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ABSTRACT Automatic 2D vision-based defect detection on sealing nail (SealN) surfaces is challenging
due to interference of complex backgrounds with non-homogeneous and low contrast between foreground
and background. Inspired by an interesting observation that the albedo domain recovered by the uncalibrated
photometric stereo (UPS) shows obvious differences and significant abruptness between defects’ and non-
defects’ regions, we develop a novel semantic-guided variational model (SGVM) to conditional extract
structural defects from albedo map. Specifically, SGVM utilizes one developed global regularized label
indicator to semantically guide one local regularized relative Gaussian filter (RGF) for achieving large-scale
structures (i.e., defects) preservation and small-scale textures (i.e., background) suppression. Furthermore,
defects can be efficiently extracted by thresholding the structure map within the label indicator. Additionally,
experimental results on numerous challenging defect images reveal that the proposed SGVM outperforms
the existing advanced 2D methods in terms of defect extraction.

INDEX TERMS Semantic-guided variationalmodel (SGVM), defect extraction, sealing nail, albedo domain,
uncalibrated photometric stereo (UPS).

I. INTRODUCTION
Undoubtedly, surface defect extraction (DE) is crucial for
achieving high yield output of massive industrial products
such as power battery SealN, bearings, and steel strips.
With the demand for high quality- and efficiency- advanced
vision-based autonomous defect detection technology has
become mainstream and replaced traditional manual inspec-
tion methods, which are less efficient. Generally, these
inspection technologies can be divided into three categories
according to the different defect extraction domains: spatial,
spectral, and feature-based methods.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

Directly measuring the spatial distribution of pixel inten-
sities in the spatial domain [1], [2], [3], [4] is probably
the most intuitive and straightforward way to distinguish
prominent defects from textures. Tsai et al. [1] designed a
weighted covariancematrix with a texture regularitymeasure,
and used its eigenvalues to determine whether a local
image block contains defects. Afshar et al. [2] proposed the
rotation-invariant variance measure, which was employed
for defect extraction from smooth tiles. Additionally,
Luo et al. [3] proposed an adaptive dual-threshold technique
to detect each non-overlapping pixel block expressed by
texture operators (including variance, entropy, and average
gradient) on steel surface images. Spatial domain methods
mentioned above, despite their good ability to extract
local/global texture descriptors representing different classes
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from the original intensity, may have limitations in handling
small defects and being ineffective in cases where defects and
background textures are similar.

The core idea of spectral domain methods is to transform
the intensity domain into the frequency domain, on which
defects are identified through the differences in response
between foreground targets and background. For instance,
Aiger et al. [5] proposed a phase-only Fourier transform
method, which uses Fourier transform phase information to
extract defects. Building upon this method, Zhou et al. [6]
further improved its performance by introducing two-step
operations involving local estimation and spatiotemporal
refinement. Furthermore, Ghorai et al. [7] presented awavelet
decomposition model that utilizes adaptive scaling and
directional texture features to achieve better performance
on steel surface defect detection. Obviously, such methods
are particularly suitable for target surfaces with regular
patterns or periodic texture features, such as fabrics, tiles,
and steel materials, but the use of inappropriate filters and
their radius may lead to the risk of under/over-extracting of
defects.

For the feature domain-based methods, saliency defect
detection [8], [9], [10], [11] has outstanding performance as
the main representative. Saliency feature models simulate the
human visual attention mechanism, which captures salient
visual features in an image and treats them as defect
collections. Achanta et al. [8] proposed a frequency-tuned
algorithm that effectively perceives salient object edges
and produces high-resolution saliency maps. Subsequently,
Peng et al. [9] introduced a saliency defect detection model
based on low-rank matrix recovery theory, representing
the image matrix as a sparse matrix containing salient
objects and a low-rank matrix containing the background
through pixel-wise addition composition. In particular,
Song et al. [11] regarded defective objects as salient objects
in the image and effectively extracted them by proposing
multiple constraint terms and improved texture features.
Even though those saliency methods can provide promising
results, theymay encounter under/over-extraction and blurred
boundaries on saliency maps when multiple or scattered
target defects are simultaneously extracted or when there are
similar representations between salient target regions and the
background.

To overcome the above issues, inspired by the 2.5D
UPS method [12], [13], [14], [15], we propose a novel
Semantic-Guided Variational Model (SGVM) on the spec-
ified albedo domain estimated by UPS and apply it to the
SealN defective extraction task with complex background
interference. Unlike the different domain methods mentioned
above, the albedo domain estimated by UPS exhibits
inherent strong differences in intensity values and significant
discontinuity or abruptness in spatial distribution between
the defect and surrounding background regions. In other
words, within the albedo domain, the inter-class difference
between defects and background is amplified. On the other
hand, the proposed SGVM incorporates one semantic label

indicator as a global regularization to guide local regularized
RGF for identifying structures (regarded as defects) and
suppressing unwanted complex background textures at any
scale, addressing issues such as under/over-smoothing and
blurred boundaries. Furthermore, benefiting from the joint
prior variational framework with global optimization, the
SGVM shows well generalization ability on multiple defect
datasets. The overall framework of the proposed method is
shown in Fig. 1. The main contributions of this paper can
be summarized as follows.

1. To our knowledge, we are the first to introduce the
albedo map estimated by the UPS method as the processing
domain for SealN’s defect extraction tasks, rather than the
intensity domain that captures original images, and thus
obtain a better defect extraction.

2. We propose one globally optimal variational model,
namely SGVM, for defect detection, which combines one
scale-smoothness prior constrained by the L1 norm and one
semantic-guided label prior constrained by the L0 norm.
This model extracts structural maps containing defects
without under or over-smoothing and boundary artifacts from
challenging datasets such as power battery SealN.

3. We provide a numerical approximation term to solve the
non-convex problem in the SGVM model, i.e., transforming
it into a convex problem that can be iteratively solved by
decomposing it into subproblems.

4. We perform comprehensive experiments on challenging
examples, such as SealN images with interference from
non-homogeneous background textures and other scenes with
low contrast between defects and the background ones.
Experimental results demonstrate that the proposed model
not only outperforms advanced models in defect extraction
performance, but also exhibits good generalizability in
various complex task scenarios, such as bridge cracks,
bearing defects, and steel strip defects, in terms of large-scale
structural defect extraction.

II. RELATED WORK
A. PRELIMINARIES
The input and output (or say intermediate) signals are denoted
as P0 ∈ Rm×n and P ∈ Rm×n, respectively. Furthermore, the
first-order derivative filter ∇ = [∇h; ∇v] ∈ R2m×n, which
includes two directions: ∇h ∈ Rm×n (horizontal direction)
and ∇v ∈ Rm×n (vertical direction). For terse expression,
we let pixel coordinates be i = (x, y)T , i.e., Pi means the
pixel at the (x, y)T .

B. RECOVERY OF INITIAL ALBEDO MAP P0 FROM UPS
In the sequence (with ϖ in total), we denote an image
sequence captured by UPS as Ii = [I1i , . . . , I ji , . . . , I

ϖ
i ],

where I ji means the intensity at pixel i in the jth image, with j ∈
[1, ϖ ]. Likewise, we use symbols ρi and Ni= [Nx ,Ny,Nz](i)
to represent the albedo and surface normal at pixel i, with
ρi ∈ [0, 1], respectively. Based on the Lambertian model
assumption [16], one photometric stereo equation for every
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FIGURE 1. Defect extraction framework via the proposed SGVM within albedo domain. The entire framework is implemented by using the albedo
map P0 (as input) recovered by the UPS system in step I and Our SGVM in steps II-IV: firstly, we use UPS to acquire image sequence and recover
albedo map P0; then, we design a novel SGVM including multi-prior (R, M, and M) regularization to extract defects’ structure within albedo
domain P0; finally, having the well-extracted structure map P , the defect map ℵ can be obtained accordingly by thresholding operation. The blue
arrow indicates data flow.

pixel i and every image j can be expressed as:

Ii = ρiNiS = 5iS, (1)

where S = [S1, . . . , S j, . . . , Sϖ ] represents the lighting

matrix and S j = [S
j

x , S
j

y, S
j

z]
T
. In previous works, a problem

with ϖ ≥ 3 and unknown non-coplanar distance light
sources is referred to as the UPS problem. Particularly, when
S is unknown, Quéau et al. [12], [16] designed the following
optimization:

(5̂, Ŝ) = argmin
(5,S)

∑
p∈0
||5iS − Ii||2

s.t. curl(5) = 0
(µ̂, ν̂, γ̂ ) = argmin

(µ̂,̂ν,γ̂ )
TV (5̂ϒ(µ, ν, γ ))

(2)

to simultaneously estimate the resulting field 5̂ and the final
resulting lighting matrix Ŝ in the UPS problem. In Eq. (2),
the symbol 0 represents a mask within the scene in the
image, the operator curl(·) indicates integrability constraint,
and three regularization parameters µ, ν and γ are used
for minimization operation. The term ϒ represents the
generalized bas-relief transformation, and it is addressed
using the total variation function TV (·) defined by the
work [12].
Naturally, by the results estimated by the optimization

above, the corresponding albedo at pixel i can be expressed
as

ρ̂i = ||5̂i||, (3)

and refer to [12], [16], [17], [18], [19], and [20] for more
details. It should be noted that in our work, we employ the
above UPS method proposed by Quéeau [12] to obtain the
initial albedo map P0 and replace the symbol ρ̂ with it.

C. PRIOR REGULARIZATION ABOUT RGF
To identify the variance at different scales and achieve image
smoothing through the gradient minimization of relative

scales, Cai et al. [21] developed the following cost function
in RGF:

min
P
||P− P0||22 + λs||R(P)||1 (4)

for optimizing the smoothing result P, which includes a data
fidelity term in terms of L2 norm between P and initial signal
P0 and the prior regularization term

R(P) =

∣∣∣∣Gσ1 ∗ ∇P
Gσ2 ∗ ∇P

∣∣∣∣ s.t. σ1 < σ2 (5)

which is constrained by the L1 norm for selective smoothing
on ∇P. Here, the defined local Gaussian kernel Gσ (p) =
exp

(
−

1
2σ

(
(x − x0)2 + (y− y0)2

))
using the scale parameter

σ and the center (x0, y0) of the kernel is for scale selection.
And the parameter λs controls the strength of scale-based
smoothing in the gradient domain. For more details, please
refer to the work [21].

III. METHODOLOGY
A. MOTIVATION
Similar to RGF, a popular strategy in image processing
is to use L1 norm constraints with various priors to
achieve specified structural band-pass and texture band-stop.
Although this approach makes optimization tractable and
produces reasonable output, the scaling issue still exists,
indirectly causing elements with large magnitudes to be over-
penalized. In other words, when directly applying L1 norm
constraints to defect extraction, meaningful structures (or say
defects) may risk being indiscriminately over-smoothed or
their boundaries blurred. To alleviate this issue, it is necessary
to design a high-performance optimizer that can discriminate
between large-scale structures (or say emphasized defects)
and small-scale structures (or say background to be removed),
while preserving sharp boundaries and avoiding excessive
smoothing. Inspired by the works of [12] and [21], we formu-
late this idea as a novel global optimization problem coupling
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the L1 norm with the L0 norm in albedo domains, and will be
discussed further in the following sections.

B. PROPOSED MODEL
By minimizing a fidelity term Ff (P) in the albedo domain,
one local regularized term Fs(P, M̄ ) constrained by the
L1 norm, and one semantic-guided term Fc(P,M ) con-
strained by the L0 norm, a novel semantic-guided variational
model (SGVM) is proposed, with optimization objective is
defined as

min
P,M̄ ,M

E(P, M̄ ,M ) = min
P,M̄ ,M

{Ff (P)+ Fs(P, M̄ )+ Fc(M )}

= min
P,M̄ ,M

||P− P0||22 + λs||M̄ ◦R(P)||1 + λc||M ||0

s.t. M= (E ◦�)∈{0,1}2m×n; M̄ ∈{0,1}2m×n;M+M̄ ∈12m×n,

(6)

where M = [Mh;Mv] ∈ {0, 1}2m×n is a semantic-guided
indicator including edge labeling E and ROI labeling �

matrices of the same size. The parameter λc ∈ [0, 1] controls
the sparsity of the regularization term. Specific explanations
of each term in the optimization objective are as follows:
• Data fidelity term, i.e., Ff = ||P − P0||22, which

considers the degradation between the initial albedo value P0
and the refined value P.
• Local regularization term, i.e., Fs = λs||M̄ ◦

R(P)||1 , serves as a scale smoothing filter under the prior
R(·) constraint to realize structures band-pass and textures
band-stop. Additionally, it incorporates semantic guidance
through the prior weight M̄ , enabling selective smoothing of
textures.
• Global semantic-guided regularization term, i.e.,

Fc = ||M ||0 , one label indicator includes the edge property
labeling matrix E(P) (such as long links and consistent
directions within a closed neighborhood) in P obtained by
the method [22] and the specified ring ROI position labeling
matrix �:

�i =

{
1, rsmall ≤ dist(

∣∣∣i− (⌊ox⌋ ,
⌊
oy

⌋
)T

∣∣∣) ≤ rbig,
0, otherwise,

(7)

where the function dist(·) measures the spatial Euclidean
distance between inner pixel locations. The symbol
(⌊ox⌋ ,

⌊
oy

⌋
)T is the center of the SealN ring found by the

Hough transform. The operator ⌊·⌋ stands for rounding down,
while rsmall and rbig represent the inner and outer radius
of the ring region, respectively. This term aims to identify
reliable and meaningful large-scale structural E within the
high-attention ROI �, such as defect edges, while focusing
on smoothing/preserving within semantic-guided regions.
• Joint term, i.e., Fs(·) + Fc(·), incorporates a mixed

L0-L1 norm. This hybrid norm employs the discrete nature
of the L0 norm, that is, includes truncated attributes guided
by semantic labeling indicator, and thus mitigates the risk

of over-smoothing caused by solely relying on the L1 norm
constraint inR(P).

C. SOLUTION
Considering the non-convexity of the second term in the
objective function (6), we adopt the following numerical
approximation∥∥∥∥Gσ1 ∗ ∇dPi

Gσ2 ∗ ∇dPi

∥∥∥∥
1
=

∥∥∥∥ (Gσ1 ∗ ∇dPi) ◦ (Gσ1 ∗ ∇dPi)
(Gσ2 ∗ ∇dPi) ◦ (Gσ1 ∗ ∇dPi)

∥∥∥∥
1

≈

∥∥∥∥∥ Gσ1/2 ∗ (∇dPi)
2

(Gσ2 ∗ ∇Pi) ◦ (Gσ1 ∗ ∇dPi)

∥∥∥∥∥
1

≈ ∥Zi ◦ ∇dPi∥22

(8)

to address it. In other words, we utilize ∥Z ◦ ∇P∥22 as a
compact surrogate for the original term, which transforms the
non-convex nature induced by the L1 norm into an L2 one.
The operator ◦ represents element-wise multiplication, and
Zi ≈

√
Gσ1/2 ∗ (1/(|(Gσ2 ∗ ∇Pi) ◦ (Gσ1 ∗ ∇Pi)| + ε)) with

a small positive constant ε (to prevent division by zero).
Unlike the approach in [21], we scale down σ by setting
the scale parameter σ = σ/2 during each iteration in our
experiments, which aids M in discovering and preserving
sharp edges during the new iteration. Benefiting from
the above operations, we can reformulate the optimization
objective (6) as

min
P,M̄ ,M

||P− P0||22 + λs||M̄ ◦ Z ◦ ∇P||22 + λc||M ||0. (9)

To tackle the remaining non-convexity introduced by the third
term in the optimization objective (9), we further propose
a numerical solution, namely an alternating subproblem
decomposition algorithm, to effectively solve the overall
optimization problem in Eq. (9). The details of the entire
process are described as follows.
Small Textures Removal (Update P(k+1) while fixing M̄ (k)

and M (k)): Using the M̄ (k) from the k-th iteration, the
subproblem corresponding to P in problem (9) becomes as
follows:

argmin
P
||P− P0||22 + λs||M̄ (k)

◦ Z (k)
◦ ∇P||22. (10)

To solve the problem (10), we reformat it into vector form.
Using the vectorization operator vect(·), we reformulate the
vectors p = vect(P), p0 = vect(P0), and w̄(k)

= vect(M̄ (k)
◦

Z (k)), which are of length mn. Additionally, T d contains T h
and T v, which is Toeplitz matrices with the discrete gradient
operator of forward differences and are used to approximate
the first-order difference operators ∇d , where d ∈ {h, v}.
Denote Dw̄(k)

d
= Diag(w̄(k)

d ) ∈ Rmn×mn as a diagonal

matrix constructed by vector w̄(k)
d . Then, problem (10) can be

transformed into a classic least squares regression problem:

argmin
p
||p− p0||

2
2 + λs

∥∥∥∑
d∈{h,v}

Dw̄(k)
d
T dp

∥∥∥2
2
. (11)
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By differentiating the corresponding variables p, and setting
its partial derivatives to 0, we obtain the following solution
form:

p(k+1) =
(
U + λs

(∑
d∈{h,v}

T
T
dD

T
w̄(k)
d
T d

))−1
p0 (12)

where U is an identity matrix. We can then reformat the
obtained p(k+1) into matrix form by inverse vectorization
P(k+1) = vect−1(p(k+1)), and update Z (k+1) using Eq. (8). It is
worth noting that we set the final smooth output P̄ = Pk+1.

Algorithm 1 Exact Solver to Problem (6) in SGVM
Require: Initial albedo map P0, parameters λs = 0.05 and

λe = 1, and the iterations’ stop threshold β = 0.01.
Ensure: Optimal solutions Pk+1 and the final smooth output

P̄ = Pk+1.
1: repeat
2: Update Pk+1 using Eqn. (10);
3: Update M (k+1) with Pk+1 and Zk+1 using Eqns. (14)

and (8);
4: Update M̄ (k+1) with M (k+1);
5: k ← k + 1;
6: until (||Pk+1 − Pk ||/Pk ≤ β.

Large Structures Preservation (Update M̄ (k+1) and
M (k+1) while fixing P(k+1)): Discarding items unrelated to
M̄ (k+1) and M (k+1) leads to the following subproblem:

argmin
M̄ ,M

λs||M̄ ◦ Z (k+1)
◦ ∇P(k+1)||22 + λc||M ||0 (13)

Consistent with [23], the solution of (14) will be derived as

M (k+1)
i =

{
0, (Z (k+1)

i ◦ ∇P(k+1)i )
2

< λc
λs

1, otherwise
(14)

and M̄ (k+1)
i can be also obtained accordingly. The whole

iterative optimization process is summarized as Algorithm 1.
Defect Discovery: The final defect binarization map:

ℵ = T (P̄ ◦�) (15)

where the operator T means thresholding method [24] used
to achieve binarization of anisotropy in the region and
highlighting of defects.

IV. EXPERIMENTS
A. EXPERIMENT SETTINGS
1) IMPLEMENTATION DETAILS
To fully evaluate the proposed method, we first com-
pare it with other competitive 2D defect detection meth-
ods, including Salient Region Detection using Diffusion
(SRDD) [25], Detection via Deformed Smoothness Con-
straint (DDSC) [26], Multiple Constraints and Improved
Texture Features (MCITF) [11], Encoder-Decoder Resid-
ual Network (EDRNet) [27], and Normalized Attention
and Dual-scale Interaction (NaDiNet) [28]. In particu-
lar, all defect recognizers are implemented using the

MATLAB2021a framework and run on a laptop with an Intel
Core i7-11800H CPU and 16GB memory. Then, we test
and evaluate the performance of different methods on chal-
lenging datasets primarily obtained from industrial scenarios,
including SealN, Original Bridge Crack (OBriC) [29], Steel
Strip Surface Defect (SteelD) [30], and Bearing Defect
(BearD) [31]. Furthermore, we design a UPS system (see
Fig. 2), which consists of 12 non-coplanar LED point light
sources with white illumination and a web camera with a 7.4
µm telecentric lens placed 110mm away from the recovered
objects. By manually triggering the camera and LEDs while
keeping the recovered objects stationary, we were able to
capture 12 images within 10 seconds at a resolution of
2448×2048 pixels. With captured image sequences from the
UPS system, we can recover the albedo map by employing
the model from the article [12]. In our experiments, the
initial values for the regularization parameters λs and λc are
empirically set to 0.05 and 1, respectively.

FIGURE 2. Experimental configuration.

FIGURE 3. Visual comparison of defects (after binarization) extraction
between other methods within the traditional 2D image (a) and our SGVM
within (a) and UPS’s albedo map (d). (a) 2D Input (with uniform light and
the same exposure setting in this work). (d) Albedo map (used in this
work). Note that: output grayscale image in the upper-right corner and
output within ROI in the lower-right corner.

2) EVALUATION METRICS
For a more comprehensive objective evaluation, we employ
five commonly used metrics: mean absolute error (MAE),
structure measure (SM), receiver operating characteristic
(ROC) curve, precision-recall (PR) curve, and the area under
the ROC curve (AUC), to assess the effectiveness of defect
extraction. MAE is used to measure the degree of difference
between the defect binary map ℵ and the binary ground

121886 VOLUME 11, 2023



F. Liu et al.: SGVM for SealN DE Within Albedo Domain via Photometric Stereo

FIGURE 4. Visual comparison of defects (after binarization) extraction between different methods on samples from the SealN dataset. Note that:
output grayscale image in the upper-right corner and output within ROI in the lower-right corner.

truth map Gbin. SM considers both region-aware and object-
aware structural similarity between the predicted and ground
truth maps, providing more reliable evaluation results. The
ROC curve is a standard for assessing the performance of
classifiers, obtained by calculating true positive rates and
false positive rates. A model with a ROC curve closer to
the upper left corner indicates better performance, and vice
versa worse. AUC represents the area under the ROC curve,
with a higher value indicating better model performance.
Additionally, the PR curve is another standard for evaluating
classifier performance, created by using Recall and Precision
rates. A curve closer to the upper right corner indicates better
performance, and vice versa worse.

B. COMPARISONS
1) SUBJECTIVE COMPARISON OF DIFFERENT DE METHODS
ON THE 2D IMAGE OR ALBEDO DOMAINS
For a fair comparison, we adjusted the way of capturing
images by our UPS system and the one of traditional
2D imaging used by other methods to achieve a common
exposure level. Fig. 3 shows the visual comparison of defect
extraction among different competitors. From the output
results, we observe that DDSC and MCITF, which process
samples obtained through traditional 2D imaging, suffer from
the problem of background and defect confusion in both
the grayscale and binary levels. EDRNet and our SGVM
using Fig. 3 (a) are also in trouble with unsatisfactory defect
extraction results, as traditional 2D imaging results ignore
material inherent properties (like albedo). By contrast, our
proposed method using albedo map, which operates on the

novel UPS-based albedo domain images, not only accurately
locates the defect targets but also highlights them effectively,
as shown in Fig. 3 (h).

2) SUBJECTIVE COMPARISON OF DIFFERENT DE METHODS
ON THE SAME ALBEDO MAP
To fairly compare the performance of different methods,
we set the albedo map estimated by UPS as the common
input for all methods. Fig. 4 shows the visual comparison
of different competitors on the SealN defect data. From the
first row, it can be observed that SRDD, DDSC, and our
SGVM outperform MCITF in defect localization. Judging
from the results in the second row, although the competitors’
extraction results include defects, they also confuse redun-
dant background information on it. Essentially, thesemethods
cannot discriminatively distinguish the inter-class differences
between defects and backgrounds in the SealN data with
complex backgrounds, and then fall into false positives.
In contrast, the proposed SGVM can effectively extract clear
defect targets with consistency and discriminability from
similar or high-intensity background regions, attributed to the
proposed model’s strong edge discovery capability with both
discriminative scale selection and semantic guidance.

3) SUBJECTIVE COMPARISON OF DIFFERENT DE METHODS
ON OTHER PUBLIC DATASETS
In addition, our SGVM can be applied to other types of
defect datasets such as BearD, SteelD, and OBriC, demon-
strating equally promising performance. Here, we provide
challenging samples from these three datasets, as shown in

VOLUME 11, 2023 121887



F. Liu et al.: SGVM for SealN DE Within Albedo Domain via Photometric Stereo

FIGURE 5. Visual comparison of defects (after binarization) extraction on samples in three datasets including BearD, SteelD, and OBriC, respectively.
Note that: output grayscale image in the upper-right corner and output within ROI in the lower-right corner.

FIGURE 6. Convergence behavior.

Fig. 5. From these cases, an obvious conclusion can be drawn
that the proposed SGVM successfully achieves separation
between large-scale foreground and small-scale background,
leading to visually pleasing defect extraction results.

C. PARAMETER STUDY AND QUANTITATIVE EVALUATION
1) HOW DO PARAMETERS λS AND λC INFLUENCE THE
PROPOSED SGVM
The regularization parameters λs and λc are crucial for
the selective removal/preservation of structures in our

proposed model. Table 1 shows the performance of our
model with varying regularization parameters λs and λc,
using the three widely used metrics for defect detection
evaluation: MAE, SM, and AUC. It can be observed that
our SGVM with λs =0.05 achieves the lowest MAE values
and both the highest SM and AUC values on the SealN
test dataset, indicating its defect extraction performance
has close intensity, structural consistency compared to the
ground truth. The difference is that the parameter λs =
0.005 shows the best average MAE, SM, and AUC values
on the BearD, SteelD, and OBriC datasets, demonstrat-
ing close defect extraction results to the ground truth.
Besides, fixing the optimal λs value for different datasets,
we observe that the SM and AUC values increase with
larger λc values, while the MAE values are vice versa.
It can be considered that the semantic-guided regularization
term introduced in the optimization function allows for
better preservation of desired large-scale structures, resulting
in improved defect extraction performance. To this end,

121888 VOLUME 11, 2023



F. Liu et al.: SGVM for SealN DE Within Albedo Domain via Photometric Stereo

TABLE 1. The performance of the proposed models with varying λs and λc values is evaluated on the SealN, BearD, SteelD, and OBriC datasets using
MAE, SM, and AUC metrics.

FIGURE 7. Comparison of defect extraction performance between our method and other competitors on four datasets including SealN,
BearD, OBriC, and SteelD, respectively. Top Row: ROC curves. Bottom Row: PR curves.

we pre-set different λs and λc values for our SGVM on
different datasets.

2) CONVERGENCE PERFORMANCE
By using Eqns. (8) and (14), the non-convex objective
function (6) can be solved iteratively by decomposing it
into subproblems. From Fig. 6, it can be observed that
the proposed SGVM exhibits fast convergence and stable
behavior on the SealN dataset with complex backgrounds.
To better understand the impact of different prior constraints
on convergence, we consider two cases: Ours and Ours
w/o λc. Figure 6 shows that the latter has a smaller initial
stop criterion value (defined as ||P(k+1) − P(k)||F/||P(0)||F )
compared to the former at the initial iteration. By combining
the advantages of multiple priors, the proposed model
demonstrates faster convergence compared to the model w/o
λc, as shown in iterations 5 to 9. In other words, the proposed
SGVM, with the assistance of multiple prior constraints, can
converge more effectively to a global optimal solution for
problem 9, and the same holds true for the original problem 6.

3) DEFECT EXTRACTION PERFORMANCE BETWEEN
DIFFERENT METHODS
Fig. 7 shows the performances of ROC and PC curves for
the proposed SGVM compared to other advanced methods
with defect extraction capabilities. On the one hand, the
proposed method exhibits the highest true positive rate on all
tested datasets when the false positive rate is extremely low,

TABLE 2. Mean AUC values (%) between the proposed method and other
competitors. Note that OBriC Scenes are collected from Fig. 5.

indicating superior defect detection performance. On the
other hand, when the recall value is large, the proposed
method also achieves the highest precision value compared
to other competing methods on all tested datasets, that
is, a higher precision rate in defect detection is obtained.
Therefore, in terms of ROC and PR curves, it is obvious that
the proposed SGVM consistently outperforms other compet-
itive methods with larger margins in terms of classification
performance, demonstrating its superior defect extraction
capabilities.

Table 2 further lists the AUC performances of the proposed
SGVM and three other competitive defect extractors on
multiple datasets. It should be noted that the AUC scores in
Table 2 represent the average performance across multiple
sets of data in different datasets. Also, for each image, the best
score is highlighted in bold. From Table 2, one can conclude
that the proposed SGVM achieves the highest scores on
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TABLE 3. Running performance (in second). All methods are run within
MATLAB.

most of the defect sets, which is highly correlated with
its inclusion of stronger small/large structure discriminators
and the ability to preserve structures within the ROI-labeled
regions.

Table 3 reports the average runtime of different competitive
methods for defect extraction on samples with different sizes
from various datasets, which is used to demonstrate their
corresponding computational efficiency. All defect extraction
methods were implemented on MATLAB and tested on a
mobile computer with four Intel Core i7-11800H processors
at 2.3GHz, following the original setting of all released
codes. From Table 3, we observe that the proposed SGVM
is only slower than the SRD method. This is because the
SRD method utilizes highly resource-intensive superpixel
segmentation implemented through external executable C
code. However, the saliency defect effects produced by this
method are not ideal, as shown in Fig. 4, which is attributed
to the fact that it does not consider the scale characteristics
of defects (foreground) and small structures (background).
Although our SGVM is not the fastest one, it delivers
satisfactory defect extraction results, as demonstrated in
Figs. 4 and 5, and its speed can be easily improved
further through C++ programming or GPU-accelerated
implementations using image pyramid schemes in the
future.

V. CONCLUSION
In this paper, we propose a semantic-guided variational
model for extracting large-scale structures (or say defects)
from defect scenarios with complex textured backgrounds,
such as SealN. The core idea is to combine scale-adaptive
band selection and semantic-guided prior regularization on
the albedo domain estimated by UPS, achieving effective
preservation of defect targets with unblurred boundaries
and suppression of complex backgrounds. Experimental
comparisons on four challenging defect datasets demonstrate
that the proposed SGVM outperforms other competitive
methods in both subjective and objective evaluations for
defect extraction. It is worth noting that our SGVM
technique can be applied to various visual-based scenarios,
such as 3D defect detection, image segmentation, and
feature extraction, and therefore holds potential for further
development.
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