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ABSTRACT Guaranteeing food security from agriculture in an uncertain context, derived from the effects
of multiple factors, is a challenge. Traditional agricultural production is the one that faces the greatest
challenges, derived from the scarce evolution in agricultural practices, despite being the one that contributes
the most to the availability of food, at 80%. This systematic review aims to identify and analyze agrotech-
nological systems belonging to precision agriculture, which may be potentially adaptable to traditional
rural agriculture. Contributions that improved crop yields from scientific and technological studies were
analyzed. The PRISMA statement was used as a formal outline to collect and analyze 114 studies from
the period 2018-2023. From the review, it was identified that there is a growing trend in the adoption of
intelligent systems that help producers in the management of crops, accentuated in the increase of crop yield,
in the determination of product quality, and in the management of water resources, mainly. Likewise, it was
identified that the preponderant approach is the monitoring and control of crop development. This is achieved
through emerging technologies, such as the Internet of Things, artificial intelligence, and machine learning,
with information mainly collected by sensors embedded in drones, algorithms, decision support systems,
sensors, and Arduino technology systems. Finally, this review shows that there are five viable systems that
can be adapted to traditional agriculture to strengthen agricultural production. Therefore, the adoption of
scientific-technological contributions from precision agriculture contributes to ensuring food security.

INDEX TERMS Agricultural applications, food security, precision agriculture.

I. INTRODUCTION
Traditionally, agricultural food production is an activity
humanity has been carried out since it has settled in a sin-
gle place. Homo sapiens began to expand around the world
less than 100,000 years ago, despite this it was not until
13,000 before the common era when the Agricultural Rev-
olution began [1]; the post-ice age in ad hoc to Holocene
climates in stationary tropical and temperate latitudes, mainly
[2]. Since then, various agricultural practices have emerged
worldwide in diverse cultures. Within this framework, natu-
ral resources have been exploited to meet the demands for
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food production. A situation that is capable of degrading
the earth affect the environment and the connection between
humanity and nature [3]. During the Neolithic, substantial
changes occurred in food production, the management of nat-
ural resources, and settlement patterns, resulting in intensive
agricultural systems [4]. Globally, food insecurity is growing,
requiring an increasing food supply. We are seven years away
from achieving the goals established by the United Nations
in the ‘‘2030 Agenda for Sustainable Development’’, aligned
with eradicating hunger, food insecurity, and all forms of
malnutrition —targets 2.1 and 2.2 of the Sustainable Devel-
opment Goals (SDGs)— and we are still far from achieving
this. In this sense, considering that in 2022 the world popula-
tion was more than 7,953 billion, while by 2050, a population

VOLUME 11, 2023


 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

123047

https://orcid.org/0000-0002-3706-6244
https://orcid.org/0000-0002-3064-0274
https://orcid.org/0000-0001-5639-6356
https://orcid.org/0000-0003-4287-3144
https://orcid.org/0000-0002-8605-2666


N. Montalvo-Romero et al.: Agro-Technological Systems in Traditional Agriculture Assistance

of 9,700 billion inhabitants is estimated [5]; date, by which
the FAO (Food and Agriculture Organization of the United
Nations) estimates that at least 50% more food for humans
and animals, as well as biofuels, will have to be produced
than in 2012; using for this, a cultivation area of 1,732 million
hectares [6].
In addition, in 2021the FAO estimated that about 8.9 and

10.5% of the world’s population suffered from hunger [7];
in that same year, the total estimate of food insecurity of
the world population reached 29.3% —representing 11.7%
severe food insecurity, while the rest experienced moderate
food insecurity— [8]. In 2022 in the Global Report on Food
Crises, the alarming deterioration of food insecurity as a
result of the intensification of conflicts, economic crises,
extreme weather events, or a combination of these was high-
lighted; while the 2021 supply chain fractures related to the
Covid-19 pandemic led to an increase in commodity prices
[9], further exacerbated by the war in Ukraine, to such an
extent that the increase in food prices affected 47% of coun-
tries by 2020 [10], which exacerbated access to food for the
most vulnerable families, threatening to worsen food security.

According to World Bank data, from October 2022 to
February 2023, in low-income and middle-income countries,
inflation levels were above 5% —in 94.1% of low-income
countries, 86% in lower-middle-income countries, and 87%
in upper-middle-income countries—; while approximately
87.3% of high-income countries had an increase in food price
inflation [11].

This situation is alarming since it represents that approx-
imately 2.3 billion people went hungry, ran out of food,
and went a day or more without eating. Likewise, despite a
decrease from 33% in 2000 to 22% in 2020 in stunting in
children under five, there is still a 50% child stunting in some
countries [8]. In addition, it is estimated that by 2030 approx-
imately 670 million people will be undernourished [7]. Thus,
generating pressures on agricultural production with impacts
on the environment is associated with a high demand for food
by a growing population.

Therefore, ensuring food security from increased agricul-
tural productivity through sustainable practices is crucial.
However, this is complex due to the interaction of multiple
factors compromising the achievement of targets 2.1 and
2.2 of SDG 2, ‘‘Zero Hunger’’. Concerning this, in the Agri-
cultural Outlook 2022-2031, it is mentioned that population
growth and food consumption are factors attributable to the
degradation of natural resources and the increase in green-
house gases [12]; while in The Sustainable Development
Goals Report 2022, FAO is attributed to the degradation
of global food security due to conflicts, Covid-19, climate
change and growing inequalities, which have converged [10].
To this, agriculture faces the challenge of providing food
without compromising the agroecosystem’s long-term sus-
tainability and resilience [13].
The challenges of meeting the food needs of the present

and future generations are compromised. The primary sector

faces the reality of satisfying a growing demand for food,
conditions derived from climate change, degradation of nat-
ural resources due to indiscriminate overexploitation, loss of
biodiversity, and inefficiency of the agri-food logistics system
which has increased food waste. In addition, it is estimated
that between 2020 and 2050, 53% of people living in urban
areas will increase to 70% [14], further undermining agri-
food systems.

The FAO estimated that between 2000 and 2020, pri-
mary crop production increased globally by 52%; this is
attributable to a combination of factors, e.g., a greater use of
irrigation, pesticides, and fertilizers in the face of a smaller
cultivated area; the latter factor, derived from the fact that
population growth was faster than the area of farmland; there-
fore, the area of arable land per capita in 2020 on average was
reduced by 18% [8]. Despite the growth in food supply, this
is not enough. By 2050, the food supply should increase by
50% compared to that in 2012 [15].

The agricultural sector is the largest source of employ-
ment in the world, supporting 40% of the current population
[16]. Representing, for rural households, the largest source
of income. Given this situation, in the United Nations World
Report on the Development of Water Resources 2019, it is
mentioned that more than 80% of all farms around the world
develop Traditional Agriculture (TA) with an area of less than
two hectares; these small farmers contribute more than half of
agricultural production in many countries [17]. Therefore, the
TA provides up to 80% of the food consumedworldwide [16].
Considering the importance of the agricultural sector.

Over time, multiple efforts have been developed and applied
to increase the yield of agricultural production, with a
greater boom —in recent times— focused on sustainability.
Given this situation, incorporating scientific/technological
approaches into agricultural practices has been presented as a
valuable strategy capable of improving crop yields under an
ecosystem approach. In [18], advancement in technological
developments is considered to impact the development of the
agricultural industry.

Agriculture has evolved hand in hand with science/
technology (Figure 1) through Agriculture 1.0 [19], [20],
[21], [22], [23], Agriculture 2.0 [24], [25], [26], [27], [28],
Agriculture 3.0 [29], [30], [31], [32], [33], Agriculture 4.0
[34], [35], [36], [37], [38], until today called Agricul-
ture 5.0 [39], [40], [41], [42], [43]. In this sense, agricultural
automation includes using machinery and equipment that
improve agricultural activities—diagnosis, decision-making,
and execution— thereby reducing the heavy workload while
improving the accuracy of agricultural activities [44]. Adopt-
ing machinery and equipment as an intelligent strategy leads
Precision Agriculture (PA).

In each stage of evolution, agricultural yield has been
improved in tandemwith agricultural scientific/technological
development. In [45], it is established that the next phase of
the evolution of agricultural technology is the autonomous
management of the field; because the agricultural sector is
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FIGURE 1. Stages of the evolution of agriculture.

transitioning towards ‘‘smart agriculture’’ from the adop-
tion of emerging technologies [46]. In [47], it states that
agri-food systems are being transformed in order to pro-
vide healthier, more affordable, and safer diets aligned with
sustainable production. The new era of agriculture is char-
acterized by (i) new concepts of cultivation and harvesting,
(ii) robotics, (iii) renewable energies, (iv) interconnected
intelligent systems, and (v) animal welfare through techno-
logical systems [48].

Agriculture has transformed the planet on which we all
live [49]. It is a reality that agricultural practices have
evolved. Current knowledge about good agricultural practices
results from the knowledge and experience of ancestral gen-
erations, who, in an ‘‘empirical’’ way, i.e., by trial and error,
have perfected the practice of crops according to the relation-
ship between the crop and the conditions of the ecosystem.

While it is true that the technification of modern intensive
agro-production of crops has had a vertiginous exponential
growth that has increased production volume, it is also true
that, despite this, the demand for food cannot be fully sup-
plied. This situation is attributable to the fact that Industrial
Agriculture (IA), as a link in the Global Agri-Food Chain
(GAFC), is a part of a long logistics chain. The GAFC is
integrated by multiple interrelated activities that begin in
the field of cultivation until its exhibition at fixed points
of sale through multiple transports between the different
links of the logistics chain —e.g., field-packing, field-
processing, imports-exports, distribution centers-marketing
points—. In this regard, these situations show a long GAFC
—in time and distance— and fragile, a situation that limits its
ability to immediately supply food requirements, a situation
that is exacerbated by atypical events.

In parallel, traditional agricultural production has limited
development and growth; and this production system has
stagnated. The modes and forms of the practices of the TA
remain ancestral to such an extent that draught animals are
still used for plowing the land and are used as rudimen-
tary tillage utensils, where the producers provide the care
and determination of crop requirements. Despite the limited
evolution of the TA production system, the model has the
strength of providing a variety of crops through environmen-
tally sustainable practices — e.g., from the use of organic
fertilizer— allowing its proximity to quickly complements
the requirements.

A. REVIEW STRATEGY
So, considering that there is an incomparable technolog-
ical evolution between the production models of AI and
TA and that there is a recent vertiginous growth of tech-
nologies applied to agriculture, this review study has been

inspired by the objective of identifying and analyzing the
scientific/technological contributions that have been success-
fully developed and applied in agriculture, and that can be
adaptable and assimilated to the TA of small rural producers,
considering their context and infrastructure, as well as iden-
tifying the existing knowledge gap. As far as we know, some
studies evaluate the adoption of PA, but it is not analyzed
from TA in small-scale crops [50]. This systematic review
is aimed at researchers interested in developing projects that
improve the yield of small-scale crops from their technifica-
tion and aims to serve as a basis for developing social policies
from political actors and social associations. In addition, this
study may lead to more in-depth and detailed reviews of the
technologies applied to other agricultural subsectors. This
study adopts a strategy of regressive analysis of the secondary
data of published contributions. The systematic review of
the literature allows, as an analysis strategy, a deep under-
standing of this phenomenon. This approach guarantees a
formal and structured review that allows to extraction reliable
and reliable information from the features of the studies of
agro-technologies reported in the articles and patents, which
have the potential to be adaptable to traditional rural agricul-
ture to increase its yield.

In addition, from Section I Introduction, the rest of the
document is organized as follows: Section II describes the
formal PRISMA methodology used to collect the studies;
Section III presents the findings identified in the studies
reviewed; Section IV describes the evidence and limitations
of the study; finally, Section V concludes the systematic
review study between the transition from modern production
technology to traditional agricultural production.

II. MATERIALS AND METHODS
A formal systematic review was conducted following the
Systematic Review of the Literature (SRL) [51] and adhered
to the recommendations of the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses guidelines
(PRISMA) [52]. The protocol was registered in osf.io/acms7/
(accessed on August 3 2023) [53].

A. ELIGIBILITY CRITERIA
The PICO approach (P: population, I: intervention, C: com-
parator, O: outcome) was used to establish eligibility criteria
and assess the effects of interventions and comparisons [54].
Studies that met the following inclusion criteria were

considered for the review: (a) studies with agricultural sci-
entific/technological applications/developments, (b) studies
with cutting-edge/innovation approaches, (c) studies with
strategies for viable uptake and adoption by smallholder
farmers, and (d) studies that improve crop yields. Studies
that met the following exclusion criteria were excluded from
the review: (a) studies that are of complex adaptation to
crop areas less than two hectares, (b) studies with applica-
tions to specific monocultures that are difficult to adapt to
polycultures, (c) studies with empirical or theoretical results,
obtained from simulated scenarios, and (d) biotechnologies
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that consider, e.g., the use of bacteria and gene modification
in increasing crop yield.

The literature search was not limited by discipline or
subdiscipline. However, it was limited to English language
studies and a 5-year search period (2018-2023), and orig-
inal research studies and intellectual property registration,
i.e., literature review studies, book chapters, books, non-
peer-reviewed articles and conference proceedings were not
considered in this review.

B. INFORMATION SOURCES
The retrieval of scientific studies for the review was con-
ducted using: Web of Science (WoS), Scopus, ScienceDirect,
and SpringerLink; as which contain a large number of
relevant peer-reviewed indexed journals. Meanwhile, techno-
logical studies were recovered from the World Intellectual
Property Organization (WIPO) database, the world’s primary
source of intellectual property registration.

Given the rapid exponential growth of smart agriculture,
a 5-year search period was established, i.e., from January
2018 toMay 2023; thus, it excluded outdated information that
could be irrelevant. The databases were consulted duringMay
2023, as follows: on May 23, the search in WoS [55] was per-
formed by N.M.-R. and A.M.-R.; on May 25, the search was
conducted in Scopus [56] by N.M.-R. and R.P.-V.; on May
26 we searched ScienceDirect [57] by N.M.-R. and A.M.-R.;
onMay 27 the search was conducted on SpringerLink [58] by
A.M.-R. and P.Q.-P.; and WIPO [59] was searched on May
28 by N.M.-R. and A.M.-R.

C. SEARCH STRATEGY
The key terms used in the search included words closely
related to the main domains of the study. This study considers
multiple electronic databases, which helps authors ensure that
relevant studies are included in the systematic review. The
authors selected the keywords for the bibliographic search in
joint agreement. The search strategy for each type of database
was designed by A.M.-R. and reviewed by N.M.-R. The
search code defined for the keywords considered the use of
the Boolean operators ‘‘OR’’, ‘‘AND’’, and ‘‘NOT’’: OR, was
used for those concepts that shared similar notions and thus
recovered a broad vision of studies; AND,was used to include
other concepts; NOT, was used to exclude concepts that are
not related to the object of study (see Table 1).

D. SELECTION PROCESS
The studies were individually reviewed to minimize the risk
of missing important information. The study selection was
based on the relevance of the results aligned with the purpose
of this systematic review. Researchers N.M.-R., A.M.-R.,
and R.P.-V. conducted independent review and screening
reviewed titles, abstracts, and keywords; we excluded those
studies that did not meet the inclusion criteria. At the same
time, those studies that met the inclusion criteria were con-
sidered for the review. Once the studies to be reviewed

were defined, we proceeded to carefully read each complete
article individually, extracting the information related to the
objective of this review. The investigator P.Q.-P. intervened
when the split decision of inclusion or exclusion of a study
was presented. The Delphi method [60] resolved complex
decision-making situations through consensus.

E. DATA COLLECTION PROCESS
After study selection, three investigators (A.M.-R.,
R.P.-V., and P.Q.-P.) independently extracted the informa-
tion with triple verification, whereas a researcher (N.M.-R.)
supervised. The data were aggregated into a knowl-
edge matrix consisting of a structured and standardized
form in Microsoft® Excel® for Microsoft 365 MSO
(16.0.12827.20236) 64-bit [61]. Zotero 6.0.23 [62] was used
to manage the bibliographic references of recovered studies.

F. DATA ITEMS
The four scientific studies databases were combined.
Then, in this review, two final databases were integrated,
one with the features of the studies of (i) scientific
contributions —WoS, Scopus, ScienceDirect, and
SpringerLink— and another based on the (ii) technological
contributions —WIPO—. Duplicate studies were removed
manually. The data extracted from the scientific studies were
‘‘Year’’, ‘‘Country’’, ‘‘Publishing’’, ‘‘Journal’’, ‘‘CiteScore’’,
‘‘Impact Factor’’, ‘‘Title’’, ‘‘Objective’’, ‘‘Sector’’, ‘‘Cat-
egory’’, ‘‘Application’’, ‘‘Crop’’, ‘‘Cultivation System’’,
‘‘Conditions’’, ‘‘System’’, ‘‘Tool’’, ‘‘Objective Function’’,
‘‘Input Variable’’, ‘‘Output Variable’’, ‘‘Contrast System’’,
‘‘Performance (%)’’, and ‘‘Resource’’. While, a database
was formed to concentrate the features of technological
developments, being the data extracted from technological
studies were ‘‘Office’’, ‘‘Application Number’’, ‘‘Applica-
tion Date’’, ‘‘Publication Number’’, ‘‘Publication Date’’,
‘‘Applicants’’, ‘‘Inventors’’, ‘‘Title’’, ‘‘Objective’’, ‘‘Sector’’,
‘‘Application’’, ‘‘System’’, ‘‘Tool’’, ‘‘Input Variable’’, ‘‘Out-
put Variable’’, and ‘‘Resource’’.

G. STUDY RISK OF BIAS ASSESSMENT
Risk of bias assessment allows the assessment of the effects of
an intervention, which is a primary component of a systematic
review [63]. In this review, we established strategies to limit
this situation to avoid the risk of bias and random errors.
The strategies involved an exhaustive search of the studies in
various scientific/technological databases that are of quality
—this, evidenced by its rigorous evaluation and publication
process—, the inclusion and exclusion criteria were repro-
ducible and explicit; likewise, the design and characteristics
of the studies were valued; and finally, the results of the
studies were synthesized and interpreted.

H. EFFECT MEASURES
For each study, the effect of the results was measured, i.e.,
crop yield improvement.
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TABLE 1. Database search strategy.

TABLE 2. Search parameters.

I. SYNTHESIS METHODS
Hermeneutics was applied as a method of interpreting texts.
Then, a narrative synthesis of the studies was performed fol-
lowing the guidelines of the PRIMA statement. The retrieved
information was extracted and processed in sections of
interest, and the information of the studies was analyzed
independently and together, thus obtaining the findings of
the review article. The findings of the studies were presented
in the form of tables and graphical representations from the
descriptive statistics developed in Microsoft® Excel® for
Microsoft 365 MSO (16.0.12827.20236) 64-bit.

J. CERTAINTY ASSESSMENT
Two investigators (R.P.-V. and P.Q.-P.) independently
assessed the certainty of evidence from the retrieved studies.

III. RESULTS
In this section: (a) the results of the search and selection
process of the studies that make up the review, considering the
inclusion and exclusion criteria; (b) the characteristics of the
studies are described individually and analyzed in subgroups
of interest, synthesizing the findings in tables and graphs; and
(c) study quality is assessed.

A. STUDY SELECTION
1) SEARCH
The search parameters that define screening for the selec-
tion of the studies that make up the review are presented

in Table 2. The search parameters were established in con-
sensus by the research team, these being: ‘‘Search period’’,
‘‘Database’’, ‘‘Search words’’, ‘‘Search terms’’, ‘‘Search
method’’, ‘‘Type of study’’, ‘‘Discipline’’, ‘‘Subdiscipline’’,
‘‘Language’’, ‘‘Country’’, ‘‘Review’’, and ‘‘Selection of
studies’’.

2) ELIGIBILITY
The PICO strategy (Table 3) was implemented to define the
inclusion and exclusion criteria for the studies under review.
The screening of the studies was improved by consider-
ing these criteria; in this sense, the screening process was
strengthened.

3) SELECTION
Figure 2 shows the selection process of the studies consid-
ering previously established search strategies and eligibility
criteria.

The selection process began with 6,552 identified articles
from science studies —2,170 fromWoS, 1,723 from Scopus,
590 from ScienceDirect, and 2,069 from SpringerLink—.
Of these studies, 94were considered for the systematic review
and meta-analysis —34 from WoS, 10 from Scopus, 7 from
ScienceDirect, and 43 from SpringerLink—. When the four
databases were combined, 3,473 were eliminated for dupli-
cation, and after a process of relevance analysis, 584 studies
were eliminated. In addition, 1,946 studies were excluded
because they did not align with the objectives of the study.
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TABLE 3. Eligibility criteria.

FIGURE 2. Flowchart of the selection of studies considered for review.

In addition, 73 studies could not be retrieved from their
links. Ultimately, 382 science studies were not considered.
We excluded review studies, articles considering empirical
models, biotechnology use/development, studies other than
crops, and non-relevant articles.

Meanwhile, 606 patents were identified as technol-
ogy studies obtained from the WIPO consultation system.
Of these studies, 20 were considered for a systematic review
andmeta-analysis for their relevance. Finally, 586 technology
studies were not considered; patents focused on technologi-
cal developments addressing the development/application of
biotechnology, and studies that were irrelevant to the review,
were excluded.

B. STUDY CHARACTERISTICS
Once the studies are selected, the following is integrated:
(a) a scientific knowledge base with the records of:
‘‘Year’’, ‘‘Country’’, ‘‘Publishing’’, ‘‘Journal’’, ‘‘CiteScore’’,

‘‘Impact Factor’’, ‘‘Title’’, ‘‘Objective’’, ‘‘Sector’’, ‘‘Cat-
egory’’, ‘‘Application’’, ‘‘Crop’’, ‘‘Cultivation System’’,
‘‘Conditions’’, ‘‘System’’, ‘‘Tool’’, ‘‘Objective Function’’,
‘‘Input Variable’’, ‘‘Output Variable’’, ‘‘Contrast Sys-
tem’’, ‘‘Performance (%)’’, and ‘‘Resource’’; and, (b)
a technological knowledge base with the records of
‘‘Office’’, ‘‘Application Number’’, ‘‘Application Date’’,
‘‘Publication Number’’, ‘‘Publication Date’’, ‘‘Appli-
cants’’, ‘‘Inventors’’, ‘‘Title’’, ‘‘Objective’’, ‘‘Sector’’,
‘‘Application’’, ‘‘System’’, ‘‘Tool’’, ‘‘Input Variable’’,
‘‘Output Variable’’, and ‘‘Resource’’. In osf.io/acms7/
(accessed on 3 August 2023) [53] are ‘‘Database_Science’’
and ‘‘Database_Technological_Developments’’ for more
information.

Thus, this section describes and analyzes the features
of the studies collected, which allow the identification and
analysis of scientific/technological contributions developed
and applied in industrial agriculture, that can be scalable

123052 VOLUME 11, 2023



N. Montalvo-Romero et al.: Agro-Technological Systems in Traditional Agriculture Assistance

to small-scale production by rural agro-producers, being
low-cost and easy assimilation/adoption.

1) GEOGRAPHICAL DISTRIBUTION OF STUDIES
The 114 studies retrieved in the review are distributed world-
wide, with a significant presence in China, in article and
patent publications. It was identified that 38.30% of the pub-
lished articles come from China; 12.77% from India; 8.51%
from the USA; while Italy, Pakistan, and Spain, has con-
tributed 4.26%, individually; 3.20% of the studies correspond
to Iran, and the UK, respectively; likewise, with 2.14% of
contribution individually in Australia and Malaysia; finally,
the countries of Belgium, Brazil, Canada, Chile, Colombia,
Egypt, Ethiopia, France, Greece, Korea, Mexico, Morocco,
New Zealand, Taiwan, Turkey, and Palestine, contributed
1.06%, independently (see Figure 3). Regarding registered
patents, 45.00% have been registered with the China office,
40.00% in India; in Australia, Belgium, and Korea, 5.00%
have been recorded (see Figure 4).

2) ARTICLES BY EDITORIAL
Scientific studies are published in journals that guaran-
tee rigorous double-blind arbitration so that they contain
CiteScore metrics and/or have an Impact Factor (Table 4).
Of the 114 scientific studies retrieved: 54 were obtained
from Springer Nature, 17 from Elsevier, 10 from the Institute
of Electrical and Electronics Engineers (IEEE), 8 from the
Multidisciplinary Digital Publishing Institute (MDPI), 3 from
Frontiers, and 2 from Taylor & Francis. It is notorious that
more than half of the recovered contributions (57.45%) have
been published in Springer Nature; while in CiteScore, IEEE
Journals are better positioned, and in Impact Factor, Elsevier
Journals.

3) EVOLUTION OF STUDIES OVER TIME
In recent years, the scientific/technological contributions
have become a topic of interest to the community, with
increasing behavior (see Figure 5). Regarding scientific stud-
ies from 2018 to 2023, the year 2022 experienced the highest
number of published articles with 27.66% (Figure 5a), while,
in that same period, technological studies were greater
in 2019, i.e., 35.00% of technological developments were
patented (Figure 5b).

4) SCOPE OF SCIENTIFIC STUDIES
It was identified that the scientific studies are aligned to 3 sec-
tors, ‘‘Crop’’, ‘‘Soil’’, and ‘‘Environmental’’, in 88.30, 7.45,
and 4.25%, respectively (Table 5). Being the ‘‘Crop’’ sector in
which more contributions are identified. Then, when aligned
by category, this sector derived five types, namely: ‘‘Yield’’
(33.73%), ‘‘Alterations’’ (21.69%), ‘‘Detection’’ (21.69%),
‘‘Irrigation’’ (19.28%), and ‘‘Integral’’ (3.61%).

5) CONTRIBUTIONS OF SCIENTIFIC STUDIES
The purpose of the 94 articles is described in this section,
considering the type of sector identified.

a: SECTOR CROP
The 83 studies of the ‘‘Crop Sector’’ were aligned to five
applications:
Yield: Studies that focus on increasing crop yield are pre-

sented for this application. Gée et al. [69] developed a device
to estimate crop growth by considering the presence of weeds
and if this influences crop growth. An approach capable of
estimating crop parameters is presented by Zhu et al. [91].
Reference [78] described a methodology for predicting crop
yield from images. The authors of [68] develop and imple-
mented a wireless network of micro-climatic sensors at the
field level to monitor phenological development in a vine-
yard. Herrero-Huerta et al. [70] predict crop yield from
automated phenotyping.

A production system is designed by Mohmed et al.
[80], From the modeling and intelligent prediction of crop
growth to different factors (e.g., temperature, humidity).
Kaur et al. [74], present the design and construction of an
intelligent agricultural system of controlled growth supported
by Internet of Things (IoT). In [64], underground cultivation
data is collected through an integrated system of sensors,
aerial vehicles, and remote connections.

An algorithm that extracts crop growth characteristics from
a short-term memory model predicts crop yield is described
in [65]. Lee et al. [75] describe an algorithm that estimates
the growth rate of hydroponic crops in the face of environ-
mental factors. A model that predicts spatial performance is
developed by Jiang et al. [73], with the intention of knowing
more precisely the management of inputs for the field.

Reference [79] describes a temperature controller for
plant growth in enclosed spaces. An intelligent model is
used to predict crop yield from multispectral images by
Selvaraj et al. [84]. Iniyan and Jebakumar [71] describe an
intelligent strategy for predicting crop yields based on phe-
notypic factors. The authors of [67] present an approach that
fuses data from multiple sensors based on Unmanned Aerial
Vehicle (UAV) and that with the learning of sets, the accuracy
of crop yield prediction is improved.Wang et al. [85] estimate
the Leaf Nitrogen Concentration in the growth stages of the
crop. A system that improves crop yield is developed that
employs emerging technologies in monitoring environmental
and agricultural conditions by Raju and Vijayaraghavan [82].
An approach to estimating crop yields using multispectral

imaging is presented in [83]. The development of a UAV-
LiDAR (Unmanned Aerial Vehicle - Light Detection And
Ranging) system is presented, assisted by a novel algorithm
used to estimate plant parameters in agricultural studies by
Yuan et al. [89]. Lu et al. [77] propose a strategy to improve
the accuracy of crop nutrition estimation based on UAVs. The
authors of [88] have developed a crop spectral monitoring
model based on a light source system. In [90], amodel for pre-
dicting crop yield, and protein content, has been developed.

Wang et al. [86] estimate the best period to evaluate
the nitrogen (N) status of the crop; and, thus, accurately
apply nitrogen fertilizers. In [76], the estimation of the
Aboveground Biomass of the crop is improved by improving
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FIGURE 3. Distribution of studies: articles; in the world.

FIGURE 4. Distribution of studies: patents; in the world.

the UAV system. The authors of [72] optimize metabolites
in leaves and fruits of Momordica charantia L. using elic-
itors. Using high-resolution imaging and information from
multiple sensors, Wu et al. [87] estimate the Leaf Area Index,
considering the influence of the soil background.

The CROPGRO-Cotton cultivation system model was
developed byRahman et al. [81] to predict, based on the simu-
lation of flowering under suboptimal climatic conditions, the
estimation of cotton production concerning the planting date.
Whereas Fei et al. [66] propose an approach that improves
crop yield prediction, considering hyperspectral data.
Alterations: Studies related to identifying and control-

ling phenomena that affect the crop are synthesized in this
section. Li et al. [104] describe a methodology that detects
crops from aerial images for the growth and detection of

diseases and pests of the crop. In [96], the development
of a system that detects, counts, and calculates the area
covered by open and closed stomata of crop leaves is pre-
sented. Martinez-Guanter et al. [105] present the design and
construction of a hydraulic spraying system of agrochem-
icals supported in a UAV with specific applications. The
performance of the UAV is improved, with an intelligent
focus that improves high-resolution multispectral images to
detect stress symptoms and variations in their health in plants,
by Farooque et al. [98].

In [95], An aerial system for crop pest control is described.
Rezk et al. [106] present an intelligent system capable of
detecting and predicting diseases in the crop. Whereas,
Bao et al. [93], developed a system for the automatic detec-
tion of diseases in crops. Describes a system developed
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TABLE 4. Journals by editorial.

TABLE 5. Scientific studies identified by sector of the agricultural process.

by Su et al. [108] that detects the disease of the crop,
taking advantage of aerial visual perception. A feature extrac-
tion model, which learns and classifies crop disease status
from images using visual models, is detailed in [109].
Costa et al. [97] have developed a methodology to determine
nutrient concentrations in crop leaves. In [107], a system that
monitors crop health is described.

An automated system that detects pests in orchards is
described by Albanese et al. [92]. The authors of [102]
develop a novel algorithm that identifies crop diseases.
In [94], a tool is developed to detect diseases in the crop in a
timely manner to guarantee the crop’s healthy development.
It is proposed by Hao et al. [100], a new IDSFmodel based on
an enhanced heterogeneous care mechanism (AgHA-IDSF)
considering an intent embedding matrix; as a knowledge
management approach to pest and disease control. An auto-
matic monitoring strategy based on images that track changes
in crop vegetation in the face of changing environmental
conditions is described by Larbi and Green [103].

In addition, Gao et al. [99] have developed a weed detec-
tion system. At the same time, Hu et al. [101] present a

method of detecting and monitoring crops for the robotic
determination of spraying.
Detection: In this section, studies focused on the detec-

tion of factors related to the crop and its development
are described. Shah et al. [125] describe the development
of a pneumatic seed dosing machine for crops capable of
sowing various types of seeds without changing discs or
other parts. [121] describes a universal algorithm identifying
various spherical or cylindrical fruits in natural environments.
An approach that counts crops in the last stage of growth from
images, such as assistance in crop management, is described
by Che et al. [112]. A method that combines deep learning
and aerial imagery is proposed by Li et al. [120] in the
automatic recognition of freeze-tolerant crops.

The development of a comprehensive network system of
portable and wireless sensors that monitors environmental
parameters remotely, capable of providing crop managers
with alerts and information on the current state of the field;
finally, the data is stored in a database for future consultation,
presented in [116]. Fu et al. [115] present an algorithm that
detects crops. The authors of [123] developed a method that
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FIGURE 5. Study behaviors by year.

calculates the number of crop seedlings quickly and accu-
rately. In addition, a model has been developed that detects
aerial images, trees, and individual species [113]. It is pre-
sented by Zhang et al. [127], an approach that improves the
time of obtaining images from UAVs. In [124], an approach
is presented that detects and correctly segments crop clusters.

Wu et al. [126] monitor and estimate parameters of crop
phenology using aerial images, considering defoliant fumi-
gation. The design and development of a solar seeder are
described by Javidan and Mohamadzamani [118], which
detects crop rows. A system that extracts the main geometric
parameters was developed in [114]. It describes a system
that detects the maturity and 3D position of the crop by the
authors of [117]; information that can be used as input for
future robotic crop harvesting systems. Li et al. [119] have
developed an approach that improves the UAV system by
automating crop bunch counting.

A system that determines crop harvesting and thus
assesses crop damage is developed by Biswal et al. [111].
Bai et al. [110] present a method that accurately counts the
number of plants in the field from remote images. Whereas,
Lin et al. [122] propose a strategy that integrates thermog-
raphy and YOLOv5s in the detection of mechanical damage
(e.g., blows, bruises, cracks, perforations).
Irrigation: Those studies that address strategies for the

efficient use of water resources are described in this section.
Vivekanandan and Kanaga Suba Raja [143] have developed
a management system through a control center that integrates

technology in the water irrigation process. In [135], the devel-
opment of a strategy that allows remote monitoring of water
using a drone, which receives signals from miniaturized and
biodegradable sensors placed in the crop’s soil, is presented.
An intelligent irrigation system, which estimates water needs
based on climatic and environmental needs, was developed
by Bülbül and Öztürk [130]. Kanan et al. [136] present
an approach that improves the crop’s water use efficiency
through wireless communication and sensors.

The authors of [138] optimize irrigation by precisely
activating the water valve, employing neural network-based
prediction —and adjusted with Fuzzy Logic— of the soil
water requirement one hour in advance; structural similarity
(SSIM)-based to locate water-deficient regions. An agricul-
tural decision support system is designed by Poonia and
Bhatnagar [141] to indicate the crop’s water needs and is
sent to a smartphone. Camporese et al. [131] model sprinkler
irrigation. An automatic irrigation system is developed with
sprinklers by Saretta et al. [142]. Ferreira et al. [133] present
the estimation of water requirements in crops. To quantify
the water requirements of the crop and thereby design the
irrigation program, Gong et al. [134] (a) develop two mod-
els to obtain accurate estimates of crop evapotranspiration
and (b) evaluate the configuration performance of different
models.

In [132], an automated drip irrigation system is described,
integrated with real-time water content sensors in the soil.
Bettelli et al. [129] have developed amodel that characterizes,
classifies, predicts the water stress of the crop, and from
the above, irrigation is automated. A model of assistance is
presented by Mohapatra et al. [140] that from the prediction
of soil moisture content over periods with a Neural Net-
work (NN), irrigation is controlled, and SMS notifications
are generated for farmers using Fuzzy Logic, in addition
to generating statistics; the system can compensate for the
amount of water lost through evapotranspiration.

Abdullah et al. [128] describe a monitoring system that
controls the switching time of the water pump based on the
farmer’s knowledge of the flow effect. Likewise, an intelli-
gent irrigation system is proposed by Kashyap et al. [137]
from the prediction of the moisture content in the crop’s
soil. In [139], the integral intelligent irrigation of water and
fertilizer in crops improves growth and stable production by
developing a system that determines the needs using Big
Data.
Integral: Studies addressing comprehensive contributions,

i.e., that consider more than one application along the
agri-food value chain, are described in this section. In this
regard, the authors of [144] developed a system that pro-
vides for the crop: recommendations, automatic irrigation,
and alarms for optimal performance. Li et al. [146] describe a
code-based strategy that addresses crop traceability informa-
tion along the logistics chain. While a wireless technology
platform that monitors physical and environmental variables,
detects diseases and automatically controls irrigation and
fertilization is presented by Contreras-Castillo et al. [145].
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b: SECTOR SOIL
The contributions of the 7 studies of the ‘‘Soil Sector’’ are:

Tziolas et al. [151] present a monitoring scheme for
soil indicators. In [148] describes an approach to mapping
agricultural soil salinity. Soil properties are predicted by
Yu et al. [152], by a wavelength selection method, as an
approach to measuring soil properties. A strategy to improve
the processing of Visible and Near-infrared (Vis-NIR) spec-
troscopy in the determination of the content of Soil Organic
Matter (SOM) of the soil is described by Zhang et al. [153].

In [150], a system is developed that provides automatic
information on users’ mobile phones about the current condi-
tions of the crop soil. Abeje et al. [147] present a model that
classifies agricultural land. Kisekka et al. [149], considering
the space-time relationship, predicted the distribution of soil
moisture in crops.

c: SECTOR ENVIRONMENTAL
Finally, the 4 studies of the ‘‘Environmental Sector’’ identi-
fied are described below:

An intelligent system that manages data and provides
weather forecasts, and evapotranspiration, is developed by
Hachimi et al. [157]. The surface heat and water vapor
fluxes are estimated in [156], to understand the dynam-
ics of water balance —surface flows allow us to know
the relationship between vegetation transpiration and soil
evapotranspiration—. Arabameri et al. [154] present four
machine-learning techniques on flash flood susceptibility and
thus reduce the effect of flooding. Finally, a forecastingmodel
for drought prediction is developed by Dikshit et al. [155].

6) AGRO-TECHNOLOGICAL SYSTEMS REPORTED FROM
SCIENTIFIC STUDIES
Of the 94 articles collected, five types of agro-technological
systems were identified that group 87 studies, i.e., 92.55%
of the approaches of scientific studies are considered
viable to be adopted and scaled at the level of the
TA of rural agro-producers. These types of systems are:
‘‘Drone’’, ‘‘Algorithm’’, ‘‘Decision Support System (DSS)’’,
‘‘Sensors’’, and ‘‘Arduino Technology’’; with contribution
portions of 34.48, 32.18, 14.94, 11.49, and 6.91%,
respectively (see Table 6).
The Drone comprises the Unmanned Aerial Vehicle

(UAV), Unnamed Aircraft System (UAS), and Unmanned
Aerial Base Stations (UABS). Whereas the Decision Sup-
port System (DSS) groups the Farm Management System
for Decision-Making (FMSDM), Smart Agricultural System
(SAS), and Agricultural Decision-Making Systems (ADMS).

It was identified as part of the agro-technological systems
that there are tools that are used collaboratively between these
systems and that are frequently used, e.g., Neural Networks,
Sensors, IoT, Machine Learning, Deep Learning, Computer
Vision, Artificial Intelligence, Machine Vision, and YouOnly
Look Once (YOLO). Finally, the recurring input variables
are ‘‘images’’, ‘‘temperature’’, and ‘‘humidity’’; while it was

identified that the output variables follow a trend towards
‘‘yield’’, ‘‘water needs’’, and ‘‘diseases and pests’’.

7) SCOPE OF TECHNOLOGICAL STUDIES
It was identified that the technological studies are aligned
to 3 sectors, ‘‘Agricultural Monitoring’’, ‘‘Agricultural Mon-
itoring and Control’’, and ‘‘Others’’, in 55.00, 25.00, and
20.00%, respectively (Table 7).

8) CONTRIBUTIONS OF TECHNOLOGICAL STUDIES
The purpose of the 20 patents is described in this section,
considering the sector type identified.

a: SECTOR AGRICULTURAL MONITORING
The contributions of the 11 studies of the ‘‘Sector Agricul-
tural Monitoring’’, are:

Zhou et al. [168] describe a method and device of moni-
toring (air temperature and humidity) and climate prediction
(temperature or humidity) for agriculture in closed facilities
(greenhouse). A method and device that generates, reports,
and stores agricultural and forestry operation activities, is pre-
sented by You [167]. In [164], it shows a method and system
of agricultural assistance that receives information on the
agricultural activity and the agricultural area where it will be
carried out, selection of the robot or robots indicated for the
activity, sending information and power for the development
of the activity to the robots. Liu [165] developed an intelligent
platform for storing and exchanging agricultural information
in crop life cycle assistance.

In [160] describes a secure cloud service system for storing
and disposing of crop information. A system of evaluation
of the classification of the state of the agricultural product
(quality) is developed by Ritesh and Saurabh [159] from
image processing. An agricultural monitoring apparatus is
described by Li [166]. Sourabh et al. [161] feature a real-time
device that predicts and monitors water, temperature, and
humidity requirements.

The authors of [163] have developed an agricultural mon-
itoring and water irrigation system depending on the crop’ s
needs. Gopal et al. [162] have developed an intelligent expert
system to assess the suitability of fertilizer, depending on the
crop type. Narmada et al. [158] describes an expert system of
assessing crop suitability that predicts diseases in the crop.

b: SECTOR AGRICULTURAL MONITORING AND CONTROL
The ‘‘AgriculturalMonitoring and Control’’ sector focuses on
5 studies, which involve:

Tapaswi et al. [171] present an intelligent crop monitor-
ing and control system; that detects diseases and supplies
necessary inputs (nutrients, chemicals, and water). Likewise,
Kyeung et al. [169] describe an intelligent pesticide control
system; the method that diagnoses the pest inside a green-
house and, depending on the results, determines the mixture
and sprays the agricultural pesticide.

Dhirubhai and Vaghela [172] have developed an intelli-
gent multi-parameter optimization system that improves the
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TABLE 6. Agro-technological systems identified in the articles.

TABLE 7. Technological studies identified by sector of the agricultural process.

efficiency of agricultural production. An intelligent irrigation
assistance system with wireless sensors that detect and man-
age the irrigation rate is described in [170]. While in [173],
an intelligent insect detection and control system is presented.

c: SECTOR OTHER
Finally, 4 studies that include diverse studies are grouped in
the ‘‘Other’’ sector, these being:

In [174], a control system in real-time that monitors agri-
cultural and forestry robots is described. An intelligent inter-
connection and intercommunication system, which improves
the yield of cropland use, is presented by Chen [176], con-
sidering soil analysis, assistance in the planting process,
monitoring, and marketing process. A method and system of
using autonomous robots in agricultural mobile production
are developed by Sinan et al. [175].Whereas,Wen et al. [177]
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describe a multifunctional control device to assist agricultural
production.

9) AGRO-TECHNOLOGICAL SYSTEMS REPORTED FROM
TECHNOLOGICAL STUDIES
Of the 20 patents recovered, five types of agro-technological
systems were identified that group 13 studies, i.e., 65.00%
of the approaches of technological studies are considered
viable to be adopted and scaled at the level of the TA of rural
agro-producers. These types of systems are: ‘‘Decision Sup-
port System (DSS)’’, ‘‘Algorithm’’, ‘‘Arduino Technology’’,
‘‘Drone’’, and ‘‘Sensors’’; with contribution shares of 46.16,
23.08, 15.38, 7.69, and 7.69%, respectively (see Table 8).
The Decision Support System (DSS) groups the Intelligent

Systems (IS), Smart Farming System (SFM), Hybrid Smart
Decision Support System (HSDSS), Expert System (ES),
and Intelligent Control System (ICS). It was identified that,
as part of agro-technological systems, tools are used collabo-
ratively between these systems and frequently used, e.g., IoT,
Neural Networks, sensors, and Machine Learning. Finally,
the recurring input variables are ‘‘soil’’, ‘‘temperature’’, and
‘‘humidity’’; while it was identified that the output variables
follow a trend towards ‘‘water requirements’’, ‘‘tempera-
ture’’, and ‘‘humidity’’.

C. EVALUATION OF THE QUALITY OF THE STUDIES
N.M.-R. analyzed the quality and relevance of all the articles
included in this review, and two authors (R.P.-V. and P.Q.-P.),
in a second check, analyzed 50% of the articles each. Multi-
ple studies deposited in various high-quality databases with
rigorous selection and publication processes are analyzed to
avoid the risk of bias and random errors.

1) MAP OF CO-OCCURRENCES
A co-occurrence analysis is performed to identify the relevant
terms of the studies that make up the review. Analysis was
performed using VOSviewer version 1.6.19 [178].
Figure 6 shows the co-occurrence map of the scientific

studies. The terms of the extracted articles were analyzed,
omitting the structure of the abstracts and the copyright
statements. The complete counting method was used. With
a minimum occurrence threshold of 4 —of the 2610 terms,
93 reach the threshold—. A relevance score was calculated to
select the most relevant terms. In total, 52 relevant terms were
selected and analyzed, with the main terms being ‘‘comput-
ers’’, ‘‘electronics’’, ‘‘applications’’, ‘‘internet’’, ‘‘season’’,
and ‘‘IoT’’, with the relevance of 4.21, 2.40, 2.00, 1.50, 1.43,
and 1.41, respectively.

Figure 7 shows the co-occurrence map of the technological
studies. The terms of the extracted patents were analyzed,
omitting the structure of the abstracts and copyright state-
ments. The complete counting method was used. With a
minimum occurrence threshold of 4 —of the 829 terms,
63 reach the threshold—. A relevance score was calculated
to select the most relevant terms. In total, 46 relevant terms

were selected and analyzed, the main terms being ‘‘image’’,
‘‘agriculture produce grade assessment system’’, ‘‘agriculture
produce’’, ‘‘stationary robot system’’, ‘‘agriculture pod’’, and
‘‘agriculture land’’, with the relevance of 3.78, 3.56, 3.47,
2.11, 1.95, and 1.61, respectively.

IV. DISCUSSION
Over time and as a consequence of industrialization and
growth in population density, there was a need to increase
the availability of crops through industrialization—industrial
agriculture— using large areas of land, specialized machin-
ery, and technological advances —e.g., Big Data, Artificial
Intelligence, Internet of Things, Virtual or Augmented Real-
ity, robots—. Despite this, industrial agriculture has not fully
covered the world population’ s food requirements because it
is part of a long logistics chain, where there are multiple pro-
cesses from sowing to disposal at points of sale. A situation
that has beenmore than evidenced by the Covid-19 pandemic.

However, from its beginnings to the present, traditional
agriculture continues to be the fundamental agricultural prac-
tice that continues to be the main source of food production
despite having little or no technification in its processes.

The two agricultural production patterns were unbalanced.
On the one hand, industrial agriculture is intensive. It uses
agrochemicals, employs little labor, focuses on large tracts of
land in which a large volume is planted but little variety, uses
cutting-edge equipment and machinery, and generate unsus-
tainable levels of pollution and waste due to its characteristic
of belonging to a long logistics chain. Traditional agriculture
is not so intensive but has a wide variety of products and
employs a workforce with little or no technification. Despite
the significant differences between these schemes, both con-
tribute to ensuring food security.

However, given the current context of supply-demand
behavior, the question arises as: how to produce twice as
much food by 2050? To achieve this, it is necessary to
improve the performance of agro-productive systems and
increase the food supply with the maximum use of resources.
Specifically, it is necessary to make the productive system
of traditional agriculture more efficient, as it is the system
that contributes most to food production and the development
of small producers but one that lags furthest behind, being a
‘‘forgotten’’ sector.

The FAO (2022c) [6] emphasizes that human beings are
putting agricultural production at risk, resulting land degrada-
tion, water scarcity, and climate change. Therefore, the option
of expanding the cultivation area is limited; and farmland is
being lost to urbanization.

From this systematic review, it has been identified that
scientific/technological contributions as tools aligned to
precision agriculture contribute to improving the yield and
quality of agricultural products from the management of the
information generated in the agri-food production process.
It coincides with Charania and Li [179], whereas technolog-
ical advances have enabled the achievement of automated
data-driven agriculture, giving rise to this last assistance
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TABLE 8. Agro-technological systems identified in patents.

FIGURE 6. Map of co-occurrences of terms of the articles under review.

to a counterpart of precision agriculture, smart agriculture.
Technology can improve communication and the relation-
ship between farmers and stakeholders, as well as cited by
Ehsan et al. [180]. Smart and efficient agricultural tech-
niques can increase agricultural productivity, coinciding with
Gopal et al. [162].

From this systematic review, it appears that the 114 studies
collected belong to Asian countries of China and India, which
represent more than 50% of the contributions recovered. This
situation coincides with Arrubla-Hoyos et al. [181], where
these two countries have been applying precision agriculture
to increase crop yields. However, for Radočaj et al. [182],

the country that leads research in precision agriculture is
the United States, followed by China, India, and Brazil.
This situation can be attributed to the economy of the
United States, which is a world power where mainly
developed agro-technologies are focused on intensive pro-
duction; whereas, the results of this review are based on
agro-technologies that are considered to be easy assimilation
and adoption to small rural agro-producers. The results pre-
sented in this review are based on the established search and
selection parameters; so, studies that broaden the landscape
and explore other criteria, search periods, and document types
are welcome.
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FIGURE 7. Map of co-occurrences of terms of patents under review.

Studies on precision agriculture technologies are present in
several countries; despite this, not all agro-technologies are
adaptable and easy to use, so when performing the search
under this inclusion criterion, it is denoted that China and
India are leaders in the development of technology capable
of being adaptable in traditional agriculture. It is a reality
that there are multiple studies reported in formats other than
the studies that have been presented in this review. There
are contributions reported not necessarily as original articles,
with JCR and/or Scopus factor, published as book chapters,
conference proceedings, dissemination, and dissemination
articles.

Some agro-technologies reported in other formats con-
sider, e.g., he developed an online crop management system
employing IoT, by Dasig [183] in the Philippines to provide
the farm with environmental conditions. In the Netherlands,
Cobbenhagen et al. [184] describe a framework for schedul-
ing time, location, and amount of resources at the same time
that farm revenue is optimized using multi-agent. In [185],
Bakken et al. through a Deep Convolutional Neural Net-
work (DCNN) and an end-to-end learning strategy, predict
the steering angles of an autonomous agricultural robot,
in Norway.

Likewise, López-Leyva et al. [186] in Mexico have devel-
oped a system that monitors environmental variables in
a vineyard, using ZigBee technology. An automated irri-
gation system based on crop water needs is proposed in
India by Meeradevi et al. [187], using wireless sensors.
In Mashongedza and Beem [188] present a crop fumigation
device with automatic operation.

A network of wireless sensors that through an IoT
application, collects environmental and soil information

to assist in making informed decisions, is described by
Fathallah et al. [189] in Tunisia. In [190], Prasetya et al.
in Indonesia they monitor water flow in IoT using a water
flow sensor. Meanwhile, orchards are monitored using drones
equipped with thermal cameras, and red, green, and blue, by
Yusof et al. in Malaysia [191].

Therefore, the number of contributions that exist around
the world published and stored in various repositories is vast.
In this sense, it would be interesting for this study to be
the basis for future contributions that expand the panorama
of agro-technologies that allow the agro-productive systems
of traditional agriculture to be more efficient. This study is
considered relevant when analyzing scientific/technological
agro-technologies that can be scalable and adaptable to tradi-
tional agriculture.

While it is true that there is agricultural technology devel-
oped and applied and that it has managed to increase the yield
and quality of crops, it is also true that this technology has not
been aligned and adjusted to the requirements of traditional
agriculture where small farmers are located in rural areas with
limited resources, and who are in geographical areas with
difficult access. Then, these producers require technology at
their disposal that allows them to increase their agricultural
yield to improve their quality of life.

This systematic review is considered a pioneering study
that offer a new contribution by conducting a review in which
it has been identified and analyzed that there is a technically
viable technology for its scope of being adopted by traditional
agriculture to improve its performance. Systems identified
include ‘‘Drone’’, ‘‘Algorithm’’, ‘‘Decision Support System
(DSS)’’, ‘‘Sensors’’, and ‘‘Arduino Technology’’. Adapted
and adequately aligned to traditional agriculture, these
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technologies are easy and inexpensive to use. Matches
Narmada et al. [158], where the rapid growth of remote
technologies —such as IoT— and the development of in-situ
parameter measurement systems —such as sensors—, make
feasible, low-cost methods for agricultural automation and
decision-making.

Modern precision agriculture systems are rarely imple-
mented on small, low-mechanization farms, as mentioned by
Erickson and Fausti [192], however there is no indication
of its application in traditional agriculture. The FAO [44]
mentions that if agricultural automation remains inaccessible,
inequality can be exacerbated for those marginalized groups
—small producers, youth, and women—. Since rural peoples
are complex systems, and their growth requires ecosystem
development, as mentioned by Sgroi [193].
However, the current context of traditional agriculture

is framed by a ‘‘forgetfulness’’ in its technification and
migration of its young members and a part of men towards
urbanization in search of a better ‘‘quality of life’’; so, the
reality is that arable farmland is running out of labor to
work it, the labor force is falling on women and the elderly.
Traditional agricultural practice is valuable for the vast
knowledge developed over generations and offers schemes
for adequately managing and using resources, as cited by
Melash et al. [194]. Also, one of the strengths of traditional
agriculture is that it is a low-cost production system and
therefore provides economic products. Coupled with this, the
surpluses of traditional agriculture are generally marketed at
nearby points of influence, which represents a rapid availabil-
ity of fresh, healthy, and healthy products at a low price.

On the other hand, a change in people’s consumption habits
is being marked. Healthier and healthier foods are being pre-
ferred, i.e., there is a trend towards consuming organic prod-
ucts. Then, it coincides with what was stated by Reganold
and Wachter [195], in that it must be produced organically
since it is a profitable and environmentally friendly system
capable of offering equally or more nutritious food with
less —or none— pesticide residue compared to the conven-
tional production system. In this sense, traditional agriculture
encourages organic production by employing non-invasive,
environmentally friendly practices. In this aspect, sustain-
ability improvement is possible by applying digitalization in
agriculture, coinciding with Mohr and Höhler [196].

However, this review identified that the contributions are
mainly focused on increasing agricultural yields, improving
crop quality, identifying and controlling pests and dis-
eases, and optimizing the use of resources such as water
and soil. Therefore, it coincides with what was raised by
Seppelt et al. [197], that pathways to eradicate global hunger
must be performance-driven through ecological principles
focused on improving stress resilience and yield while
minimizing crop losses and food waste by adopting emerging
technologies.

This review also identified a trend in developing and apply-
ing technology focused on monitoring and controlling factors
remotely through IoT and sensors to keep parameters under

control; this is associated with crops being ‘‘living beings’’
that require care. So, knowing the state of crop parameters is
fundamental to their development. This situation is a priority
since there is less and less availability of labor in traditional
agriculture due to migration, as discussed above. Therefore,
knowing and controlling agricultural parameters through
remote technology is fundamental in traditional agriculture.

Another strategy that is being well adopted is the devel-
opment and application of computational algorithms, which
optimize the performance of crops and the quality of agricul-
tural products, collecting information in-situ through sensors
and/or Arduino Technology and transmitting it in real-time
through IoT and cloud storage. In addition, generational
agricultural knowledge management should be considered
in technology-assisted agricultural systems since ancestral
experiences are a valuable source of knowledge of functional
agricultural practices. In this sense, the development of Deci-
sion Support Systems are systems that recommend farmers in
more than one sector. Therefore, they turn out to be robust and
complete systems in agricultural assistance, designed with
the purpose of efficient global management of the productive
system, which maximizes the use of resources in quality
agricultural production.

Aligning precision agriculture technology with traditional
agriculture is not an easy task. Given this situation, challenges
and challenges arise; it is necessary to consider the current
context of the actors and conditions of traditional agriculture;
and a technological and generational gap must be filled.
In agreements with Melash et al. [194], sociodemographic
factors —educational level, marital status, and agricultural
experience— influence the use of traditional agricultural
knowledge.

Although individual technological solutions exist, they
have not yet been integrated autonomously; for the achieve-
ment of this, it is agreed with Gackstetter et al. [45] that
synergy is required in the face of societal commitment, public
acceptance, legal frameworks, and the development of the
crucial role as a success factor for farmers. In developing
countries, access to technology is limited due to the digital
divide, as cited by Engås et al. [18]; this coincides with
Siddharth et al. [198], in which the foundations of future sus-
tainable agriculture are laid in artificial intelligence strategies
that integrate agricultural data. However, the heterogeneity
of agricultural technologies should not be underestimated,
as mentioned by Stræte et al. [46].

The increase in the efficiency of the production system of
traditional agriculture supported in precision agriculture from
the findings of the present review is feasible and feasible.
Therefore, the adoption of precision agriculture strategies
will be paid to ensure food security, thus contributing to
meeting the objectives of SDG 2 by 2030. However, for
the proper adoption and assimilation of technology into
traditional agriculture, the support of young producers is
necessary; since these are growing in a digitized world, they
are knowledgeable and possess skills in the use of technol-
ogy. While women, by taking control of crop production
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—due to the exponentially increasing migration of men to
the cities— position themselves as the system’s administra-
tors; this coincides with the figures provided by the World
Water Assessment Programme (2019) [17], which states that
women in developing countries account for about 43 percent
of the agricultural labor force. That, with adequate access
to productive resources, agricultural yields could increase
agricultural yields by 2.5 to 4 percent, which in general
terms would represent a reduction of 12 to 17% worldwide.
Therefore, women and youth must be agents of changes in
traditional agriculture.

The development of strong, sustainable, and inclusive food
systems is fundamental to achieving the development goals
at the global level, coinciding with the FAO (2022a) [14],
in which the Scientific Group advising the UN Food Sys-
tems Summit, in 2021 recognized that the management and
governance systems of rural peoples allow a high level of
self-sufficiency to be achieve, at the same time that they make
efficient use of resources under a resilient and sustainable
scheme. However, this transformation must be implemented
in the global context of the main challenges facing the food
and agriculture sectors, with factors such as climate change,
population growth, urbanization, and the depletion of natural
resources.

Finally, it coincides with FAO (2022a) [14], where tech-
nological innovations are part of the agricultural solution.
The proper use of technology in traditional agriculture can
improve the efficiency of production systems and their com-
ponents. Considering the growing conditions, experience, and
desired results, farmers make decisions in agricultural man-
agement, which can be supplemented by recommendations
derived from agricultural information systems as well as cited
by Gangwar et al. [199]. Matches Nery et al. [200], in that the
transformation of the agricultural production system must be
aligned to sustainable production, respectable to the compo-
nents of the ecosystem.

V. CONCLUSION
This study presents a systematic review supported by the
PRISMA statement, which addresses identifies and ana-
lyzes existing technologies that are viable for adoption and
assimilation by traditional agriculture to improve the perfor-
mance of the agricultural production system, thus improving
agricultural yield and quality of agro-products. This review
considered the evaluation of scientific/technological studies,
original articles, and patents. The review was conducted dur-
ing the last five years (2018-2023).

From the review, 114 studies—94 articles and 20 patents—
were retrieved and analyzed. From these studies, it was iden-
tified that five systems are viable for adoption by traditional
agriculture after the adaptation and assimilation of small
producers, according to their agricultural context.

These systems identified from science and technology are:
‘‘Drone’’, ‘‘Algorithm’’, ‘‘Decision Support System (DSS)’’,
‘‘Sensors’’, and ‘‘Arduino Technology’’. The identified sys-
tems are mainly focused on increasing agricultural yields,

improving crop quality, and identifying and controlling pests
and diseases.

For this, it was identified that Precision Agriculture strate-
gies are used, such as IoT, Artificial Intelligence, and
Machine Learning, with the information collected by sensors.
The systems identified are considered low cost and, when
developed appropriately to the needs of small farmers, are
considered viable for use and adoption. This adoption of
technological tools can be even easier with the support of
young people who are aware of the use of technology today.

This review lays the foundation for developing research
projects that improve the efficiency of traditional agricultural
production through emerging technologies. This study did not
review bio-technologies as an improvement strategy, it would
be interesting to identify and evaluate bio-technologies that
are adaptable to traditional agriculture, as well as extend the
study to other agricultural sectors.

Finally, increasing the efficiency of the traditional agri-
cultural system supported by Precision Agriculture is a
strategy that contributes to guaranteeing food security by
promoting environmentally friendly practices. Therefore, it is
necessary to make the productive system of traditional agri-
culture more efficient to increase food security, nutrition of
the most vulnerable sectors, and food availability for local
and global markets.
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