the T-S fuzzy model is an universal approximator
for a wide class of nonlinear systems, which are represented
via a group of linear models and membership functions
[13], [14], [15], [16]. Motivated by this, T-S fuzzy models
have been applied extensively for modelling and control
of AUV systems [1]. For example, T-S fuzzy model have
been used to design a fault-tolerant control strategy to
solve thruster fault related problems [17] and to solve
tracking control problem using adaptive control and sliding
mode control [18]. However, to the best of our knowledge,
no T-S fuzzy model that explicitly addresses the robust
control problem associated with AUV systems has been
reported.

Especially in security related scenarios, there is the risk
that AUV communication is subjected to malicious attacks
such as deception attack, denial of service (DoS) attack,
congestion attack and similar [19]. When AUVs, which are
controlled by land based control strategies, are subjected
to congestion attacks, the communication resources are
severely impaired and its control becomes a challenging task.
At low levels of congestion, this problem can be solved
using high-bit quantisers such as neural network quantisers,
logarithmic quantisers, nearest neighbour quantisers [20],
[21], [22], [23], [24], [25]. However, these quantisers
consumemore bandwidth and become ineffective and, in case
of severe congestion attacks, can even turn the system
unstable [26].
The principal goal of the present study is to address the

problem of limited bandwidth for remote control of AUVs.
One of the captivating ways of solving the bandwidth utili-
sation problem related to high-bit quantisers is through 1-bit
quantisers. There are several 1-bit quantisers, such as Delta-
SigmaModulator, Sigma-Delta Modulator, Delta-Modulator,
and Hybrid-Delta Modulator [11], [27], [28], [29], [30], [31].
These 1-bit quantisers are integrated with different control
strategies to form 1-bit controllers, which are also referred as
bit-stream controllers [32], [33]. Despite the fact that these
types of modulators consume significantly less hardware
resources and could minimise the quantisation error, this
study focuses on Delta-Sigma modulator based controllers

following from their excellent anti-aliasing capabilities and
high resolution [30].
Thus, we develop a Delta-Sigma-based 1-bit controller for

the robust control of a nonlinear AUV system in the pres-
ence of network constraints and disturbances. Furthermore,
an output feedback controller for the AUV system is designed
as reference to compare the performance of the Delta-Sigma-
based 1-bit controller. This papers’ primary contributions can
be summed up as follows:

1) Design of a Delta-Sigma-based 1-bit controller for
nonlinear systems represented by T-S fuzzy model with
special emphasis on AUV systems.

2) Establishment of stability conditions for the Delta-
Sigma-based 1-bit controller.

3) For comparative performance investigation, design of
an output feedback controller for T-S fuzzy AUV
systems and derivation of its stability conditions.

4) Validation of the performance of the proposed con-
troller via simulations, considering multiple distur-
bance scenarios of varying intensities, which com-
monly arise in underwater environment.

The rest of the paper is organised as follows. Section-II
describes the dynamics of autonomous underwater vehicle
and the T-S fuzzy model. Section-III and Section-IV dis-
cuss the design procedures of the Delta-Sigma-based 1-bit
controller and the output feedback controller, respectively.
In Section-V, simulation of an AUV example is used to
verify the efficacy of the suggested control schemes and
the theoretical findings. This is followed by conclusions in
Section-VI.
Preliminaries: For the rest of the paper, Euclidean norm

is used for vectors. The transpose and inverse of any matrix
5 is denoted by 5T and 5−1. Negative semi-definite,
negative definite, positive semi-definite, and positive definite
matrices of 5 is represented using 5 ≤ 0, 5 < 0,
5 ≥ 0 and 5 > 0, respectively. The identity and zero
matrices of appropriate dimensions are denoted by I and 0.
The dimensions of matrices are considered to be consistent
with algebraic operations if they are not specified in the text.
Any term that is induced by the symmetry is represented by
the symbol ⋆.

II. T-S FUZZY MODEL OF AUTONOMOUS UNDERWATER
VEHICLE (AUV)
The dynamics of theAUV system can be described using yaw,
sway and surge velocities as [1]:

1MV̇(t) +NV(t) + G�(t) = U(t) (1a)

�̇(t) = R [φ(t)]V(t) (1b)

where V(t) is the body-fixed velocities vector, �(t) denotes
the earth-fixed orientation vector, U(t) represents the control
vector,Mmeans the inertia matrix,N is the damping matrix,
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and G represents the mooring matrix. Furthermore:

V(t) =

[
VT1 (t) V

T
2 (t) V

T
3 (t)

]T
�(t) =

[
X T
p (t) YTp (t) φT (t)

]T
U(t) =

[
UT1 (t) U

T
2 (t) U

T
3 (t)

]T
M = MT > 0

G = diag{G1,1,G2,2,G3,3}

R [φ(t)] =

cos [φ(t)] − sin [φ(t)] 0
sin [φ(t)] cos [φ(t)] 0

0 0 1

 . (2)

The dynamics of an AUV, described in (1a), can be
reformulated as:

V̇(t) = AV(t) + B�(t) +DU(t) (3)

where A = −M−1N , B = −M−1G and D = M−1.
Define that X (t) = [VT (t) �T (t)]T . Then, the state space

model of the AUV system can be formulated using (1) and
(3) as:

Ẋ (t) = Ā(φ(t))X (t) + B̄U(t) (4)

where

Ā [φ(t)] =

[
03×3 R(φ(t))
B A

]
, B̄ =

[
03×3
D

]
.

Define ξ1(t) = sin [φ(t)], and ξ2(t) = cos [φ(t)]. In this
study, the yaw angle φ(t) is assumed to be in the interval
[−π/6, π/6]. Hence, ξ1(t) ∈ [−1/2, 1/2] and ξ2(t) ∈

[
√
3/2, 1]. The T-S fuzzy AUVmodel can be described using

following rules:
Plant Rule i:
IF ξ1(t) is Fi1 and ξ2(t) is Fi2 THEN

Ẋ (t) = ĀiX (t) + B̄iU(t) (5a)

Y(t) = C̄iX (t) (5b)

where Fi1, Fi2 are fuzzy sets, ξ1(t), ξ2(t) are premise
variables, Y(t) is the measured output vector, C̄i is the output
matrix, and

Āi =

[
03×3 Ri
B A

]
, B̄i = B̄

R1 =

 1 −1/2 0
1/2 1 0
0 0 1

 ,R2 =

√
3/2 −1/2 0
1/2

√
3/2 0

0 0 1


R3 =

 1 1/2 0
−1/2 1 0
0 0 1

 ,R4 =

√
3/2 1/2 0

−1/2
√
3/2 0

0 0 1



The nonlinear AUV model represented using T-S fuzzy
rules is given by [1]:

Ẋ (t) =

4∑
i=1

0i [ξ (t)] [Āi X (t) + B̄i U(t)] (6a)

Y(t) =

4∑
i=1

0i [ξ (t)] Ci X (t) (6b)

where

0i [ξ (t)] =
λi [ξ (t)]
4∑
j=1

λj [ξ (t)]

λi [ξ1(t)] = Fi1 [ξ1(t)]Fi2 [ξ2(t)] , λi [ξ1(t)] > 0
4∑
i=1

λi [µ(t)] = 1

and Fi1 [ξ1(t)] and Fi1 [ξ2(t)] have the same definitions as in
[34].

III. DESIGN OF DELTA-SIGMA-BASED 1-BIT PID
CONTROLLER
The schematic of a Delta-Sigma-based control system
consists of an encoder (E16), a decoder (D16) and a
communication channel as shown in Fig. 1. In the following,
we briefly outline how these components operate before
giving the comprehensive architecture of a 1-bit PID
controller based on Delta-Sigma principles.

A. ANALYSIS OF DELTA-SIGMA MODULATOR
Delta-Sigma modulator is one of the key components of
the Delta-Sigma-based control system. It consists of two
major components, i.e. a Delta-Sigma encoder E16 and a
Delta-Sigma decoder D16 , which are connected to each
other through a communication channel as shown in Fig. 2
[35], [36].

In Fig. 2, the dotted lines represent the signals that
are sent through the communication channel. Each encoder
E16 comprises of a 2-level quantiser, a multiplexer and an
integrator. This multiplexer encodes the µ̂(t) into a bit stream
signal χ̂ (t). To reconstruct the signal χ̂ (t), each decoderD16

comprise of a low pass filter and a multiplexer.
It is essential to understand the conditions in which the

quantised signal (µ̃(t)) is equal to the original signal (µ̂(t))
before discussing further principles of the Delta-Sigma-based
1-bit PID controller. It is shown that µ̃(t) resembles µ̂(t) if
the input to the 2-level quantiser is less than the gain of the
quantiser [11], [31].

Let us consider a continuous-time Delta-Sigma modulator
which has P number of input channels [31]. Then,

Ṡ(t) = µ̂(t) − µ̃(t) (7)

µ̃(t) = Q · sgn(S(t)) (8)
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FIGURE 1. Delta-Sigma-based control system.

FIGURE 2. Delta-Sigma modulator.

where Q ∈ RP×P is the gain of the 2-level quantiser, µ̃(t) ∈

RP is the output of the decoder Dx
16 and µ̂(t) ∈ RP is the

input to the encoder Ex16 .
Remark 1: To ensure that the sliding mode exist such that

ST Ṡ < 0, the gain of the 2-level quantiser must be selected
such that: ∥∥µ̂(t)∥∥ ≤ λmax(Q) (9)

where λmax denotes the largest eigenvalue of the 2-level
quantiser gain Q [27].

In order for the Delta-Sigma modulator to be in the sliding
surface, the following two conditions must be satisfied [27]:

Ṡ = 0

µ̃(t) ≡ µ̂(t)

In order for the Delta-Sigma modulator to be in the sliding
surface, the following two conditions must be satisfied [27]:

Ṡ = 0

µ̃(t) ≡ µ̂(t)

This is often known as the equivalent control and can be
expressed as [27]:

µ̂(t)(eq) ≡ Qσ (t) (10)

where

σ (t) = [sgn(S(t))]av
= sgn(S(t)) − ασ̇ (t), ∈ [−1, 1]

and α denotes the low-pass filter time-constant of Dx
16 .

B. DYNAMICS OF DELTA-SIGMA MODULATOR BASED
CONTROL SYSTEM
The design of the Delta-Sigma-based 1-bit controller is
executed assuming that the system is linear. Note that this
is not a limitation of this controller because if the system is
nonlinear, it can be represented by multiple linear subsystems
using T-S fuzzymodelling. In this study, the nonlinear plant in
(1), is represented by multiple linear subsystems as described
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in (6). Let the fuzzy ith linear subsystem be represented as:

Ẋ (t) = AiX (t) + BiUi(t)
Y(t) = CiX (t) (11)

whereX (t) ∈ RN are the states of the nonlinear plant,Ui(t) ∈

RM are the inputs or the control signals of the local controller
of the ith AUV subsystem, and Yi(t) ∈ RP are the outputs of
the nonlinear plant.

To stabilise ith of the AUV subsystem described in (11),
a local linear controller is designed and is described as:

Ẋc,i(t) = Ac,iXc,i(t) + Bc,iµ(t)
Ui(t) = Cc,iXc,i(t) +Dc,iµ(t) (12)

where Xc,i(t) ∈ RL denotes the local controller states and
µ(t) ∈ RP represents the error signals. Note that the control
design procedure is generic and applicable to any existing
linear feedback controllers. Without loss of generality, it is
first assumed for the reference signal R(t) = 0, hence
µ(t) = −Y(t) (see remark 2whenR(t) ̸= 0)). Combining the
ith AUV subsystem dynamics (11) and controller dynamics
in (12), the closed loop dynamics of ith AUV subsystem is
expressed as:

Ẋcl,i(t) =Acl,iXcl,i(t) (13)

where

Xcl,i(t) =

[
X (t)
Xc,i(t)

]
,

Acl,i =

[
Ai − BiDc,iCi BiCc,i

−Bc,iCi Ac,i

]
It is worth noting that since the controller (12) is designed

to stabilised the ith AUV subsystem under parallel distributed
compensation, all eigenvalues of Acl,i must be negative.
Fig. 1 shows the schematic of the Delta-Sigma-based control
system where the E16 and D16 are inserted. These two
elements work as encoder and decoder at the transmitter and
the receiver.E16 encodes the µ̂ signal into a bit-stream signal
at the transmitter and D16 decodes the bit-stream signal
that is received through the communication channel in to µ̃.
As mentioned before for a AUV subsystem with P outputs,
we require P number of encoders and decoders.
In the following, we illustrate the mathematical relation-

ship between the output of the D16 and the input of the E16

as:

µ̃(t) = diag
{
E16j ◦ D16j

}
∗ µ̂(t) = Q sgn(S(t)) (14)

where

Ṡ(t) = µ̂(t) − µ̃(t) = µ̂(t) −Q sgn(S(t))
= −Ŷ(t) −Q sgn(S(t)), (∵ R(t) = 0) (15)

where Q ∈ RP×P . Under ideal conditions, the input of the
E16 and the output of the D16 are equal (µ̃(t) = µ̂(t)).

The signals X (t), Ui(t), Xc,i(t), Y(t) and µ(t) of typical
control system, which are described in (11) and (12), are

replaced by X̂ (t), Ûi(t), X̂c,i(t), Ŷ(t) and µ̃(t), respectively
for Delta-Sigma-based control system.

The dynamics of the closed loop control system based
on Delta-Sigma-based 1-bit controller, for the ith AUV
subsystem, is expressed as:

[
˙̂Xcl,i(t)
Ṡ(t)

]
=

[
A1,i 0
A2,i 0

] [
X̂cl,i(t)
S(t)

]
+

[
B1,i
B2,i

]
µ̃(t) (16)

where X̂cl,i(t) = [X̂ (t) X̂c,i(t)]T and

A1,i :=

[
Ai BiBc,i
0 Ac,i

]
, B1,i :=

[
BiDc,i
Bc,i

]
A2,i := [−Ci 0], B2,i := −IP (17)

with A1,i ∈ R(N+L)×(N+L), A2,i ∈ RP×(N+V) B1,i ∈

R(N+L)×P and B2,i ∈ RP×P .

C. STABILITY ANALYSIS OF DELTA-SIGMA MODULATOR
BASED CONTROL SYSTEM
The following section derives the stability conditions for the
Delta-Sigma-based 1-bit control system in (16), where X (t)
and Xcl,i(t) denote the states of the open and closed loop
system (without the Delta-Sigma modulator), respectively.
X̂ (t) and X̂cl,i(t) represent the corresponding states of
Delta-Sigma modulator based control system.
Assumption 1: The classical feedback control system

described in (13) is stable (Acl,i is Hurwitz).
In order to establish the stability conditions of the

Delta-Sigma modulator based control system for the ith AUV
subsystem, it is shown that X̂cl,i(t) → Xcl,i(t). This implicitly
suggest that the Delta-Sigma modulator based control system
maintain the stability properties of the classical feedback
system.
Theorem 1: If there exists a positive-definite symmetric

matrix Q such that

∥∥∥X̂cl,i(t)∥∥∥ ≤ λmin(Q)/ ∥Ci∥ , (18)

for all i = 1, 2, 3, 4, then the state trajectories of the AUV
system are driven towards the sliding manifold.

Proof: Consider a Lyapunov function as:

3(t) =
1
2
ST (t)S(t) (19)

where Ṡ(t) = −Ŷ(t) −Q sgn(S(t)) (from (15)).
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FIGURE 3. Delta-Sigma-based 1-bit PID controller.

By differentiating 3(t) gives,

3̇(t) =
1
2
(ST (t)Ṡ(t) + ṠT (t)S(t))

=
1
2
{ST (t)(−Ŷ(t) −Qsgn(S(t)))}

+
1
2
{(−Ŷ(t) −Qsgn(S(t)))TS(t)}

=
1
2
{ST (t)(−CiX̂ (t) −Qsgn(S(t)))}

+
1
2
{(−CiX̂ (t) −Qsgn(S(t)))TS(t)}

= −
1
2
{(ST (t)CX̂ (t) + X̂ T (t)CTi S(t))}

+
1
2
{(ST (t)Qsgn(S(t))) + (Qsgn(S(t)))TS(t)}

= −
1
2
{(ST (t)CiX̂ (t) + X̂ T (t)CTi S(t))}

+
1
2
{(2ST (t)Qsgn(S(t)))}

≤ −
1
2
(ST (t)CiX̂ (t) + X̂ TCTi S(t)))

−
1
2
(ST (t)λmin,i(Qi)IP · sgn(S(t))

≤ −∥S(t)∥ (λmin(Q) − ∥Ci∥
∥∥∥X̂ (t)

∥∥∥). (20)

If the quantiser gain Q of the Delta-Sigma modulator is
chosen such that

∥∥∥X̂ (t)
∥∥∥ ≤ λmin(Q)/ ∥Ci∥, for all i =

1, 2, 3, 4, then 3̇(t) < 0, which ensures that the state

trajectories of the Delta-Sigma control system for the AUV
system, are steered towards the sliding manifold [11], [31].

Remark 2: Consider the case where R(t) ̸= 0, by fol-
lowing a similar procedure described in Theorem 1, it can
easily be proved that 3̇(t) ≤ − ∥S(t)∥ (λmin(Q) − η) where
η = ∥R(t)∥ + ∥Ci∥

∥∥∥X̂ (t)
∥∥∥.

Theorem 2: If for all i = 1, 2, 3, 4,
∥∥∥X̂cl,i(t)∥∥∥ ≤

λmin(Q)/ ∥Ci∥ then, under ideal sliding condition X̂cl,i(t) ≡

Xcl,i(t).
Proof: It can be shown from (14) that:

˙̂Xcl,i(t) = A1,iX̂cl,i(t) + B1,iµ̃eq(t) (21)

Ṡ(t) = A2,iX̂cl,i(t) + B2,iµ̃eq(t) (22)

where µ̃eq(t) = Qsgn(S(t))eq (refer (16)) and sgn(S(t))eq ∈

(−1, 1).
From (22),

µ̃eq(t) = B−1
2,i Ṡ(t) − B−1

2,iA2,iX̂cl,i(t) (23)
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Substituting µ̃eq(t) from (23) into (21) and after simplifying
using (16) gives,

˙̂Xcl,i(t) = A1,iX̂cl,i(t) + B1,i{B−1
2,i Ṡ(t) − B−1

2,iA2,iX̂cl,i(t)}

= (A1,i − B1,iB−1
2,iA2,i)X̂cl,i(t) + B1,iB−1

2,i Ṡ(t)

=

([
Ai BiCc,i
0 Ac,i

]
+

[
BiDc,i
Bc,i

] [
−Ci 0

])
X̂cl,i(t) (24)

+ B1,iB−1
2,i Ṡ(t)

= Acl,iX̂cl,i(t) + B1,iB−1
2,i Ṡ(t) (25)

From (13) and (24), it can easily be observed that as
Ṡ(t) → 0, the state trajectories X̂cl,i(t) → Xcl,i(t).
Lemma 1: [27] To avoid the system being unstable during

the sliding mode phase, the initial conditions of the switching
function Sk (t0) is selected such that:

|Sk (t0)| ≤ λmin(Q) ∀k ∈ {1, 2, . . . ,P} (26)

Remark 3: To relax the assumption of infinite sampling,
a boundary layer can be introduced. Note that sliding mode
takes place in this boundary layer Si where:

∥Si∥ ≤ ∥Ci∥ . (27)

Remark 4: Note that if the controlled plant is nonlinear
and if the system dynamics are represented by a set of T-S
fuzzy rules, T-S fuzzy PID controllers can be designed for
each subsystem of the T-S fuzzy model using linear control
theory. Then using parallel distributed compensation (PDC),
T-S fuzzy PID controller can be designed for the whole
nonlinear system.

D. SELECTION OF PID TUNING PARAMETERS
The stability conditions for the Delta-Sigma modulator based
1-bit control system was derived in the previous section.
Although we derived the stability conditions considering the
AUV subsystem, the controller design procedure is generic
and various other controllers can be designed using this
framework.

The schematic of the Delta-Sigma-based 1-bit PID con-
troller is depicted in Fig. 3. As a first step, for each linear
subsystem, estimated PID gains are calculated following a
similar procedure as described in [37]. In the next step,
lower and upper bounds of the proportional gain [Kl

P,i,K
u
P,i],

integral gain [Kl
I,i,K

u
I,i], differential gains [Kl

D,i,K
u
D,i]

are selected around those initially obtained values. Shift
registers are used, instead of multipliers, to keep hardware
consumption minimal. The output of the Delta-Sigma-based
1-bit PID controller for the ith AUV subsystem, is given by:

Ûi(t) = KP,i +
KI ,ih
ζ (t)

+
KD,iND,iτ

ζ (t) +NN ,iτ
(28)

where the τ andND,i denote the sampling time and the filter
coefficient of the differentiator. Furthermore:

ND,iτ = 2−R, R ∈ N0 (29)

ζ (t) = X (t + τ ) − X (t) (30)

After designing the Delta-Sigma-based 1-bit PID con-
troller, the focus shifts to design an output feedback controller
for comparison purposes. This type of of controller has been
chosen as reference, as it has been applied successfully in
various applications. Additionally, it is of interest to investi-
gate its robustness against various disturbances in underwater
environment with limited communication bandwidth. Thus,
we derive in the following an output feedback controller
for AUV systems. The design procedure of the output
feedback controller differs slightly from the output feedback
controllers described in the literature. During the design,
we have used results from [38] to reformulate the bi-linear
problem in to a linear matrix inequality.

IV. DESIGN OF OUTPUT FEEDBACK CONTROLLER
In the following section, we describe the procedure for
designing an output feedback controller for the AUV
presented in section II.
Consider the nonlinear system described in (5). Define:

Ā(λ) =

4∑
i=1

λi [ξ (t)]Ai

B̄(λ) =

4∑
i=1

λi [ξ (t)]Bi

C̄(λ) =

4∑
i=1

λi [ξ (t)] Ci (31)

For the nonlinear plant described in (5), the fuzzy output
feedback controller is defined as:

U(t) = K̄(λ)Y(t) (32)

where,

K̄(λ) =

r∑
i=1

λi [ξ (t)]Ki (33)

Note that Ki, i = 1, 2, 3, 4 are the local controller gains
which are to be designed. Integrating the output feedback
fuzzy controller in (32) to the global AUV fuzzy plant in (6),
the closed loop output feedback control system results to:

Ẋ (t) =
(
Ā(λ) + B̄(λ)K̄(λ)C̄(λ)

)
X (t) (34)

Note that following lemmas are necessary for the proof and
are presented here for sake of completeness.
Lemma 2: [39] Denote the set T = {t} and let H(t),

J1(t), . . . , Jl(t) be some functional or functions. Further
define domain H:

H = {t ∈ T : J1(t) ≤ 0, . . . , Jl(t) ≤ 0} . (35)

If there exist κ1 ≥ 0, . . . , κl ≥ 0 such that

H(t) −

l∑
j=1

κjJj(t) < 0, (36)

then, H(t) < 0 ∀t ∈ H.
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Lemma 3: [38] Consider a matrix M of the form

M =

(
A B

BT C

)
,

then the following are true given that C is invertible,

i. If A − BC−1BT > 0 and C > 0, then M > 0
ii. If A − BC−1BT

≥ 0 and C > 0, then M ≥ 0.

Lemma 4: [38]

i. A matrix-valued mapping G is positive semi-definite-
convex onX if and only if for anyV ∈ RP, the function
F := vTG(x)v is convex on X.

ii. A mapping G is positive semi-definite-convex on X if
and only if for all x and y in X.

G(y) − G(x) ≥ DG(x)(y − x)

Theorem 3: If there exists a symmetric matrix P > 0 and
matrices Ki, i = 1, 2, 3, 4 that satisfy the following
conditions: AT

i P + PAi PBi ⋆T

BTi P −I 0
BTi P +KiCi 0 −I

 < 0,

i = 1, 2, 3, 4; (37)

1
2

(
AT
i P + PAi

+AT
j P + PAj

)
1
2P ⋆T

1
2P −

1
2

(
BiBTj

+BjBTi

)
0

1
2

(
BTi P +KiCj

+BTj P +KjCi

)
0 −I


< 0,

i > j; (38)

then, the system (34) is asymptotically stable.
Proof: Choose the Lyapunov function candidate as:

3(t) = X T (t)PX (t).

The time derivative of the 3(t) is:

3̇(t) = Ẋ T (t)PX (t) + X T (t)PẊ (t)

= X T (t)
{
Ā(λ) + B̄(λ)K̄(λ)C̄(λ)

}T PX (t)

+ X T (t)P
{
Ā(λ) + B̄(λ)K̄(λ)C̄(λ)

}
X (t)

≤ X T (t)
{(
Ā(λ) + B̄(λ)K̄(λ)C̄(λ)

)T P}X (t)

+ X T (t)P
{(
Ā(λ) + B̄(λ)K̄(λ)C̄(λ)

)}
X (t)

+ X T (t)
{(
C̄(λ)T K̄(λ)T K̄(λ)C̄(λ)

)}
X (t)

= X T (t)
{
91 + 9T

2 92

}
X (t) (39)

where

91 = A(λ)TP + PĀ(λ) − PB̄(λ)B̄(λ)TP
92 = B̄(λ)TP + K̄(λ)C̄(λ)

From (39) it is clear that if:

9 = 91 + 9T
2 92 < 0

9 = Ā(λ)TP + PĀ(λ) − PB̄(λ)B̄(λ)TP

+

(
B̄(λ)TP + K̄(λ)C̄(λ)

)T
×

(
B̄(λ)TP + K̄(λ)C̄(λ)

)
< 0, (40)

then the fuzzy system (34) is stable.
Using 3 and 4, we can express 9 as:

9 =

[
Ā(λ)TP + PĀ(λ) − PB̄(λ)B̄(λ)TP ⋆T

B̄(λ)TP + K̄(λ)C̄(λ) −I

]

=

4∑
i=1

λi

4∑
j=1

λj

[
Ā(λ)TP + PĀ(λ) − PB̄(λ)B̄(λ)TP ⋆T

B̄(λ)TP + K̄(λ)C̄(λ) −I

]

=

4∑
i=1

λ2i

[
AT
i P + PAi − PBiBTi P ⋆T

BTi P +KiCi −I

]

+

4∑
i<j

λiλj

 1
2

(
AT
i P + PAi − PBiBTj P

+AT
j P + PAj − PBjBTi P

)
⋆T

1
2

(
BTi P +KiCj + BTj P +KjCi

)
−I


=

4∑
i=1

λ2i

A
T
i P + PAi PBi ⋆T

BTi P −I 0
BTi P +KiCi 0 −I



+

4∑
i<j

λiλj



1
2

(
AT
i P + PAi

+AT
j P + PAj

)
1
2P ⋆T

1
2P −

1
2

(
BiBTj

+BjBTi

)
0

1
2

(
BTi P +KiCj

+BTj P +KjCi

)
0 −I


(41)

Thus, if (41) is less than zero, i.e. 9 < 0, then the fuzzy
system is stable (using Lemma 2).

V. SIMULATION RESULTS
The robust capability of the proposed Delta-Sigma-based
1-bit PID controller is investigated in a networked system
and its performance was compared with an output feedback
controller. The considered example is a nonlinear AUV
system, which is represented by T-S fuzzy model consisting
of 4-number of linear subsystems.

The block diagram of the employed network control
system is shown in Fig. 4 and in Fig. 5. Following the
common practice, it is assumed that the communication
channel exists only in one side of the networked system.
There, the control signal from the proposedDelta-Sigma 1-bit
PID controller or the output feedback controller is transmitted
through a wireless communication channel to the AUV (in
Fig. 1, µ̂(t) ≡ µ̃(t)). From Fig. 5, it can be observed that
the wireless communication channel is implemented using
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FIGURE 4. Networked control system.

FIGURE 5. Networked control using ZigBee protocol based
communication network.

two Arduino boards and two Zigbee modules as hardware in
loop (HIL). The modulated signal is transmitted to the Zigbee
module 2 in Arduino board 2 from the Zigbee module 1 in
Arduino board 1. This board is connected to the computer
and with the plant, the controller, and the quantiser. The
Zigbee module 2 in Arduino board 2 acts as a hop device
in another computer which transmits the signal back to the
Zigbee module 1 in Arduino board 1 which then transmits
the signal into the demodulator.

The nonlinear dynamics of AUV is described by (1)
where [1]:

M =

1.0852 0 0
0 2.0575 −0.4087
0 −0.4087 0.2153


N =

0.0865 0 0
0 0.0762 0.1510
0 0.1510 0.0031


G =

0.0389 0 0
0 0.0266 0
0 0 0

 (42)

The various matrices described in (3) are:

A =

 −0.0797 0 0
0 − 0.0818 − 0.1224
0 − 0.2254 − 0.2468


B =

−0.0358 0 0
0 − 0.0208 0
0 − 0.0394 0


D =

0.9215 0 0
0 0.7802 1.4811
0 1.4811 7.4562

 (43)

During the simulations it is assumed that the output
matrices Ci = I3×3 i = 1, 2, 3, 4 (see (5)). To emulate
practical underwater environment, simulations are conducted
considering a transmission delay of 0.01 seconds [40].
The gains of the output-feedback controller and the Delta-
Sigma-based 1-bit PID controller are designed following the
procedures described in section-IV and section-III. In this
simulation, the initial conditions of the surge velocity, sway
velocity and yaw velocity is assumed to be 0.05, 0.01 and
−0.01, respectively.

Initially, the effects of disturbances are not taken into
consideration and the velocity response of the AUV were
obtained without the controllers. The responses, depicted
in Fig. 6, indicate that with the absence of the controllers,
the AUV becomes unstable even with the absence of any
disturbances such as currents.

Next, both the Delta-Sigma-based 1-bit PID controller and
the output-feedback controller are implemented without con-
sidering the effects of disturbances. The velocity responses of
these controllers are shown in Fig. 7 and Fig. 8, respectively.
It can be seen from the results that both the controllers

could stabilise the AUV system and return to the steady-state
within practically acceptable times. However, the 1-bit
controller shows a high overshoot compared to the output
feedback controller for the sway and yaw velocities. This
is expected as the Delta-Sigma-based 1-bit PID controller

VOLUME 11, 2023 122829



C. Wanigasekara et al.: Robust Control of AUVs Using Delta-Sigma-Based 1-bit Controllers

FIGURE 6. Velocity response of AUV without controllers.

FIGURE 7. Velocity response of AUV with the Delta-Sigma-based 1-bit PID
controller without disturbances.

FIGURE 8. Velocity response of AUV with output-feedback controller
without disturbances.

transmits 1-bit as control signals to control the AUV unlike
the output feedback controller which sends higher bit signals
(e.g. 32-bit).

In the third phase, the effects of moderate disturbances, e.g.
water currents, on the AUV system are considered. During
simulations, the effects of these disturbances are reflected
as measurement noise. The performance of the controllers
are depicted in Fig. 9 and Fig. 10. Although, both these
controllers results in stable dynamics, the performance of
1-bit controllers is similar to the results shown in Fig. 7.
However, the yaw velocity response of the output feedback
controller takes longer time to reach the steady-state.

FIGURE 9. Velocity response of AUV with the Delta-Sigma-based 1-bit PID
controller under moderate disturbances.

FIGURE 10. Velocity response of AUV with output-feedback controller
under moderate disturbances.

FIGURE 11. Velocity response of AUV with the Delta-Sigma-based 1-bit
PID controller under extreme disturbances and limited network resources.

In the last phase, the robustness of these controllers are
investigated further, where we consider the effects of extreme
disturbances and congestion attack). These are incorporated
into the simulation as measurement noise and packet losses,
respectively. The resulting velocity response of the AUVwith
Delta-Sigma-based 1-bit PID controller is shown in Fig. 11.
One can observe that this controller is robust against such
adverse conditions. However, the output feedback controller
failed to provide stabilised response and is therefore not
robust (results not shown).

The performance of both controllers are satisfactory
under no disturbances and moderate disturbances (the
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TABLE 1. Time to reach stability.

TABLE 2. Maximum overshoot.

results are further analysed quantitatively in Table. 1 and
Table. 2). However, the output feedback controller fails to
perform under extreme disturbances and limited network
resources, whereas the proposed Delta-Sigma-based 1-bit
PID controller could stabilise the AUV’s surge, sway and
yaw velocities under extreme disturbances. Additionally, this
controller uses fewer hardware and communication resources
and has been demonstrated to be impervious to disturbances
such as water currents.

It is worth to emphasis that, in practical systems, para-
metric uncertainties of the membership function are common
[41]. This makes its challenging to analyse such systems with
type-1 fuzzy models which contains membership functions
without uncertainties. To alleviate this problem interval type-
2 (IT2) fuzzy model can be used [41], [42] and is one of the
subjects of the future research.

VI. CONCLUSION
This paper designed a Delta-Sigma-based 1-bit PID con-
troller and an output feedback controller for the land-based
control of AUV systems. The design of both controllers are
carried out using the Takagi-Sugeno (T-S) fuzzy representa-
tion of AUV system. The necessary conditions for stability
of both these controllers are derived. The effectiveness
of these controllers was investigated considering different
practical maritime and networked scenarios such as moderate
to high levels of disturbances; congestion attacks leading
to packet losses and delay. The obtained results indicate
that the proposed Delta-Sigma-based 1-bit PID controller
performance better than the output feedback controller and is
robust under limited communication resources and extreme
disturbances.
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