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ABSTRACT In commercial electrical equipment, interior permanent magnet (IPM) synchronous motors
undergo variations in temperature and parameters under different operating conditions. Conventional maxi-
mum torque per ampere (MTPA) control using fixed parameters lacks accurate motor parameter information,
which can negatively impact the operating efficiency of electrical equipment. To address the above problem,
this paper proposes a simple online MTPA control method without motor parameters. To approximate
the interface structure of the conventional MTPA controller, a back propagation neural network (BP-NN)
adjuster with a space vector decomposer is designed as the MTPA controller. Moreover, by leveraging the
similarity between the loss function of the BP-NN and the stator current representing the efficiency of the
IPMmotor, the teacher signal is cleverly chosen to update the parameters of the BP-NN online. In the discrete
domain, the motion mechanism of the proposed method is analyzed and characterized by the perturb &
observe technique. Compared to the conventional MTPA control using fixed parameters, the feasibility and
high efficiency of the proposed method for copper-loss-minimization control were validated in the simula-
tion. The feasibility of the proposed method was further validated in simulated scenarios involving sudden
changes in torque and speed. Furthermore, the transient characteristics of the output stator current were
analyzed. Overall, the proposed method can achieve true online MTPA control without motor parameters.

INDEX TERMS Interior permanent magnet synchronous motor, field-oriented control, maximum torque
per ampere control, back propagation neural network, loss function, perturb and observe.

I. INTRODUCTION
With rapid increasing usage of synchronousmotors in various
industries, synchronous motors have become more popular
and are expanded into various mechanical structures by
scholars. Among them, due to high power density, wide
speed range, strong reliability, low-noise operation and
high efficiency [1], [2], interior permanent magnet (IPM)
synchronous motors are being widely used in the field of
electric vehicles, industrial drives, industrial automation and
household appliances, etc. However, a significant portion
of the global electricity consumption comes from electric
motors used in applications, such as pumps, fans and
compressors [3]. In these applications, IPM motors mostly
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operate under constant load torque. Therefore, it is very
important to improve the operating efficiency of IPM motors
at steady state.

In synchronous motors, copper losses typically dominate
over iron losses, and the evaluation of iron losses is
frequently overlooked [4]. Therefore, in IPM motor control
technologies, maximum torque per ampere (MTPA) control
methods are often used to improve the efficiency of IPM
motors and provide maximum torque or minimum stator
current to minimize copper losses. Based on the field
oriented control (FOC) technology and the equivalent model
of IPM motor in the direct-quadrature (dq) frame, the
conventional offline method for implementing MTPA control
is to calculate MTPA equations, under the assumption of
stable and known motor parameters [5], [6]. However, due to
steel saturation, cross-saturation and flux linkage affected by
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temperature, motor parameters vary depending on different
operating conditions. The d- and q-axis inductances, which
are dependent on the stator current, can decrease by up to 50%
due to steel saturation [7]; high temperatures of the stator can
cause flux linkage variations of 10% to 20% [8], [9], [10],
andmagnet degradation can decrease the flux linkage by 15%
[11]. In order to improve the control algorithm, researchers
have proposed various offline or online MTPA methods for
parameter calculation, parameter estimation and parameter-
free control, etc [10], [12].

Generally, offline methods heavily rely on prior informa-
tion that includes functions or look-up tables for approx-
imating motor parameters or the MTPA curve [13], [14],
[15]. Moreover, the processing of acquiring information can
only be done for a specific motor or a limited number of
motors during the development stage. In contrast, online
control methods enable the motor to operate at the MTPA
point without the need for prior knowledge of parameters
or the MTPA curve. This is particularly applicable in the
development of industrial or household general-purpose
products sold in large quantities. Parameter estimation
methods and extremum seeking methods are two highly
popular research directions within online methods.

The purpose of parameter estimation methods is to online
obtain accurate motor parameters using various online esti-
mation techniques during motor operation. These methods
can enhance offline methods with accurately estimated
parameters. The authors in [16] and [18] proposed the
estimation of motor parameters by combining recursive least
squares with rich enough motor data in real-time. The
proposal [17] identified d- and q-axis inductances by model
reference adaptive system (MRAS) based on the Popov
stability criterion. However, parameter estimation methods
not only require complex estimation formulas but also need to
consider observability issues caused by rank deficiency [19].
Complex estimation formulas, such as those involving the
calculation of numerous square roots, impose higher demands
on processors like DSPs in practical applications and are
not easy to implement; rank deficiency issues can prevent
parameter estimation methods from observing all parameters,
including flux linkage [17].
To overcome these problems, extremum seeking methods

[11], [20], [21], [22], [23], [24], [25], [26] that do not
require motor parameters and analytical motor models are
being considered. These model-free methods interact with
the motor online in a closed-loop manner and apply a
perturbation to the stator current space vector reference for
probing purposes; based on the response to such stimulus,
the operating point is dynamically adjusted in real-time to
track the MTPA point at constant torque or current [10],
[12]. Therefore, extremum seeking methods particularly rely
on the situation where the load torque or stator current
space vector remains constant. This aligns perfectly with
the applications considered in this paper, where IPM motors
mostly operate under constant load torque.

FIGURE 1. Operating principle of P&O methods.

As a branch, signal injectionmethods introduce a relatively
high frequency small signal to the current angle, and detect
torque oscillation by processing the measured speed or
estimated active power at constant stator current [20], [21];
they can also introduce a relatively low frequency small signal
to the current angle, and detect stator current oscillation
at constant torque [22]. Evidently, high frequency injection
methods are not suitable for the situation described in
this paper; low frequency injection methods can lead to
undesirable noise. Recently, as an improvement, a new
method called virtual signal injection can be used to detect
the MTPA trajectory by injecting virtual signals [23], [24].
However, this method has several limitations, such as
implicit angle errors and sensitivity to the variation of stator
resistance, and it is not recommended.

Fortunately, perturb & observe (P&O) methods, as another
extremum seeking algorithms, can be used to track theMTPA
point online without the need for motor parameters, analytical
motor models, or being affected by signal injection. P&O
methods are easy to implement. These methods just evaluate
the effect of operating point discrete variations and then make
further adjustments to the operating point, as shown in Fig. 1.
In practical applications, an enhanced MTPA controller
strategy based on the P&O technology in [25] is used to
achieve robust high-efficient operation of the sensorless IPM
motor, and does not require motor parameters; in [26], the
propsoed MTPA automatic search strategy based on the P&O
technology is capable of providing a reliable and fast response
to operating point variation. Moreover, the proposal [11] has
already applied the improved P&O algorithm in the drives
with commercial reciprocating compressors. Finally, after a
careful analysis of the advantages and disadvantages of all
the aforementioned methods, the P&O technology is used to
guide the design of the proposed online MTPA method.

In addition, the development of artificial intelligence
technology provides numerous new techniques for the field
of motor drive [27]. For example, in [28], the radial basis
function neural network is combined to optimize and reduce
the torque ripple of an IPM motor. In [29], a new wavelet
fuzzy neural network is used to enhance the robustness
of the speed integral-proportional controller. In this paper,
combined with back propagation neural network (BP-NN)
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technology, an onlineMTPA control of IPMmotor using NN-
based P&O algorithm is proposed.

The rest of this paper is organized as follows. In section
II, the equivalent model of IPM motor for FOC and the
conventional MTPA with fixed parameters are introduced.
In section III, the design and motion mechanism of the
proposed online MTPA control of IPM motor using NN-
based P&O algorithm are presented. In section IV, compared
to the conventional MTPA and optimal MTPA, the feasibility
of the proposed method is analyzed. In section V, the
conclusion of the proposed method is presented.

II. MODELING AND CONVENTIONAL MTPA CONTROL OF
IPM MOTOR
A. EQUIVALENT MODELING OF IPM MOTOR
In general, d-q axis equivalent model of IPM motor can
be used for FOC and to easily analyze three-phase motor
characteristics as a DC motor. It is easy to design MTPA
control method by FOC technology in the vector space.
By using power-variant Park coordinate transformation,
the 3-phase IPM motor model can be reduced to two
dimensions from abc coordinate frame. Voltage equations,
electromagnetic torque equation and mechanical motion
equation of IPM motor in dq rotating coordinate frame can
be defined as (1), (2) and (3), separately. The relationship
between mechanical angular speed and electrical angular
speed is shown in (4).[

ud
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=Rs
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id
iq

]
+

[
Rs+Ld d

dt−Lqωe
Ldωe Rs+Lq ddt
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= Te − TL − Bωm (3)

ωe = pnωm (4)

where Ld and Lq are the d- and q-axis stator inductances,
Rs is the resistance of the stator winding, ud and uq are the
d- and q-axis stator voltage, id and iq are the d- and q-axis
stator current, ψf is the permanent magnet flux linkage,
pn is the polar pairs, J is the moment of inertia, Te and
TL are the electromagnetic and the load torques, B is the
viscous friction coefficient, ωm and ωe are the mechanical
and the electrical angular speeds. The copper loss power pc
evaluating the efficiency of MTPA control can be expressed
as (5). At constant torque, lower copper loss power indicates
the higher efficiency of the copper-loss-minimization control.

pc = ip2Rs =
∥∥idq∥∥2Rs =

(
id 2 + iq2

)
Rs (5)

where stator current ip is themagnitude of stator current space
vector idq.

B. CONVENTIONAL MTPA CONTROL WITH FIXED
PARAMETERS
Based on Lagrange’s theorem, at constant torque Te∗, the
Lagrangian expression L(id , iq, λ) can be defined as (6)

by substituting torque in (2) [12]. When all three partial
derivatives meet (7), the conventional MTPA condition can
be determined.

L
(
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=

√
id 2+iq2+λ

(
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)
(6)

∂L
∂id

= 0,
∂L
∂iq

= 0,
∂L
∂λ

= 0 (7)

where λ is a Lagrangian multiplier. Assuming that the
IPM motor parameters which are d- and q-axis inductances
and permanent magnet flux linkage, are stable and known,
the minimum stator current space vector reference which
represents the MTPA point can be expressed as (8) and (9).

θi
∗

= arccos

−ψf +

√
ψf

2
+ 8

(
Ld − Lq

)2ip∗2
4

(
Ld − Lq

)
ip∗

 (8)

id∗
= −ip∗ sin θi∗, iq∗=ip∗ cos θi∗ (9)

where θi∗ and ip∗ can be considered as the stator current
angle reference and stator current reference at the MTPA
point in the conventional method, respectively. Combining
IPM motor equations (1), (2) and (3), and MTPA condition
(8) and (9), the conventional MTPA control method in the
sensorless drive system can be obtained in Fig. 2.
The control aspect of the conventional method mainly

consists of a speed controller, an MTPA controller using
fixed parameters, a current controller, a rotating coordinate
transformation/inverse transformation unit and a PWM
modulator, etc. Obviously, the conventional method with
fixed parameters cannot achieve optimal MTPA control due
to the variation of motor parameters and the lack of real-time
and accurate parameter information [7], [8], [9], [10], [11].

III. PROPOSED MTPA CONTROL USING NN-BASED P&O
ALGORITHM
To solve the deficiency of the conventional MTPA con-
trol with fixed parameters and reduce control complexity,
in Fig. 3, an online MTPA controller using NN-based P&O
algorithm which can also be called a parameter-free online
NN-based MTPA controller is proposed. It can replace the
conventional MTPA controller due to BP-NN’s excellent
online iteration and convergence capabilities. The proposed
controller consists of an NN-based MTPA angle calculation
unit and a space vector decomposition unit following (9).
Among them, the design of the angle calculation unit is
mainly from two aspects: NN structure and loss function. And
the motion mechanism of the proposed network needs to be
analyzed. The space vector decomposition unit is shown in
Fig. 4(c).

A. ARCHITECTURE OF THE PROPOSED NN-BASED MTPA
CONTROLLER
1) NN STRUCTURE
The MTPA angle calculation unit is a BP-NN which consists
of one input layer, two hidden layers and one output layer,
shown as Fig. 4(a). The input layer contains two input signals
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FIGURE 2. Block diagram of the conventional MTPA control method in the sensorless drive system.

which are output ip∗(k) of the speed controller and actual
stator current ip(k) of the IPM motor. The output ip∗(k) of
the speed controller can be described in (10). The output
signal is the current angle reference θi∗(k). The number of
hidden layers of the NN was two because of its stronger
approximation ability than a one-hidden NN [30]. Using
the trial-and-error method, the number of neurons in each
hidden layer was determined to be ten by gradually increasing
the number of neurons and evaluating them step by step.
The activation function of hidden layers is the commonly
used hyperbolic tangent function tanh, and the neurons of
the output layer has no activation function and no bias.
Theoretically, the teacher signal is the value obtained by
dividing stator current difference between ip(k) and ip(k − 1)
by current angle reference difference between θi∗(k − 1) and
θi

∗(k − 2) at time step k .
e (k) = ωm

∗ (k)− ωm (k)
ip∗(k)= ip∗(k−1)+Kpe (k)+KiTs (e (k)−e (k−1))
ip∗ (k − 1) = ip∗ (k)
e (k − 1) = e (k)

(10)

where ωm∗ (k) is the speed reference, ωm (k) is the actual
motor speed, e (k) is the error between ωm∗ (k) and ωm (k),
Ts is the discrete period, Kp and Ki are the proportional and
integral coefficients of the PI controller of the speed loop,
respectively.

2) LOSS FUNCTION
At time step k , the loss function L(θi∗(k − 1)) used for back
propagation and updating parameters of BP-NN in Fig. 4(b)
is the stator current space vector magnitude ip(k). In the loss
function, the logic of the proposed teacher signal follows the
derivative of the output ip(k) with respect to the input θi∗(k−

1). To improve the convergence speed around the gradient
point and avoid numerical overflow during calculations, the
sign of theoretical teacher signal in (11) is selected as the
adopted teacher signal and used in the discrete algorithm.
On the other hand, the input-output relationship of the loss
function also represents the dynamic relationship of the IPM

TABLE 1. Mapping relationship between IPM motor and BP-NN.

FIGURE 3. Block diagram of the proposed NN-based MTPA controller.

motor at constant torque Te∗ in (12) and is consistent with the
convex curve in Fig. 5, corresponding to (2). Therefore, the
mapping relationship between the IPMmotor and BP-NN can
be obtained, as shown in Table 1. Coincidentally, the gradient
point sought by BP-NN is exactly the efficiency point of
the IPM motor, where ip is the minimum. So, the proposed
method is feasible and hasMTPA control ability theoretically.

sgn
(
L̇

(
θi

∗ (k − 1)
))

=



1,
ip (k)− ip (k − 1) > 0,
θi

∗ (k − 1)− θi
∗ (k − 2) > 0.

1,
ip (k)− ip (k − 1) < 0,
θi

∗ (k − 1)− θi
∗ (k − 2) < 0.

−1,
ip (k)− ip (k − 1) > 0,
θi

∗ (k − 1)− θi
∗ (k − 2) < 0.

−1,
ip (k)− ip (k − 1) < 0,
θi

∗ (k − 1)− θi
∗ (k − 2) > 0.

0, otherwise.

(11)

f
(
θi

∗ (k − 1) , ip (k)
)
Te=Te∗
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FIGURE 4. Architecture of the proposed NN-based MTPA controller. (a) Structure of the proposed BP-NN. (b) Loss function of the proposed
BP-NN. (c) Space vector decomposer.

= Te∗ −
3
4
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Lq − Ld

) (
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)2 sin (
2θi∗ (k − 1)

)
−

3
2
pnψf ip (k) cos

(
θi
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)
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3) DISCRETE ALGORITHM
Apparently, the discrete algorithm for processing can be
obtained based on the proposed BP-NN. In detail, at time
step k , the MTPA tuning algorithm consists of three steps
in each iteration, namely back propagation, gradient descent
and forward propagation in sequence. Back propagation and
gradient descent are specific steps to update the parameters
of the BP-NN based on the previous two states and this
state; forward propagation using updated parameters is used
to adjust the current angle. The back propagation of the i-th
layer for calculating the gradient is given as shown in (13)
and (14).

dZ[i]
(n[i],1)(k − 1) = dY[i]

(n[i],1)(k − 1)

= sgn
(
L̇

(
θi

∗(k − 1)
))

dW[i]
(n[i],n[i−1])(k − 1)

= dZ[i]
(n[i],1)(k − 1) ·

(
Y[i−1]
(n[i−1],1)(k − 1)

)T
i = 3

(13)



dZ[i]
(n[i],1)(k − 1) =

(
W[i+1]
(n[i+1],n[i])(k − 1)

)T
·dZ[i+1]

(n[i+1],1)(k − 1) ⊙ σ ′[i]
(
Z[i]
(n[i],1)(k − 1)

)
dW[i]

(n[i],n[i−1])(k − 1)

= dZ[i]
(n[i],1)(k − 1) ·

(
Y[i−1]
(n[i−1],1)(k − 1)

)T
dB[i]

(n[i],1)(k − 1) = dZ[i]
(n[i],1)(k − 1)

i = 1, 2

(14)

where i indicates the i-th layer, n[i] indicates the size of the
i-th layer, the numbers inside parentheses (n [i] , n [i− 1])
indicate the dimension of a vector or matrix,W[i+1]

(n[i+1],n[i])(k−

1), B[i]
(n[i],1)(k − 1), Z[i]

(n[i],1)(k − 1), σ [i] (·) and Y[i]
(n[i],1)(k − 1)

are the weight, bias, activation function’s input, activation
function and output of the i-th layer, respectively, the symbol
⊙ is Hadamard product. Then, the gradient descent of the i-
th layer for updating weights and biases is given as shown in
(15) and (16).


W[i]
(n[i],n[i−1])(k) = W[i]

(n[i],n[i−1])(k − 1)

−α · dW[i]
(n[i],n[i−1])(k − 1)

i = 3

(15)
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

W[i]
(n[i],n[i−1])(k) = W[i]

(n[i],n[i−1])(k − 1)

−α · dW[i]
(n[i],n[i−1])(k − 1)

B[i]
(n[i],1)(k) = B[i]

(n[i],1)(k − 1)

−β · dB[i]
(n[i],1)(k − 1)

i = 1, 2

(16)

where hyperparameters α and β determine the step size of
updating weights and biases. Finally, the forward propagation
of the i-th layer for obtaining θi∗(k) is given as shown in (17)
and (18). The input of the 1st layer and the output of the 3rd
layer are described in (19) and (20), respectively.

Z[i]
(n[i],1)(k) = W[i]

(n[i],n[i−1])(k) · Y[i−1]
(n[i−1],1)(k)

+B[i]
(n[i],1)(k)

Y[i]
(n[i],1)(k) = σ [i]

(
Z[i]
(n[i],1)(k)

)
i = 1, 2

(17)


Y[i]
(n[i],1)(k) = Z[i]

(n[i],1)(k)

= W[i]
(n[i],n[i−1])(k) · Y[i−1]

(n[i−1],1)(k)

i = 3

(18)

Y[0]
(2,1)(k) =

[
ip∗(k) ip(k)

]T (19)

Y[3]
(1,1)(k) = θi

∗(k) (20)

In the initial state, the parameters B[i]
(n[i],1)(0) and

W[i+1]
(n[i+1],n[i])(0) need to be initialized randomly. Back propa-

gation and gradient descent are not included and only forward
propagation is conducted in this state.

B. MOTION MECHANISM OF THE PROPOSED NN-BASED
MTPA CONTROLLER
In the proposed MTPA control system, the continuous
action trajectory of BP-NN is shown in Fig. 5. At constant
torque Te∗, the output of the BP-NN can be adjusted
automatically to online-seek the extreme point which is the
MTPA point dynamically without pre-training. Specifically,
when 1ip

/
1θi

∗
> 0 is valid, the output of BP-NN will be

decreased; when1ip
/
1θi

∗
< 0 is valid, the output of BP-NN

will be increased. Ultimately, the operating point of the
system will converge to the extreme point and exhibit slight
oscillations around the extreme point to dynamically seek the
true MTPA point. This process bears a strong resemblance to
P&O method, so the proposed method can be considered as
an NN-based P&O algorithm.

As a digital controller, the NN-based MTPA controller
will eventually be deployed in the discrete domain, such
as a DSP controller or a discrete program. Therefore, the
discrete motion mechanism between the controller and the
motor system needs to be analyzed in detail. Among them, the
motor system mainly comprises discrete state-space models
of the current PI controller, d-q axis motor equivalent model
and speed PI controller. The inputs of the motor system are
id∗(k) and iq∗(k), and the outputs are ip∗(k+1) and ip(k+1).
The discrete equivalent flowchart of the MTPA point

seeking using NN-based P&O algorithm is shown in Fig. 6

FIGURE 5. Relationship between the MTPA point and its seeking
trajectory.

FIGURE 6. Discrete equivalent flowchart of the MTPA point seeking using
NN-based P&O algorithm.

at time step k . At the start of MTPA tuning, the actual stator
current and stator current reference both obtained from the
previous state will be iterative and updated as ip(k) and ip∗(k).
Based on actual stator current and current angle reference
in three states, the parameters of BP-NN are updated using
back propagation and gradient descent via (13), (14), (15)
and (16). This step will result in a positive or negative offset
(increase or decrease) of the computed θi∗(k) with respect to
the actual angle θi(k), where θi(k) corresponds to the ip(k).
This is equivalent to that in the dashed box in Fig. 6. Then,
as designed, ip(k) and ip∗(k) are fed into the BP-NN, and
the updated BP-NN is used to compute new θi∗(k). This step
corresponds to the forward propagation of BP-NN via (17)
and (18). Finally, by setting the angle reference θi∗(k) to the
control system, the stator current ip(k + 1) and stator current
reference ip∗(k + 1) for the next state can be obtained. This
is a complete MTPA tuning process.
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FIGURE 7. Test results of the proposed NN-based MTPA controller.

For example, when the working points are all on the right
side of the extreme point, at time step k , the outputs ip(k)
and θi(k) of IPM motor were changed by θi∗(k − 1), and the
BP-NN with the optimal parameters can be determined based
on ip(k), ip(k−1), θi∗(k−1) and θi∗(k−2). Since the teacher
signal is positive, the θi∗(k) obtained from the input ip(k) of
BP-NN is smaller than θi(k). It will cause the operating point
to move left in the convex curve to get closer to the extreme
point. In Fig. 7, any operating point from about 0.01 seconds
to 0.7 seconds validates the above analysis.

In an unrolling discrete domain, the above iterative process
makes the combination of the NN-based MTPA controller
and motor system like a recurrent NN, as shown in Fig. 8.
The close interaction between two parts in a recurrent manner
enables BP-NN to have short-term memory and continuity,
and ultimately allows the motor system to converge to the
MTPA point instead of getting stuck at arbitrary current
angles, as shown in Fig. 7.

IV. SIMULATION AND ANALYSIS
A. FEASIBILITY AND EFFICIENCY ANALYSIS OF THE
PROPOSED METHOD AT STEADY STATE
In MATLAB, the state-space average method is used to build
the discrete motor model to verify the proposed method, and
the main parameters for simulation are shown in Table 2.
The conventional MTPA method in section II-B and optimal
MTPA method are both used to compare with the proposed
NN-based method. The optimal MTPA method can be
considered as an ideal MTPA method using real-time and
absolutely accurate motor parameters. The copper loss pc in
(5) is used to evaluate the efficiency of different methods. The
stator resistance Rs has been measured and determined to be
a known constant value.

At steady state, taking the optimal MTPA as a reference
(100%), the efficiency comparison between the conventional
MTPA using fixed parameters, the optimal MTPA and the
proposed NN-based MTPA is shown in Fig. 9, and the steady

TABLE 2. Main parameters in the simulation.

state comparison between all three methods is shown in
Fig. 10.

When the motor parameters remain constant, the conven-
tional MTPA can achieve optimal control due to the use of
accurate parameters. In Fig. 10(a) and 10(c), the proposed
method has same stator current and current angle as the
conventionalMTPA and the optimalMTPA. In Fig. 9(a), from
efficiency, the copper loss powers of the proposed method
and the conventional MTPA are both 100.0% of that of the
optimalMTPA. Therefore, the proposed method can track the
MTPA point correctly.

When IPM motor undergoes hypothetical variation of
parameters, in Fig. 10(b) and 10(d), the conventional MTPA
cannot work at the MTPA point due to the use of non-
updated parameters. The proposedmethod has the same stator
current and current angle as the optimal MTPA, and can
still work at the new MTPA point. In Fig. 9(b), the copper
loss power of the conventional MTPA is worse and 100.7%
of that of the optimal MTPA. The proposed method has
the same efficiency as the optimal MTPA, and has higher
efficiency than the conventional MTPA method. We can
conclude that the proposed method has true online MTPA
tracking capability and does not require motor parameters.

B. FEASIBILITY ANALYSIS UNDER SCENARIOS OF
TORQUE AND SPEED VARIATIONS
In the simulated experiment, Fig. 11 and 13 show the feasibil-
ity simulations for two different scenarios, respectively. The
teacher signal and some parameters of the proposed controller
for the two scenarios are shown in Fig. 12 and 14. In both
scenarios, the optimal MTPA method is used as a reference
for comparison with the proposed NN-based method.

The copper losses of two methods under these two
scenarios are shown in Table 3. In the case 1, the average
copper loss power of the proposed method is 100.04% of
that of the optimal MTPA; in the case 2, the average copper
loss power of the proposed method is 100.01% of that of the
optimal MTPA. In both scenarios, the power loss error of
the two methods is below 0.1%, indicating that the proposed
method achieves the same high efficiency as the optimal
MTPA control.
Case 1: Under the scenario of torque variation, the load

torque undergoes a sudden change every 8 seconds, and
increases or decreases by 4 N · m each time. The rotational
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FIGURE 8. MTPA control between the NN-based MTPA controller and motor system in a discrete domain.

FIGURE 9. Efficiency comparison between the conventional MTPA using
fixed parameters, optimal MTPA and proposed NN-based MTPA. (a)
Before changing motor parameters. (b) After changing motor parameters.

FIGURE 10. Steady state comparison between the conventional MTPA
using fixed parameters, optimal MTPA and proposed NN-based MTPA. (a)
Current angle before changing motor parameters. (b) Current angle after
changing motor parameters. (c) Stator current before changing motor
parameters. (d) Stator current after changing motor parameters.

speed command is still 2000 rpm. The rotational speeds, load
torques, current angles and stator currents of two methods
can be obtained in Fig. 11. From Fig. 11(a), 11(b) and 11(d),
under both control methods, the motor system has the same
output response in terms of speed, torque and stator current.
So, the proposed method can enable stable control. From
Fig. 11(c), at steady state, the angle output of the proposed
method shows fluctuations, but it aligns with the trend of
angle output observed in the optimal MTPA. Moreover, the
proposed method is capable of tracking the new different
MTPA angle timely under the given periodic torque step
disturbances.

In Fig. 12, to remove unfavorable high frequency distur-
bances, low-pass filters are applied to ip and θi∗ in the teacher
signal. With the introduction of the P&O method, the teacher

TABLE 3. Average copper loss powers of two methods under two
scenarios.

signal oscillates between positive one and negative one to
adjust the current angle dynamically. And after each torque
variation, the teacher signal remains consistently positive one
or negative one to adjust current angle until entering the
new steady state. The parameters of the proposed NN-based
controller like weights are convergent, so the proposed
method is feasible in this scenario.
Case 2: Under the scenario of speed variation, the

rotational speed varies between 1000 rpm and 2000 rpm
every 10 seconds, and the load torque remains at 10 N ·

m. The rotational speeds, load torques, current angles and
stator currents of two methods are shown in Fig. 13. From
Fig. 13(a), 13(b) and 13(d), the proposed method also enables
the motor system to output the same response as the optimal
MTPA in terms of speed, torque and stator current. From
Fig. 13(c), the output angle of the proposed method has a
smaller overshoot than the optimal MTPA. When the system
is subjected to a constant positive step disturbance in speed at
the 10th second, the proposed method exhibits overshoot in
the output angle that is at least 50% smaller than the optimal
MTPA; when the system is subjected to a constant negative
step disturbance in speed at the 20th second, the proposed
method’s output angle exhibits minimal overshoot compared
to the optimal MTPA. Therefore, the proposed method has a
good stability.

In Fig. 14, since the torque remains constant at 10 N · m,
the parameters of the NN-based controller do not show any
significant changes in trend, and fluctuate around different
constants. The proposed method is convergent and can track
the MTPA point under periodic speed step disturbances.

C. TRANSIENT STATOR CURRENT ANALYSIS UNDER
SCENARIOS OF TORQUE AND SPEED VARIATIONS
The angle command θi output from MTPA controllers will
ultimately be reflected in the output stator current ip of the
IPM motor system, where the stator current ip represents the
efficiency of MTPA control methods. Therefore, analyzing
the transient stator current can evaluate the transient char-
acteristics of the proposed MTPA controller. The ideal and
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FIGURE 11. NN-based MTPA versus optimal MTPA under the scenario of torque variation. (a) Rotational speed. (b) Load torque. (c) Current angle. (d)
Stator current.

FIGURE 12. Teacher signal and some parameters of the proposed NN-based controller under the scenario of torque variation.

FIGURE 13. NN-based MTPA versus optimal MTPA under the scenario of speed variation. (a) Rotational speed. (b) Load torque. (c) Current angle. (d)
Stator current.

FIGURE 14. Teacher signal and some parameters of the proposed NN-based controller under the scenario of speed variation.

optimal MTPA control is still used for comparison with the
proposed method.
Case 1: In this case, the speed remains constant at

2000 rpm. Fig. 15 shows transient stator current responses
of the IPM motor system of different torque steps, different

torque rises and different torque drops under the optimal
MTPA and the proposed MTPA. In Fig. 15(a), under torque
step of 10 N · m, response times of two methods are about
0.8 and 1.3 seconds, and overshoots of two methods are
24.4% and 24.5%; in Fig. 15(b), under torque step of 8
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FIGURE 15. Transient stator current responses of the IPM motor system
under the optimal MTPA and the proposed MTPA for various torques. (a)
Torque step of 10 N · m. (b) Torque step of 8 N · m. (c) Torque rise from 8
N · m to 10 N · m. (d) Torque rise from 8 N · m to 12 N · m. (e) Torque drop
from 10 N · m to 8 N · m. (f) Torque drop from 12 N · m to 8 N · m.

N · m, response times of two methods are about 0.8 and
1.2 seconds, and overshoots of two methods are 43.7% and
43.8%. In Fig. 15(c), under torque rise from 8N ·m to 10N ·m
at the 20th second, response times of two methods are about
0.6 and 0.9 seconds, and overshoots of two methods are 1.9%
and 2.0%; in Fig. 15(d), under torque rise from 8 N · m to
12 N · m at the 10th second, response times of two methods
are about 0.7 and 1.2 seconds, and overshoots of two methods
are 3.1% and 3.4%. In Fig. 15(e), under torque drop from
10 N ·m to 8 N ·m at the 10th second, response times of two
methods are about 0.6 and 0.8 seconds, and overshoots of two
methods are 2.4% and 2.4%. In Fig. 15(f), under torque drop
from 12 N ·m to 8 N ·m at the 20th second, response times of
two methods are about 0.6 and 0.6 seconds, and overshoots
of two methods are 4.9% and 4.7%.

From the above results, based on P&O method, the
proposed method does not require motor parameters nor
an analytical MTPA equation. Therefore, it is sensitive to
torque disturbances, which results in a longer time to reach
a new steady state point compared to the optimal MTPA.
In terms of overshoot, the proposed method exhibits the same
good performance as the optimal MTPA. Overall, from stator
current profiles in Fig. 15, the proposed method has good
transient characteristics.
Case 2: In this case, the load torque remains constant

at 10 N · m. Transient stator currents under speed steps of
1000 rpm and 1600 rpm are shown in Fig. 16(a) and 16(b),
respectively. In Fig. 16(c) and 16(d), transient stator currents
corresponding to different speed rises from 1000 rpm to 2000

FIGURE 16. Transient stator current responses of the IPM motor system
under the optimal MTPA and the proposed MTPA for various speeds. (a)
Speed step of 1000 rpm. (b) Speed step of 1600 rpm. (c) Speed rise from
1000 rpm to 2000 rpm. (d) Speed rise from 1600 rpm to 1800 rpm.
(e) Speed drop from 2000 rpm to 1000 rpm. (f) Speed drop from 1800 rpm
to 1600 rpm.

rpm and from 1600 rpm to 1800 rpm at the 10th second
in the IPM motor system can be observed, respectively.
In Fig. 16(e) and 16(f), transient stator currents corresponding
to speed drops from 2000 rpm to 1000 rpm and from 1800
rpm to 1600 rpm at the 20th second can also be observed,
respectively. Obviously, from results in Fig. 16, it can be seen
that transient stator currents of the proposed method exhibit
the same response time and overshoot as that of the optimal
MTPA control. Therefore, the proposed method has the same
good transient characteristics as the optimal MTPA control,
at constant torque.

V. CONCLUSION
This paper proposed an NN-based online MTPA control
method of IPM motor for FOC and sensorless control. The
mapping of the loss function to the magnitude of the stator
current space vector enables the convergent pursuit of the
minimum stator current by the designed BP-NN, which is
online trained to minimize the proposed loss function. Based
on the online NN technique, the proposed method does not
require pre-training for a specific system like offline NN
methods, and is easy to process. The analysis of the discrete
motion mechanism of the proposed method confirms its
resemblance to the characteristics of the P&O technique.
Based on the P&O technique, the proposed method does not
require any motor parameters or complex model equations.

In the scenario involving given variation of motor param-
eters, the 0.7% reduction in copper loss confirms that the
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proposed method has higher efficiency, compared to the
conventional MTPA method with fixed motor parameters.
In scenarios involving sudden changes in torque and speed,
compared to the optimal MTPA control using real-time and
accurate motor parameters, the proposed method has good
convergence capability, good stability and good transient
characteristics of stator current.
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