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ABSTRACT False or missed detection may happen in the process of pavement defect detection due to cracks
with different shapes and sizes and interference from complex pavement background. To solve this problem,
we proposed a Cascade R-CNN detection method based on the MS-Feature Pyramid Network (MS-FPN).
First, we introduced a deformable convolution module in the backbone network ResNet101, so that it can
adaptively change depending on the pavement defect. Second, we utilized the MS-FPN for the cross-scale bi-
directional fusion of feature maps output by the backbone network,in which the multi-branch hybrid dilated
convolution (MCE) generates feature maps with multi-scale receptive fields while expanding the receptive
field. The dual-channel attention fusion algorithm (ST-A) was used to improve the identification between
the background and the object, so that more attention was paid to the location and features of the pavement
defect object. The improved Cascade R-CNN can better adapt to the detection of various pavement defects.
On the open-source dataset and self-built dataset, the detection precision has improved by 5.02% and 5%
respectively compared to that of the original Cascade R-CNN.

INDEX TERMS Pavement defect, deformable convolution, dual-channel attention fusion, multi-branch

dilated convolution, MS-FPN.

I. INTRODUCTION
With the rapid development of society, individuals are inter-
acting more frequently with each other, cities are increasingly
interconnected, and consequently the road traffic system [1]
is becoming more and more indispensable in daily life.
China’s roads commonly adopt the asphalt concrete pave-
ment with a semi-rigid base. With years of exposure to
the weather conditions, rain erosion and repeated rolling by
heavy-duty vehicles, the road conditions will get worse and
worse, which not only significantly shortens the service life
of road, but also directly affects the safety of vehicle driving.
Therefore, it is quite necessary to make in-depth research
on automatic pavement defects [2] detection technology to
strongly support a comprehensive understanding of the exist-
ing road conditions and carry out timely maintenance and
repair, thus to maintain the safe and smooth road traffic for
a long time.
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In recent years, many scholars at home and abroad have
conducted plenty of researches on automatic detection of
pavement cracks, and achieved fruitful research results.
Based on the traditional algorithm, Peng et al. [3] succes-
sively used the improved Otsu thresholding segmentation
algorithm to remove the road markings, and then segmented
the processed image with the improved self-adaptive iterative
thresholding segmentation algorithm to obtain the crack
image with significantly reduced image noise. This method,
based on double-thresholding image segmentation technolo-
gies, better solves the interference from road markings on
crack detection. Qingbo [4] removed noise by using gray
level transformation and median filtering, processed pothole
and alligator crack images with image enhancement methods,
and detected their edges by using Roberts, Sobel, Prewiit,
Laplace, and Canny operators. Chen et al. [5] proposed
a crack detection method based on Local Binary Pattern
(LBP) and Support Vector Machine (SVM). The supported
algorithm can extract LBP features from each frame of a
road video. The dimensionality of the LBP feature space can
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then be reduced by Principal Component Analysis (PCA).
The simplified samples were trained to determine the type
of crack by using SVM. These traditional manual detection
algorithms tend to classify defects into transverse crack and
longitudinal crack during the detection of pavement defects,
since the main structure of these two defects are relatively
simple. However, when there are complex cracks with differ-
ent shapes on the road, they can only play a role of identifi-
cation and the classification requires additional algorithms.
Therefore, only using traditional algorithms inevitably poses
low efficiency and high cost, in addition to a difficulty
to provide effective support for accurate maintenance of
road.

With the continuous development and application of deep
learning, multiple different objects in an image can be the
classified and located. Compared with traditional algorithms,
it has a significant improvement in both efficiency and effect.
To maintain traffic safety, Liang Tianjiao et al. proposed
an anchor-free lightweight object detector for autonomous
driving called ALODAD, which incorporates the attention
scheme to GhostNet network, and constructs an anchor-free
detection framework, thus reducing the computational cost
and providing parameters with high detection precision. This
method improves the detection precision while meeting the
real-time performance requirements of autonomous driving;
An improved Spasrse R-CNN was proposed in the object
detection of traffic signs, which integrates the attention mech-
anism and FPN into the backbone network, so that the
extracted features can be focused on useful information,
and effectively improve the detection precision of traffic
signs. These detection algorithms provide new ideas for the
research direction of road defect detection based on deep
learning.

In the single-stage series of pavement defect detection
algorithms, Chen et al. [6] proposed MANet to detect pave-
ment defects. An encoder-decoder architecture was used in
MANet, where the encoder adopted MobileNet as the back-
bone network to extract pavement defect features. Instead of
the original 3 x 3 convolution, a multi-scale convolution ker-
nel was used for the depthwise separable convolutional layers
of the network. Besides, a hybrid attention mechanism was
respectively integrated into the encoder and decoder modules
to infer the significance of spatial points and inter-channel
relationship features on the input intermediate feature map,
which provided superior performance compared to traditional
algorithms. Wang [7] proposed a pavement crack detection
algorithm based on Yolov3 and multi-scale analysis, which
de-noises the image with multi-scale analysis before detect-
ing the image with the trained model. The study results
showed that the method had a significant improvement for
the confidence level, and the mAP value of the Yolov3-based
model for the detection of transverse, longitudinal and reticu-
lation cracks was even up to 51.2%. Although the single-stage
algorithm is slightly better than the two-stage algorithm in
terms of speed, the two-stage network has a greater advantage
in the detection precision.
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In the two-stage series of pavement defect detection
algorithms, Wang [8] implemented a Faster R-CNN pave-
ment defect detection method by using VGG-16 for feature
extraction, which achieved a mAP value of 53.86% for the
detection of pavement defects. However, during the Faster
R-CNN studies, if the IOU [9] threshold is set too low, it will
cause noise prediction, and if it is set too high, over-fitting
phenomenon may occur. After that, Shen and Nie [10] applied
the Cascade R-CNN algorithm to pavement defect detection,
using a three-stage cascade detector to gradually increase
the IOU threshold, and obtain a new defect classification
score and bounding box regression to improve the training
effect, which effectively makes up for the shortcomings of
the Faster R-CNN algorithm. However, due to the fixed shape
proportion and limited size of the Cascade R-CNN receptive
field, it is difficult to accurately identify the crack defects
with different shapes and sizes, which seriously affects the
detection precision.

In view of the problems of the above algorithms, this
paper proposed an improved Cascade R-CNN network, which
effectively makes up for the disadvantages of traditional
CascadeR-CNN such as loss of information [11], missed
detection [12], and false detection, and has a stronger adaptive
ability for pavement defects with complex shapes and varying
sizes, realizing the high-quality detection of complex defects
of the pavement.

Il. MATERIALS AND METHODS

Figure 1 shows the improved Cascade R-CNN algorithm
proposed in this research, which is mainly composed of
four parts: backbone network (3D-ResNetl01), MS-FPN,
RPN and cascade classification regression network. Part 1 of
the algorithm flow: The 3D-ResNet101 extracts image fea-
tures and generates multi-scale feature maps. Part 2: The
feature map in the MS-FPN, through MS network and two-
stage (bottom-up and top-down) feature fusion mode with
cross-scale lateral connection, enhances the ability of net-
work in identification of pavement defects while collecting
multi-scale pavement defect information. Part 3: The fused
feature map is sent to the RPN, and a large number of
bounding boxes are generated by anchor box generation
mechanism. In this paper, the aspect ratio of bounding box
is set to {0.1, 1,0.9}. Part 4: In the detection stage, Cas-
cade RCNN uses cascade detectors for detection, each of
which includes ROI Align [13], fully connected layer FC,
classification score C and bounding box regression B. During
detection, the target area is re-sampled by the bounding box
regression B output from the previous detector, and the IOU
threshold training is gradually improved to obtain new clas-
sification score C and bounding box regression B, ultimately
improving the sample quality and network training effect.

A. INTRODUCTION OF DEFORMABLE CONVOLUTION IN
BACKBONE NETWORKS

The receptive field of standard convolution is a grid-type
rectangle with fixed size, which is a regular rectangular
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FIGURE 1. Improved Cascade R-CNN network model.

shape when the features are extracted. However, for pave-
ment defects with different scales or complex shapes, it lacks
certain adaptive ability, which will lead to the loss of infor-
mation. To solve the problem of insufficient expression of
ResNet101’s feature extraction ability, this paper proposed
to use deformable convolution [14] to replace the con3—con5
traditional convolutional layers in the last three stages of
ResNet101. The network model is shown in Figure 2.
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FIGURE 2. Backbone network structure with DCN module.

The traditional ResNet network is mainly divided into five
stages, which are composed of the initial stage and the resid-
ual module consisting of Identity Block and Conv Block. The
initial stage contains convolutional layer, BN layer, activation
layer and pooling layer. The equation of definition of its
structure is shown in (1):

Ypo) =2 X o+ p) X @ (i) M
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Firstly, the convolution kernel R with fixed size is used
for sliding-window sampling on the feature map x, and then
the sampling points are multiplied by the weights to sum.
Where R determines the size and expansion of the receptive
field, po represents the pixel point coordinates of the center
of the convolution kernel, p; represents other pixel points
except po, and R is the image area covered by the convolution
kernel. After the deformable convolution DCN is added, it is
necessary to add an offset p;(the offset of the ith sample
point) to Equation (1), and this offset can make the sampling
position become an irregular deformable area, as shown in
the following Equation (2):

Yoo =2 xXPotpitp)xo@) @)

After the deformable convolution is added, the receptive
field of sampling can adaptively change according to the
pavement defect to be identified, and realize the learning
and dynamic adjustment of the irregularly shaped cracks
and other types of damage on the pavement, thus adapt-
ing to the shape, size and other geometric deformations
of different pavement defects and effectively avoiding the
loss of information, so there are richer features of pave-
ment defects after the deformable convolution is added. The
specific structure of the improved 3D-ResNet101 is shown
in Table 1.

124799



IEEE Access

L. Chen et al.: MS-FPN-Based Pavement Defect Identification Algorithm

TABLE 1. Structure of 3D-ResNet101.

Stage Input Output DCN 3D-ResNet101
7x7, 64, stride2
Convl 600x 600 300300 X 3% 3 max pool,
stride2
1x1,64 ]
Conv2 300x300 150%150 X 3x3,64 |x3
1x1,256 |
1x1,128 ]
Conv3 150150 75%x75 N 3x3,128 [x4
1x1,512 |
1x1,128
Conv4 75%75 37%x37 J 3%x3,128 |x23
1x1,512
1x1,512
Conv5 37x37 18x18 J 3x3,512 |x3
1x1,2048
B. MS-FPN

Since the size of pavement defects varies greatly, the tradi-
tional model is limited in its ability to capture multi-scale
defect features, then it will lead to the loss of information.
And there is a lack of information communication between
the receptive fields of multi-scale defects, resulting in poor
quality of feature map. In contrast, the traditional FPN per-
forms bottom-up and top-down feature fusion, and predicts
with the fused feature map with advanced semantic infor-
mation, which improves the precision to a certain extent.
However, this fusion mode is restricted by one-way infor-
mation flow, which leads to limited precision. Therefore,
this paper proposed the MS-FPN, a new FPN architecture,
which is guided by MCE [15] module and ST-A [16] attention
fusion module in both directions. The MS-FPN effectively
solves the problem that traditional FPN is restricted by
one-way information flow, Adjustment of the number of
channels and size of the feature map by 1 x 1 convolution
and by upsampling and downsampling operations,aggregates
the features of different resolutions, and realizes cross-scale
fusion. Meanwhile, at each node of the MS-FPN feature
fusion, the shared MCE module is utilized to obtain the recep-
tive fields of multi-scale pavement defects, thus improving
the ability to capture multi-level features of defects. And
ST-A attention fusion module is utilized to obtain stronger
semantic information and more accurate positioning informa-
tion, and enhance the ability in the identification of feature
maps. The MS-FPN is shown in Figure 1.

1) MCE MOUDLE

Since the ordinary convolutional layer obtains the feature
map by down-sampling, the size of the sampled feature map
is getting smaller, and each pixel point of the final feature
map corresponds to a larger area of the original image, which
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also makes the feature response of the whole image become
sparse. In contrast, the dilated convolution introduces the
parameter of dilation rate (r) on the basis of the ordinary
convolutional layer, which is utilized to define the spacing of
the data values processed by the convolution kernel during the
convolution operation. This method is capable of obtaining a
denser spatial response and a larger receptive field without
additional computational complexity.

The sizes and shapes of the pavement defects are different,
and the receptive fields of different sizes are only beneficial
for the detection of defects of different sizes. As shown in
Figure 3, the smaller Receptive Fieldl in Figure (b) is only
applicable to the identification of potholes with small sizes
in the image, while it will lead to the loss of information
when identifying those with large sizes in the image. The
larger Receptive Field 2 is applicable to the identification of
potholes with large sizes in the image, but when detecting
those with smaller size, the receptive field is mixed with the
interference from road lines and other factors that affect the
detection results, as shown in Figure (c). Figure (a) shows that
receptive fields of different sizes are designed to obtain richer
object features according to potholes of different sizes.

Figld]  --*
.o Fieldl

(a)ldeal field (b)Field1

(c)Field2

FIGURE 3. Comparison of receptive fields of pavement defects with
different scales.

In view of the above drawbacks, this paper proposed a
multi-branch hybrid dilated convolution with a convolution
kernel of 3 x 3 [18]. That is, the first branch adopts the
dilated convolution with r = 1 to expand the first layer of
the receptive field, and the cascaded dilated convolution with
r = (1,2) and r = (1,2, 3) is respectively used in the
second and third layers to obtain pavement defect features
of different scales. It also effectively solves the grid effect
caused by the dilated convolution with a single dilation rate,
and avoids the loss of information. The comparison diagram
of receptive fields of the dilated convolution is shown in
Figure 4.

Finally, the global feature of the feature map are obtained
by using average pooling in the fifth layer. The multi-branch
hybrid dilated convolution is shown in Figure 5.

2) DUAL-CHANNEL FEATURE FUSION

The process of pavement defect detection is prone to missed
or false detection due to the complex road background,
since the inconspicuous features of small cracks in pave-
ment defects cannot be highlighted in the complex road
background. To pay better selective attention to channel
information, so that the key information of small cracks
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can be captured in large quantities, ST-A network was pro-
posed in this paper. The classical Channel Attention Module
(CAM) [19] extracts features using only Global Average
Pooling (GAP), which may easily lead to equal weighting
of key defects and background information within a uniform
channel, while weakening the features of small objects. In this
paper, the enhanced feature map Q; was generated by combin-
ing scene attention and target attention networks, and finally
the two kinds of attention were fused together, so that more
attention was paid to the location and features of the target
pavement defect, and the information about the location of the
cracks as well as the feature differences between the cracks
and the background are highlighted, as shown in Figure 6.
The input feature map goes through the scene attention
module and the target attention module respectively. In the
scene attention module, P; firstly goes through a remod-
eling process and a remodeling and transposing process,
respectively, and then the two feature maps produced are
multiplied to obtain the channel attention feature map through
softmax [20]. The feature map is transposed and matrix
multiplied with P; to obtain a weighted value « (the initial
value is 0, and higher values are assigned as the network
deepens), and then remodeled back to its original shape, and
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FIGURE 6. Dual-channel feature fusion(ST-A).

finally added to P; to obtain Q;. as shown in the following
Equation (3):

exp (Pik X Pij)
>ie 1exp (Pix x Pij) 3)
Oij=«a Z jk X Plk) + Pi;

The attention module hlghhghts the feature information of
the object by weighting all final channel features and sum-
ming them with the original channel features. Ej; in the above
expression denotes the channel attention matrix to express
the influence of Channel £ on Channel j, Pi; denotes the
Channel k output from different feature output layers, and Pi;
represents the Channel j output from different feature output
layers.

In the target attention module, the concatenated feature
map Pi(C x H x W) goes through three convolutional lay-
ers to generate three corresponding feature maps A, B, and
C, respectively, and they are remodeled into (C x H x W),
where B is then transposed. Then B and A are matrix multi-
plied to obtain the location-weighted feature map D through
softmax and then transpose the map. After that, perform
matrix multiplication of C and D and assign weight S(the ini-
tial value is 0, and higher values are assigned as the network
deepens), and remodel it back to the initial shape, and add it
to Pi to obtain Qi. The expression for this calculation process
is shown in (4):

Ej. =

exp (A X By)
HXWexp (A x By) )
Qi = B ZZ:I (Dt % C1) + Pi

The attention module obtains a feature map Qi by weight-
ing all locations, and then sums with the original feature
results to reflect a spatial vision of the global context, thus
obtaining more accurate object location information. In the
above expression, Dy,; represents the spatial attention matrix,
which is used to express the influence of Location t on Loca-
tion m, Qi,, represents Location m of the feature map from

Dy =
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different feature output layers, and C; represents Location ¢
of the feature map C. Finally, the enhanced feature maps
generated by scene attention and target attention are summed
to generate feature maps with richer location and feature
information.

The attention feature fusion module combines the depen-
dency between scene and target, and continuously improves
the relationship weights of the detection objects, so that its
adaptive learning expresses the features of pavement defects
more effectively, suppresses the information expression of the
rest of the features, and improves the accuracy of identifying
the difference between the road background and the defect
features more effectively.

Ill. EXPERIMENTAL PREPARATIONS

A. ESTABLISHMENT OF DATASET

The acquisition of crack image and the establishment of
dataset are crucial in the study preparation stage. In order
to make the study results more convincing, we used the
public dataset RDD2020 and the self-built data QT. To ensure
a clearer definition of the categories of pavement defects,
we added the labels of three pavement defect categories
(D43, D44 and D50) to the original categories of Japanese
pavement defects in RDD2020. The resolution of each image
is 600 x 600 and there are 14,758 marks of pavement damage.

TABLE 2. RDD2020 dataset category.

Damage Type
Longitudinal cracks

Detailed description Tags
Wheel crush/construction joint part crack D00
Equally spaced cracks / cracks in the

Transverse cracks X . D10
construction connection area

cracked Partial or overall cracking D20

Potholes Wheel crushing/rainwater washing D40

Blurred pedestrian lines D43

Other breakage Blurred Road Routes D44

Manhole cover Uneven manhole cover/unrealistic D50

defects manhole cover

From Table 2, in general, pavement defects can be divided
into four major types: cracks, other breakages, potholes, and
manhole cover defects, of which pavement cracks are divided
into three types: longitudinal cracks, transverse cracks, and
cracks according to their relative position to the road sur-
face, which are represented by labels D00, D10, and D20,
respectively. Other damages are categorized into two types:
pedestrian identification lines and road identification lines,
which are represented by labels D43 and D44, respectively.
And manhole cover defects and potholes are characterized
more obviously, so each of them accounts for one type of
label, D50, D40, respectively.The fan chart of the distribution
of the number of each type in the dataset is shown in Figure 7.

In this study, the self-built dataset consists of images
taken on the road and downloaded from the Internet
(https://image.baidu.com/), involving a variety of natural
weather, lighting conditions, and complex backgrounds.
We totally sampled 760 images saved in JPG format, each
of which has a resolution of 600 x 600. Four class labels
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FIGURE 7. The proportion of pavement with the type of damage.

were included, namely D00, D10, D50, and D44 (whose
meanings are consistent with those in the RDD2020 dataset).
The number of images under each class label is 180, 172,
200, and 208, respectively, and they are labeled according to
the PASCAL VOC2007 standard by Labelimg software, and
saved as xml files.

Finally, the above two datasets are grouped into training
set, validation set and test set in the ratio 6 : 2 : 2. Each type
is relatively evenly distributed in the two datasets, which is
more adapted to the learning process. Examples of images in
the dataset are shown in Figure 8.

B. EXPERIMENTAL PLATFORMS

The experimental platform for the detection method in this
paper is in Ubuntu 20.04 system equipped with 2 GPUs
(10807i x 2) and 1 CPU processor (Intel(R) Core(TM)
17-7700HQ CPU @ 2.80GHz, and Pytorch is used as the deep
learning framework. The input image size is 600 x 600.

C. PARAMETER SETTING PLATFORMS

For a fair comparison, all ablation experiments were con-
ducted under the PyTorch framework and the open-source
MMDetection toolkit from ShangTang, which integrates a
large number of existing advanced as well as mainstream
detection methods, with 2 test images in a batch, 12 consecu-
tive epochs of training, an initial learning rate of 0.002 set, and
the other hyper-parameters in MMDetection as the default
values.

D. ASSESSMENT OF INDICATORS

We adopted the average precision of individual pavement
defect type (AP), the mean average precision of all types
(mAP), and the loss of classification (LFocal) as the evalu-
ation indexes for this study, as shown in expression (5).

1
AP=/ P (R)dR x 100%
0

1
mAP = - > AP X 100% )
Loy — | e (1=3) ogy, y=1
o —(l—a)y’log(l—y), y=0
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(b) Examples of images in RDD2020 dataset

FIGURE 8. Examples from pavement defect dataset.

IV. RESULTS

A. BACKBONE NETWORK ABLATION EXPERIMENT

In order to prove the effectiveness of the algorithm, this
paper firstly carried out ablation studies to the backbone
network on the public datasets. In the cascade R-CNN
algorithm, the backbone network is replaced by RepLKNet,
DenseNet, VGG-16, Inceptionv4, ResNet50, WRN, SeNet,
ResNet101, and 3D-ResNet101, in that order. As can be
seen from Table 3, embedding ResNetl01 into Cascade
rcnn is stronger than other backbone networks in detecting
the accuracy of seven types of defects in roads, so this
paper proposes to improve ResNetlOl. And after embed-
ding the 3D-ResNet101 network after adding the deformation
convolution into Cacade RCNN, the average accuracy is
improved by 1.7 percentage points compared with the orig-
inal ResNetl01, and the accuracy is improved in various
categories of defects.

In order to more intuitively reflect the effectiveness of the
proposed method, this paper shows the original ResNet101
and the 3D-ResNet101 training process visualization results
as shown in Figure 9, from the comparison of Figure b and
Figure c, it can be clearly seen that, for the irregularly shaped
cracks, the 3D-ResNet101 added with deformation convo-
lution obtains more effective feature information through
adaptive adjustment.

B. FPN ABLATION EXPERIMENT

In order to verify the performance of Cascade R-CNN before
and after the improvement, we embed ResNet101 before and
after the improvement into Cascade R-CNN in one-by-one
combinations with traditional FPN, PANet [28], Bi-FPN and

VOLUME 11, 2023

our proposed MS-FPN, respectively, and conduct ablation
studies on public datasets. Table 4 shows that the original cas-
cade R-CNN network model has the lowest mAP value. The
PANet with cascaded feature pyramid structure can perform
feature fusion on inhomogeneous scales, and its detection
accuracy is significantly higher than that of the traditional
FPN, while the Bi-FPN with bidirectional feature pyramid
structure can utilize both high-level and low-level features,
which improves the accuracy of target detection. From the
experimental results, Bi-FPN outperforms PANet in the face
of complex road defects.And our proposed MS-FPN,The
average accuracy of the detection results of integrating the
MS-FPN which is guided by MCE and ST-A into Cascade
R-CNN algorithm is 2.4% higher than that of Bi-FPN in
Cascade R-CNN algorithm. From the experimental results,
it can be seen that the detection performance of MS-FPN in
Cascade R-CNN is significantly stronger than other feature
pyramids. The improved Cascade R-CNN even improves
5.02 percentage points in average accuracy compared to the
original Cascade R-CNN.Therefore, the deformation, multi-
scale receptive field and attention in the convolution play a
key role in the defect detection, and the improved model is
more suitable for detection of pavement defects with complex
types and different sizes.

The classification loss function for training datasets con-
taining 7 types of pavement defects is shown in Figure 10.
It can be seen that the loss decreases faster in the early stage
of network training, and the loss curve decreases steadily
when the iteration is about 7000 times, and finally converges
at about 0.02, which indicates that the improved network is
more desirable for the classification of the seven kinds of road
defects.
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TABLE 3. Comparison of cascade R-CNN detection performance for different backbone networks.

AP values for different types of pavement defects

Backbone networks D20 D44 D50 D43 D10 D00 D40 mAP
RepLKNet[20] 0.549 0.647 0.743 0.751 0310 0.344 0.450 0.542
DenseNet[21] 0.551 0.653 0.751 0.756 0314 0.343 0.453 0.546

VGG16[22] 0.558 0.655 0.757 0.752 0317 0.351 0.455 0.549
Inceptionv4[23] 0.568 0.651 0.756 0.751 0318 0.356 0.461 0.552
ResNet50[24] 0.565 0.659 0.761 0.758 0.326 0.354 0.458 0.554
WRN[25] 0.571 0.650 0.765 0.760 0322 0361 0472 0.557
SeNET[26] 0.570 0.652 0.764 0.759 0318 0.360 0477 0.557
ResNet101 0.574 0.658 0.771 0.762 0.324 0.365 0.475 0.559
Ours(3D-ResNet101) 0.610 0.670 0.776 0.765 0.344 0.374 0.496 0.576

(a) Original feauture

FIGURE 9. Feature map visualization comparison.

(b) ResNet101

(c) 3D-ResNet101

TABLE 4. Ablation experiment based on improved Cascade R-CNN detection performance.

AP values for different types of pavement defects

Backbone networks D20 D44 D50 D43 D10 D00 D40 mAP
ResNet101+FPN 0574 0.658 0771 0.762 0324 0.365 0475 0.559
3D-ResNet101+FPN 0.610 0.670 0.776 0.765 0.344 0.374 0.496 0.576
ResNet101+PANet 0.582 0.662 0.769 0.766 0.332 0.370 0.481 0.566
3D-ResNet101+PANet 0.607 0.665 0.770 0.761 0.353 0.385 0.510 0.579
ResNet101+Bi-FPN 0.599 0.664 0.772 0.763 0.345 0.379 0.487 0.573
3D-ResNet101+Bi-FPN 0.613 0.672 0.774 0.760 0.364 0.388 0513 0.583
ResNet101+MS-FPN 0.617 0.681 0.782 0.769 0.394 0.412 0.523 0.597
3D-ResNet101+MS-FPN 0.628 0.689 0.791 0.786 0.418 0.427 0.536 0.611

In order to further verify the effectiveness and advance-
ment of the proposed method for pavement defect detection,
the models before and after improvement were trained with
the public dataset RDD?2020, and several typical prediction
images were selected from the detection results, as shown in
Figure 11. In the detection results of the original model, (a) (c)
shows a missed detection and Figure(e) shows a misdetection.
In the detection results of the improved model, the disad-
vantages of leakage and misdetection of the original model
are effectively compensated, and the precise localization of
the target defects as well as the strong recognition ability are
achieved.

C. PERFORMANCE COMPARISON OF DIFFERENT MODELS

We compared the detection performance of this study with
that of other advanced one-stage and two-stage network
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models on the public dataset RDD2020 and the self-built
dataset QT respectively. The results are shown in
Tables 5 and 6.

From the experimental results, it can be seen that in
the public dataset, the cascade-type detectors of the Cas-
cade R-CNN series are significantly better than the Faster
R-CNN in detecting defects of each class by improving the
Iou of the prediction frame step by step, and also have a
significant advantage in the average accuracy compared to
the single-stage Yolov5, Yolov7, and Yolov8, but not as
good as the SC-R-CNN and Spares.The average accuracy
is equal compared to Libra R-CNN, but has a significant
disadvantage in the defective categories of D20, D44, D00,
and D40. And the improved Cascade R-CNN has a sub-
stantial improvement in the detection accuracy of defects
in all categories compared to Libra R-CNN, SC-R-CNN
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TABLE 5. Performance comparison of different models based on RDD2020 dataset.

AP values for different breakage types

Network model mAP
D20 D44 D50 D43 D10 D00 D40
Yolov5[28] 0.521 0.594 0.794 0.673 0.282 0.302 0.425 0.506
Yolov7[29] 0.542 0.651 0.752 0.698 0.314 0.355 0.453 0.538
Yolov8[30] 0.570 0.655 0.764 0.758 0.321 0.362 0.460 0.556
Faster RCNN 0.545 0.604 0.760 0.716 0.302 0.343 0.465 0.534
Cascade RCNN 0.574 0.658 0.771 0.762 0.324 0.365 0.457 0.559
Libra RCNN[31] 0.580 0.663 0.755 0.751 0.304 0.377 0.482 0.559
SC-RCNN[32] 0.578 0.674 0.763 0.755 0.357 0.370 0.466 0.562
Spares[33] 0.600 0.655 0.777 0.760 0.374 0.402 0.502 0.581
Ours 0.628 0.689 0.791 0.786 0418 0.427 0.536 0.611
TABLE 6. Performance comparison of different models based on self-built datasets.
AP values for different breakage types
Network model mAP
D00 D10 D50 D44
Yolov5 0.435 0.454 0.780 0.728 0.599
Yolov7 0.443 0.467 0.811 0.765 0.622
Yolov8 0.456 0.462 0.819 0.797 0.634
Faster RCNN 0.451 0.469 0.810 0.777 0.627
Cascade RCNN 0.453 0.478 0.822 0.792 0.636
Libra RCNN 0.452 0.479 0.819 0.768 0.630
SC-RCNN 0.453 0.468 0.826 0.785 0.633
Spares 0.467 0.493 0.841 0.805 0.656
Ours 0.491 0.525 0.885 0.843 0.686
0.35 loss_rpn_cls
0.30
0.25
% 020
4 015
0.10
" M‘W
0.00
0 20000 40000 60000 80000 100000

Iterations

FIGURE 10. The proportion of pavement with the type of damage.

and Sparse models, which is 5.02 percentage points higher
than the mAP value of the original model, Cascade R-CNN,
compared to the original model, Cascade R-CNN.In the
self-built dataset, the detection effect of Cascade R-CNN
is still better than Yolov5, Yolov7, Yolov8, Faster R-CNN,
and maintains a slight advantage over Libra R-CNN and
SC-R-CNN algorithms, but there is still a gap with Sparse.
The improved Cascade RCNN and other algorithms have
significant improvement in each category accuracy, and still
improve 5 percentage points compared with the original
algorithm. It can be shown that the improved Cascade R-CNN
has a stronger adaptive ability to irregular shape and large
scale change of pavement defects than the original Cascade
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FIGURE 11. Comparison of ablation study results.

R-CNN, and The detection results of the seven categories
of road defects based on the improved model are shown in
Figure 12.
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FIGURE 12. Schematic diagram of detection results of seven types of pavement defects.

V. CONCLUSION

This paper presented a MS-FPN-based Cascade R-CNN
pavement defect detection method. In the feature extraction
stage, the method incorporated deformable convolution into
ResNet101, and adapted to various defects with complex
shapes in traffic pavement by learning the offset and weight
of center points. Multi-scale receptive fields were obtained
through MEC network shared by backbone network and MS-
FPN, and the number of parameters and complexity of the
model were reduced. And ST-A network was used to fuse the
feature map of scene attention and target attention outputs,
so that it only paid attention to the key part of the fused
feature map and inhibited the information expression of other
features. The MS-FPN network for cross-scale bidirectional
fusion of feature maps, which enriched the pavement defect
information and defect feature expression ability. The experi-
mental results demonstrate that the improved Cascade RCNN
algorithm proposed in this paper has a significant improve-
ment in the detection accuracy of defects of all classes on
the RDD2020 dataset as well as the self-built QT dataset
compared to the original Cascade RCNN as well as some
state-of-the-art algorithms. Due to the limited study condi-
tions, the dataset in this study does not contain an abundance
of images with large shadows or strong light exposure, which
are likely to be encountered in practice. Therefore, we should
further strengthen the processing and verification of defect
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images under special conditions. In addition, the final effect
of the algorithm is closely related to the quality of the pro-
cessed images, so we should enhance the research on image
capture technology while improving the algorithm in the
future.
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