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ABSTRACT Due to increased reliance on technology and cloud-based services, cyber risks are more
common. Advanced persistent threats make it difficult to detect attacks, hence Endpoint Detection and
Response (EDR)was adopted in 2013. EDR uses a scanning application on each endpoint machine tomonitor
and capture events and logs. However, EDR is vulnerable to attacks by malware, so a lightweight malware
detector is needed. Image-based malware classification is a technique for classifying malware based on its
representative image, but previous studies have not been integrated with EDR. This research aims to integrate
EDR with an image-based malware classifier. A basic EDR implementation named Deep Ocean Protection
System (DOPS) has been developed with two pre-trained models (Mobilenet V2 and Inception V3) fine-
tuned with MalImg and BODMAS datasets. The models were evaluated with the DikeDataset andMobilenet
V2 fine-tuned with BODMAS 4.0.0 performed best in terms of loading and prediction time with a high AUC
score of 0.8615. Inception V3 fine-tuned with BODMAS 4.0.0 also achieved a remarkable AUC score of
0.9392. These results show the potential of integrating image-based malware detection with EDR.

INDEX TERMS CNN, deep learning, endpoint detection and response, fine-tuning, malware classification,
malware detection, malware visualization.

I. INTRODUCTION
Cyber threats are increasing due to the growing reliance on
technology and cloud-based systems. In 2021, data breaches
reached a high record, with cybercriminals stealing 5.9 billion
user records [1] with much greater frequency compared to
2020 [2]. Following studies by IBM, 83% organizations
reportedmore than one data breach, resulting in an increase in
prices for users [3]. Cybersecurity failure is considered one of
the most threatening risks for the world economy during the
COVID-19 pandemic [4].

Most cyber-attacks begin with penetrating an organiza-
tion’s internal networks, which take an average of two
days [5]. Advanced persistent threats (APTs) are particu-
larly dangerous as they use multiple techniques to control
compromised networks without being detected [6]. In 2013,
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A. Chuvakin brought up the term ‘‘Endpoint Detection and
Response’’ (EDR) [7], which is a security process that detects
attacks in a timely manner by staying on each endpoint
inside the organization’s network to capture data and events
continuously.

Along with the boom of cyber threats in 2013, mali-
cious software (malware) has been dramatically spreading
since 2019, with more than one billion malware samples
found since then [8]. To counter the malware, further
products and research have been carried out with two major
paths: static and dynamic analysis. Both of these techniques
consume a great deal of time when applied to a vast number
of malware samples. However, the rise of machine learning
and deep learning methods in the 1990s has led to significant
improvements in malware detection in terms of extracting
distinguishing characteristics from malware.

As a result, an EDR solution that can detect malware itself
can be more effective, especially when integrated with a

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 122859

https://orcid.org/0000-0002-7671-4451
https://orcid.org/0009-0006-3224-7106
https://orcid.org/0009-0007-2374-9056
https://orcid.org/0009-0000-7742-781X
https://orcid.org/0000-0003-0184-6975
https://orcid.org/0000-0002-5798-398X


T. H. Hai et al.: Proposed New EDR With Image-Based Malware Detection System

lightweight image-based malware detection system. Image
processing techniques can be applied to convert a binary to
a grayscale image to detect malware, and malware files of
the same family often share the same image structure [9].
This paper aims to lay the foundations for the integration

of the EDR process with an image-based malware detector.
To achieve this, a fundamental structure for EDR will be
constructed in an extendable way so that any service, even
an image-based malware detector, can be integrated. This
implementation also needs to accommodate the minimum
features of an EDR solution. Moreover, to capture the system
data in a real-time manner, a kernel driver is developed
to support the system. As a result, the tested models for
the malware detector will have high prediction performance
while minimizing disk space and prediction time.

This paper makes three contributions:
• Establishing a basic implementation called Deep Ocean
Protection System (DOPS) with essential EDR features.

• DOPS is equipped with a kernel driver, named
DODriver, to capture process creation and termination
notifications continuously and block any process by its
full path if necessary.

• Fine-tuning two pre-trained models (Mobilenet V2 and
Inception V3) with customized versions of MalImg [9]
and BODMAS [10] dataset and evaluating them with
DikeDataset. Throughout the experiment, the most
suitable model has been integrated with DOPS.

II. RELATED WORK
The rise of commercial EDR products integrated with
antiviruses has led to an increase in research papers on EDR
solutions. G. Karantzas et al. have proposed an advanced
EDR solution to measure their response time and ability
to detect threats [6]. Hassan et al. proposed a graph-based
approach to discover dependencies between threat alerts,
which are generated from EDR [11]. In this approach,
a scoring methodology was constructed to reduce the false
alarm rate of EDR. Kaur et al. discussed the application
of machine learning techniques on EDR to detect malware
threats [12].

Most commercial EDR products are closed source, making
a basic implementation of EDR unclear. In recent years,
image-based malware classification has become popular,
however, the application of this method to solving EDR
problems has not received much attention. In the next
paragraphs we will discuss what benefits image-based
malware classification could bring to malware detection in
general and to EDR in particular.

The application of machine learning and deep learning
techniques for analyzing and detecting malware has been
discussed by Kim et al. [13]. Malware analysis can be divided
into two types: static analysis, which analyzes the binary
code, and dynamic analysis, which detects suspicious behav-
iors when the binary is executed in a virtual environment.
Dynamic analysis can be more accurate but requires
more resources, while static analysis requires the most

comprehensive investigation, especially when binaries are
packed or obfuscated, but brings more coverage in analysis
than dynamic analysis. In 2011, [9] proposed a new approach
to analyze malware. This is a visualized-based analysis
method which uses image textures obtained from transform-
ing 8-bit integer vectors into 2D arrays for classification.
By visualizing a portable executable (PE), different sections
inside the PE [14] can be distinguished clearly. In addition,
these distinctive image textures are not only found inmalware
but also in other domains [15].

As mentioned above, applying machine learning and deep
learning approaches tomalware analysis promise an improve-
ment in the accuracy of malware detection without requiring
a great understanding of malware [16]. Naeem et al. proposed
IoT-based hybrid models trained with dynamic features,
with different image sizes, achieved 98.79% accuracy [17].
Moussas et al. used a malware detection system with two
levels achieving an accuracy of 99% against 9339 images in
MalImg dataset [18]. Jeyaprakash et al. dealt with unbalanced
obstacles by reweighted class-balanced loss function in the
final classification layer of the DenseNet model [19].
Malware classification method using CNNmodel has been

studied by El-Shafai et al. [20]. In this research, the authors
have used different models, including VGG16, Inception V3,
MobileNet V2, ResNet 50, AlexNet, DenseNet 201, Dark-
Net 53, Places365 GoogleNet. All models were evaluated
against the MalImg dataset. They found that fine-tuned
VGG16 outperformed other traditional models with a classi-
fication accuracy of 99.97%. In study by Rezende et al. [21],
the use of the ResNet 50 model achieved 98.62% accu-
racy on MalImg after 750 epochs of transfer learning.
Kumar et al. [22] compared classic machine learning models
trained on four image formats: Grayscale, RGB, CMYK, and
HSL. They found that the highest accuracy achieved was
91% using a random forest model trained with grayscale
images. Awan et al. [16] combined VGG19 with Spatial
Convolutional Attention to classify malware in the MalImg
dataset, achieving an accuracy above 97% when trained with
class balancing on benign class.

Although much research has been proposed to address
the EDR problem, most of these studies only evaluated
benchmark datasets and did not examine other datasets
with a large number of families. In addition, most of the
trained models were limited to being malware classifiers
rather than malware detectors. In this paper, we propose a
basic implementation of an EDR solution integrated with an
image-based malware detector, which will be upgraded from
the malware classifier trained on BODMAS.

III. BACKGROUND
A. WINDOWS SYSTEM CONCEPT
1) KERNEL DRIVER DEFINITION
Kernel drivers are loadable modules that execute in kernel
mode and have a higher privilege level than user-mode
applications. They have a ‘‘.sys’’ extension and most are
hardware device drivers that work with the I/O manager and
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relevant hardware. Windows also supports software drivers
that execute tasks in the kernel as instructed by user-mode
applications [23]. DODriver is a software driver written
for gaining process notifications to support ESP and block
programs by path if necessary. DDODriver is constructed on
top of the kernel-mode driver framework (KMDF) provided
by the Windows driver framework (WDF). The entry point
of a WDF driver is called DriverEntry, which initializes all
prerequisite steps. It returns the status based on initialized
steps, undoing previous work if any step fails.

TABLE 1. Common major routines [24, p. 44].

2) KERNEL DRIVER OBJECT AND DEVICE OBJECT
The driver object is allocated and initialized by the kernel
before it is provided to the driver’s entry point. Dispatch
routines are attached to the driver object to handle requests
from user-mode applications. These routines are specified
by an IRP Major Code and most common ones are listed in
Table. 1 [24]. The IRP_MJ_CREATE and IRP_MJ_CLOSE
functions are necessary for the driver to communicate with
user-mode applications. The IoCreateDevice function creates
a new device object and stores it as a member of the driver
object.

3) MEMORY ALLOCATION
The memory manager creates two types of memory pools:
a paged pool and a non-paged pool. The paged pool can
be paged out to save memory but causes page faults, which
can lead to system crashes if it is not handled properly.
The non-paged pool ensures that memory always remains
in RAM. In the context of the DODriver program, a non-
paged pool is used to maintain a blocklist of program paths
to prevent prohibited processes from running.

4) CLIENT AND DRIVER COMMUNICATION
The Driver module in ESP consists of a driver residing
in kernel mode interacting with a user-mode application.
The driver responds to the application’s requests with
kernel information. This common type of interaction in an
operating system is called client and driver communication.
Dispatch routines are used to receive and process I/O request
packets (IRPs). This driver investigates these IRPs and
executes any action necessary.

By examining IRP and IO_STACK_LOCATION, we can
find information about user-mode requests, such as command
code and input buffer. The IOCTL code is constructed using

the CTL_CODE macro with four parameters: DeviceType,
Function, Method and Access. The Method parameter is the
most important because it describes how data is transferred
between the client and the driver.

Buffered I/O and Direct I/O methods are used for
input/output buffers. The caller’s input buffer has a copy
version in system space (Buffered I/O) and the caller’s
output buffer is locked, providing an equivalent system
address with a Memory Descriptor List (Direct I/O). While
METHOD_IN_DIRECT allows the driver to read the caller’s
output buffer, METHOD_OUT_DIRECT only provides the
writing permission to the driver.

Without Buffered I/O and Direct I/O, the driver has
to handle the memory allocation, page faults, and other
memory-related problems.

5) PROCESS NOTIFICATION
Windows provides Event Tracing for Windows (ETW) for
both user-mode applications and kernel drivers to receive
notifications when processes are created or terminated.
However, these notifications are delayed by 1-3 seconds due
to performance reasons. This raises a problem when applica-
tions want to keep up with process notification. Starting from
Windows 2000, process notifications became a reality for any
security software.Whenever a process is created or destroyed,
its notification will be sent to interested drivers in a real-time
manner. This was simply achieved by registering a callback
via the PsSetCreateProcessNotifyRoutineEx API [23].

B. CONVOLUTION NEURAL NETWORKS
1) CONVOLUTIONAL NEURAL NETWORK DEFINITION
The Convolutional Neural Network (CNN) is a type of
deep neural network that has been very successful in image
analysis. It contains convolutional layers and fully connected
layers, which mimic the layered sub-regions in the visual
natural cortex [25]. In particular, an activation function called
Rectified Linear Unit (ReLU [26]), which is generically used
in CNNs, is inspired by ON/OFF ganglion cells [25].

CNNs have three main types of layers: convolutional layer,
fully connected layer, and pooling layers. The convolution
and pooling layer are used to detect low-level patterns in
data. While convolution layers extract features from data,
pooling layers decrease the size of the input to wipe out noise.
The output is fed to the fully connected layers for fusing all
extracted features and bringing out a specific output.

2) MOBILENETV2
To deploy a deep learning application on devices with limited
resources, one of the most lightweight that is widely used is
the Mobilenet V2.

Mobilenet V2 uses Depthwise Separable Convolutions
with the addition of residual bottleneck layers. A Depthwise
Separable Convolution is used to replace a full convolutional
layer with two separate layers. The first layer, called depth
wise convolution, works by applying a single convolutional
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FIGURE 1. Comparision of convolutional blocks for mobilenet and
mobilenet V2 [27].

filter per input channel, performs a lightweight transfor-
mation. The other layer called pointwise convolution is a
1 × 1 convolution. This layer computes linear combinations
of the output by the first layer.

Mobilenet V2 differs significantly from Mobilenet V1
by using two types of blocks: stride 1 residual blocks and
stride 2, which aim to reduce size of input. Both these blocks
consist of three layers: a 1×1 convolution followed by depth
wise and pointwise layers. The first two layers in the blocks
are associated with the ReLY activation function, which is
robust with low-precision computation. The last layer comes
with a linear activation function to prevent non-linearities
from losing too much information in a low-dimensional
subspace of the input space [27].

The stride 1 depth wise separable convolution block
integrates with two special terms: ‘‘inverted residual’’ and
‘‘linear bottleneck’’. Number of channels in the input and
the output of this block is much less than in the middle. The
last convolution layer uses linear activation function (linear
bottleneck). While storing all the essential information in the
bottleneck, the block adds a shortcut to reduce information
loss. The residual connections in Mobilenet V2 are more
memory-efficient than traditional designs due to the middle
channels having fewer channels. For this reason, Mobilenet
V2’s residual blocks are called inverted residual bottlenecks.

The Mobilenet V2 consists of 32-filter fully convolution
layers and contains 19 residual bottleneck layers, as shown
in Fig. 1 [27]. Mobilenet V2 has been demonstrated to be
a high-performing, lightweight convolutional neural network
architecture.

3) INCEPTIONV3
The demand for less computational cost and a lower
number of parameters exist frequently in various scenarios.

The Inception family of models, which consists of multiple
parallel filters of different sizes, to balance the width and
depth of the network. Especially Inception V3, has suc-
cessfully responded well to such requirements. Additionally,
1× 1 convolutions are used to decrease computational costs.
As stated in [28], by balancing both sizes of the network,
higher accuracy can be achieved.

Inception V3 includes multiple inception modules and
four important modifications. The first technique is to
factorize large convolutional layers into smaller ones to
reduce computational cost. The second technique replaces
convolution layers with asymmetric convolutions which
works well on feature maps with medium grid-sizes. The
auxiliary classifier acts as a regularizer to improve quality
when the network reaches high accuracy. Finally, the last
technique expands the activation dimension of the network
filters to reduce the grid size of feature maps while avoiding
a representational bottleneck. This is achieved through two
parallel stride 2 blocks: a P (pooling layer) and a C
(convolution layer), which are concatenated at the end.

Inception V3 is a deep convolutional model with 48 layers
that has achieved over 78.1% accuracy on the ImageNet
dataset.1 Its efficiency is the result of not only the inception
module, but also other valuable ideas that have been
researched over the years.

4) TRANSFER AND FINE-TUNING LEARNING
Transfer learning involves using the parameters of a neural
network trained on one dataset to solve a different problem
with a different dataset. Common features learned in the early
layers of the network can be applied to many datasets in
other domains, making it an effective approach for training
with a smaller dataset. Fine-tuning is an optional step
in transfer learning that involves retraining a portion of
the pretrained model with data from the applied dataset,
producing significant improvements.

IV. PROPOSED EDR SYSTEM
A. OVERVIEW OF PROPOSED EDR SYSTEM
This paper describes the integration of a naive implementa-
tion of EDR, called Deep Ocean Protection System (DOPS),
with an image-based malware detection system for further
study and analysis.

DOPS contains two main parts: Endpoint Service Pack
(ESP) and Endpoint Microservice. As shown in Fig. 2, ESP is
installed on each user machine and continuously collects data
from the user machine. This data is transferred to Endpoint
Microservice via REST APIs and then stored in a database
for later query purposes.

By using REST APIs, a user machine is not required on the
same network as the server. DOPS is suitable for any scope.
However, due to its complexity, DOPS are most suitable
for organizations. For companies controlling various APIs,

1https://cloud.google.com/tpu/docs/inception-v3-advanced
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FIGURE 2. Overview architecture of deep ocean protection system.

a gateway is sufficient tomap the ESP requests to an Endpoint
Microservice.

A web user interface for DOPS is designed to monitor
and visualize the collected data, allowing administrators
to set up policies or take immediate actions if necessary.
To ensure privacy, the organization should construct the
service, database, and user interface.

B. ENDPOINT SERVICE PACK
ESP is a collection of executables designed to support EDR
on every endpoint. Its architecture is based on the microser-
vice model, where each executable module is considered as
a self-operating module that implements a single business
capability. ESP includes the Launcher, Scanner, Deep Ocean
Malware Detector (DOMD), and Driver module, which
consists of the Deep Ocean Client Go (DOCG) and Deep
Ocean Driver (DODriver), as illustrated in Fig. 3.

The Launcher is activated upon machine startup and
spawns the Scanner, followed by DOMD and DOCG. When
Scanner, DOMD, and DOCG are launched successfully,
Launcher can now be terminated as if its mission is only
spawning other services in the ESP.

Scanner is responsible for collecting data from the
endpoint and obtaining system data from the Driver module.
It sends data to the server and executes commands when
needed, serving as the ‘‘Response’’ in EDR. Scanner also
includes a vulnerability scanning plugin and can request
DOMD to scan input files for maliciousness.

The Driver module comprises two components: DODriver
and DOCG. DODriver is a kernel driver that collects data
from the deep kernel, while DOCG acts as an interpreter that
transfers system data to the Scanner and Scanner’s commands
to DODriver. DOMD is an image-based malware classifier
that labels files requested by Scanner as malware or benign.

C. LAUNCHER
The Launcher’s primary purpose is to start necessary services
based on settings. This process is called the service mode and
runs continuously while the machine is on. The Launcher is
designed to work onWindows 10× 64 and can be configured
to launch automatically using the Windows Task Scheduler
by creating a periodic task to start the Launcher process.

FIGURE 3. Overview architecture of endpoint service pack.

The Launcher is capable of updating all components of
ESP, including itself. However, if an attacker gains access
to the Launcher, they could replace any component with
malware, then the machine will no longer be in the protection
of DOPS. To prevent this, ESP is installed in a location called
‘‘C:ProgramData.deep_ocean’’, which is only accessible by
machine administrators. This path is set to the ‘‘C’’ drive,
which is where Windows system files are stored, and ESP
is designed to find a suitable location if the drive letter is
different.

The Launcher’s service mode is only enabled after
administrators authenticate ESP on that endpoint by sending
a key to the server for verification. The server sends a
permanent token to the Launcher, identifying themachine and
saving it to the local database. On next runs, the Launcher
loads the saved secret and authenticates with the server.

D. SCANNER
Scanner’s main mission is to scan the machine. It scans
user mode events, system events, logs, vulnerabilities, and
malware using a knowledge base [29] to store data. The
Scanner runs discovery plugins to gather basic user mode
information, e.g., operating system version, service list, etc.

When running in service mode, the scanner scans vulner-
abilities using audit plugins which are proposed in this paper
for vulnerability sweeping. This plugin is being developed for
each vulnerability reported in Metasploit, and more authors
can work independently to add more audit plugins.

The Scanner communicates with the Driver module and
DOMD via Named Pipe for IPC. Its second mission is to
periodically send captured data to the server and receive
commands via REST APIs. Because data collected from a
machine is very diverse, Scanner and Endpoint Microservice
must commit to the same protocol for each type of data.

An EDR system’s power comes from the ability to
automate and respond quickly to threats. With the careful
setup policies and cautious analysis from the blue team, EDR
can provide more protection for the entire organization’s
network.
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FIGURE 4. Overview architecture of deep ocean driver module.

E. DRIVER
The DOPS system aims to capture OS events and process
notifications in real-time. Various methods exist for finding
process creation and termination, including polling, ETW,
and the ‘‘PsSetCreateProcessNotifyRoutineEx’’ API. Unfor-
tunately, from a security solution’s perspective, this method
is not enough. In this paper, the Driver module is developed
for retrieving process creation and termination notifications
and blocking any process creation based on the blocklist sent
from the server.

As shown in Fig. 4, the Deep Ocean Driver module in
ESP consists of two submodules: the user mode Deep Ocean
Client Go (DOCG) and the kernel driver. TheDOCG transfers
data along with the server command with the Scanner
module. The kernel driver receives notifications from the
system by passing the ‘‘OnProcessNotify’’ callback to the
‘‘PsSetCreateProcessNotifyRoutineEx’’ API for gathering
creation and termination notifications and blocking any
process creation if necessary.

The communication between the DODriver and the DOCG
is done by the Direct I/O method and the ‘‘IRP_MJ_
DEVICE_CONTROL’’ dispatch routine. The Direct I/O
method is used to send process notifications to DOCG. The
dispatch routine helps DOCG send IOCTL commands to
DODriver. The client side cannot force the driver to do what
the driver cannot or is not permitted to.

The Scanner running in service mode will open a two-way
named pipe for communicating with other services. DOCG
connects to this pipe to transfer and receive data while kernel
data retrieved by DODriver is sent to the Scanner.

The traditional model of using a driver in the kernel and a
client in user mode is frequently used in theWindows system,
usually written in C or C++. However, in this paper, the client
was rewritten in Golang because it is more user-friendly and
has various library support.

F. DEEP OCEAN MALWARE DETECTOR
As shown in Fig. 5, DOMD consists of twomain components,
Preprocessor and Detector. The Preprocessor is responsible
for converting the input binary to an image before it is passed

FIGURE 5. Overview architecture of deep ocean malware detector.

to the detector for the final label, as described in Algorithm 1
[30, p. 196].

The algorithm receives byte data from an executable and
a demanded width as inputs. The caller reads the byte data
from the executable before passing to this algorithm. Second
input is width, which, for instance, is set to 256px. The output
image has a fixed width of 256px and a height depending on
the size of the original binary. The final grayscale image has
the last byte removed since it is typically padded with zero
bytes.

While Algorithm 1 explains the way to construct image
data from an executable, Algorithm 2 extracts sections from a
binary and writes them as a single image. It uses the ‘‘pefile’’
library to read the executable as an object and ‘‘get_data()’’
method to get the raw byte data for each section. The raw data
is then added to the ‘‘saved_data’’ variable, which is passed
toAlgorithm 1. The final step is writing the aligned byte to the
image. The algorithm also allows the user to choose specific
sections to extract.

After receiving an image from Preprocessor, the Detector
will produce a probability P for the malware family with
the highest probability. If P is higher than a predefined
threshold T, the file is labeled as malware, otherwise it will be
tagged as benign. In the case of benign family, If P is higher
than 0.5 but the label is benign, the probability is subtracted
from 1 before being compared to T.

Overall, the big picture of EDR in general and DOPS in
particular has been depicted in detail with each component’s
missions and their stringent relationships. While the Driver
module is developed to support Scanner in capturing data
from the kernel, an image-based malware detector, called
DOMD, is integrated to help Scanner verify executables as
malware or benign. In particular, DOMD has to be trained
and evaluated first before being ready for deployment with
ESP. In terms of memory, DOMD is expected to take only
less than 1GB. Therefore, the next section illustrates how
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simulationmethods are set up to find the optimal image-based
models. Moreover, the method of finding the mentioned
threshold T is also revealed after this chapter.

Algorithm 1 Align Byte By Width [30, 196]
Input: data, width
Output: aligned_byte, byte data had been aligned by

width
1 size← len(data) ; /* get length of byte

data */
2 if size is 0 then
3 return null;

4 rem← size mod width;
5 aligned_byte← data[0 : size− rem];
6 return aligned_byte

Algorithm 2Write Sections From PE To Image
Input: input_path, output_path, width,

section_names
Output: error if any

1 saved_data← [ ] ; /* initialize an empty
list */

2 pe← pefile(input_path) ; /* get data from
PE */

3 nb_sections← len(pe.sections) ; /* get number
of sections */

4 if nb_sections is 0 then
5 return Number of sections is 0;

6 foreach section ∈ pe.sections do
7 if len(section_names) == 0 or

(len(section_names) > 0 and
section.Name ∈ section_names) then

8 add section.get_data() to saved_data ;
/* add all data if no specific
section is requested or only
add data of section that is
demanded */

9 if len(saved_data) is 0 then
10 return Extracted sections have size of 0;

11 aligned_byte← Algorithm 1 (saved_data, width);
12 write aligned_byte to output_path;
13 return ; /* no error -> return empty */

V. PROPOSED IMAGE-BASED MALWARE DETECTOR
A. SIMULATION METHOD
This collection of simulations aims at developing a model
that is able to detect whether a file is malware or not. This
project trains a malware classifier first and then detects
files’maliciousness. TheDOMDproject involves two phases,
as can be seen in Fig. 6. The first phase involves training a

FIGURE 6. Simulation phases.

multiclass malware classifier to recognize the family of an
input malware sample. The second phase tests the model’s
ability to predict malware and benign files that have not been
seen before.

The project uses two types of datasets: D1 for training the
model and D2 for evaluating the model’s generalizability in
real-life scenarios. While the MalImg [9] and BODMAS [10]
involve the first phase. The DikeDataset is used for evaluating
the generalizability of trained models in the second phase.
The D1 dataset is divided into three subsets for training,
development, and validation.

Studies showed that fine-tuned and transferred learning
achieve good results in image-based malware classifica-
tion [21], [31], [32] but also outperform other traditional
networks [33]. Instead of creating new neural networks or
training from scratch, the main strategy is to fine-tune with
models that have already been trained.

Mobilenet V2 model was born as a lightweight model but
performed well in the image classification task. Inception
V3 model achieved state-of-the-art performance in grayscale
malware image classification [34]. Two models were chosen
for training a malware detector because they need to be small
enough to integrate with ESP and detect malware in a timely
manner.

To form a malware classifier, pre-trained models are
fine-tuned and adjusted with additional layers. Both models
are fine-tuned using weights learned from ImageNet [35].
Inspired by [36], models are adjusted with some additional
layers as in Fig. 7. MobileNet V2 is appended with a global
average pooling layer, a fully connected layer with 512 nodes
using ReLU activation, a dropout layer, and a final layer for
prediction.

The existence of the pooling layer and the dropout layer
reduces overfitting significantly. Applying the result that a
grayscale image achieves better performance than an RGB
image [37]. The models receive grayscale images as input.
A convolution is prepended to convert the grayscale input to a
3-channel input. Inception V3 is also constructed in the same
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FIGURE 7. Mobilenet V2 / inception V3 construction diagram.

TABLE 2. Fine-tuning model parameters.

way asMobilenet V2 except that it uses an imagewith a shape
of 299× 299x1 as the input.
In general, both models are fine-tuned within 20 epochs

with a training batch size of 16. Mobilenet V2 and Inception
V3 freeze the first 96 and 249 layers, respectively to avoid
training from scratch. Both models use Categorical Cross
Entropy as the loss function and Adam as the optimization
algorithm. Parameters that gain better loss on the dev set are
saved to the cloud during the training process. The imbalance
dataset is addressed by giving higher weight to the data in
minority classes.

The fine-tuned models are evaluated based on the
parameters listed in Table. 2, and in the evaluation phase,
all fine-tuned models are measured in comparison to models
fine-tuned with MalImg. This is due to the fact that MalImg
has become a competition benchmark dataset in the Kaggle
Microsoft Malware Classification Challenge [38].

In the first phase, the training step is done on a Colab
free plan with GPU enabled, and the evaluation step is also
done on Colab but without GPU. Besides, preprocessing
in the first phase and the evaluation phase are conducted
by the Intel Xeon CPU E5-2667 2.90 GHz with 16 GB of
RAM with Windows 10 Pro 21H1 64-bit installed. The rest
of the section describes the experiment scenarios for each
dataset.

1) FINE-TUNING WITH MALIMG
The MalImg dataset is a widely used dataset in image-based
malware analysis that contains 9339 grayscale images
divided into 25 malware families. As shown in Fig. 8, the
dataset has an imbalance issue, with two families havingmore
than 15%of the total number of samples, and a significant gap

FIGURE 8. Data distribution of MalImg dataset.

FIGURE 9. Splitting ratio of MalImg dataset.

between the number of samples in the family with the most
(Allaple.A with 2949 images) and the least (Skintrim.N with
80 images) number of specimens. The dataset is used to prove
the learnability of Mobilenet V2 and Inception V3.

The training phase consists of training and evaluating
the model on different subsets of the dataset. MalImg is
split into three subsets: train, dev, and test sets. The train
set provides training data, the dev set is used to determine
optimal parameters, and the test set is used to evaluate model
accuracy.

The ratio of train, dev, and test sets is 64, 16, and 20,
respectively, with 20% of MalImg set aside for testing.
The rest of it is split into the train and dev set with
a ratio of 80 to 20, respectively. The splitting process,
shown in Fig. 9, is done using the ‘‘validation_split’’
attribute of ‘‘ImageDataGenerator’’, resulting in 5995, 1486,
and 1858 grayscale images for the train, dev, and test
sets, respectively. This ratio is kept constant for later
scenarios.

MalImg contains a small number of samples, which
might not be enough for training a good malware classifier.
Therefore, two selected CNN networks are also trained
separately with the BODMAS dataset in the next scenarios.
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2) FINE-TUNING WITH BODMAS
The BODMAS dataset has a huge number of malware
samples and families, which were gathered from August
2019 to September 2020. The dataset includes disarmed
executables for 57,286 malware samples within 580 families,
feature vectors for both malware and 77,142 benign samples.
To prevent accidental execution of malware, each binary is
disarmed by setting the OptionalHeader.Subsystem and the
FileHeader.Machine to zero, and all binaries are provided
with the ‘‘.exe’’ extension. With about 302 GB in storage,
one of the main targets of BODMAS is producing more
malware samples spanning over years when combined with
other famous datasets, such as Ember [39] and SOREL-
20M [40]. Indeed, the BODMAS dataset is larger than the
MalImg dataset and provides more information for training a
malware classifier.

To apply BODMASwith image-based classifiers, malware
binaries must be converted to grayscale images before
training. One of the biggest problems is finding the optimal
size for images. Executables with a huge size might produce
an image with different alignments of bytes, which makes
it harder to classify malware correctly. Moreover, without
the use of the Spatial Pyramid Pooling Network [41], CNN
networks are only able to learn with a fixed image shape.
However, in the scope of this paper, images are only reshaped
with a fixed size of 256 in width. In the training step, each
image is resized again to a suitable size corresponding to each
model. Another challenge in training with BODMAS is the
heavily imbalanced properties of BODMAS 2. In particular,
a great number of families have much fewer samples
compared to the rest. As a result, new subsets of BODMAS
are created to address these challenges.

The first new subset is BODMAS 3, which applies
two strategies: preserving the most important samples and
removing outliers. The first technique is extracting data
from only families with the greatest number of samples.
The second one is removing outliers in size and extracting
the most important signatures in malware. The order of
applying these techniques results in different subversions
of BODMAS 3, as can be seen from Fig. 10. With the
integration of filters, BODMAS 3 aims at reducing the
effects of outliers and the tremendous imbalance features
of the original BODMAS. Most of the families obtained
in all subversions are well known, e.g., autoit, autorun,
wacatac, etc. This ensures that the dataset will not omit
famous malware families.

In general, to deploy a deep learning model in a real-life
scenario, the model itself needs data from the application
field. In order to achieve good performance on prediction,
input data must fall within the range of what the model
has learned. In this case, the model, after training from
BODMAS 3 or earlier, only learns about malware classes.
Hence, it might perform badly when encountering benign
samples. Therefore, to achieve high accuracy, a benign
class is supplied to each subversion in BODMAS 3,

FIGURE 10. BODMAS 3 construction diagram.

FIGURE 11. BODMAS 4 construction diagram.

as in Fig. 11. In detail, the added benign files are obtained
from the ‘‘Malware Detection PE-Based Analysis Using
Deep Learning Algorithm Dataset’’2 with 1000 samples.
In fact, these samples were later coincidentally found to be
a subset of DikeDataset. This points out the reason for the
high performance of models trained with BODMAS 4, which
will be discussed in a later section. After the preprocessing
step, BODMAS 4.0.0, 4.1.0, and 4.1.1 are provided with
980 all-sections converted grayscale images and 965 ‘‘.text-
related-sections’’ converted grayscale images.

In addition, due to the great performance of models trained
with BODMAS 4.0.0, an extra dataset called ‘‘BODMAS
4.0.0 full’’ was created to find the best ability reached by
selected models. This dataset is the same as BODMAS
4.0.0 but omits the evaluation step of the training phase.
This means 80% of samples are used for training, with the
remainder saved for validation.

Overall, data of MalImg and different versions of BOD-
MAS are summarized in Table. 3. BODMAS 1 and 2
have the highest number of classes, whereas BODMAS
3.1.0 and BODMAS 4.1.0 have the least number of families.
Table. 3b shows that datasets containing all sections have a

2https://figshare.com/articles/dataset/Malware_Detection_PE-
Based_Analysis_Using_Deep_Learning_Algorithm_Dataset/6635642
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TABLE 3. Statistics on Datasets.

preprocessing time less than the original one, and datasets
containing ‘‘.text’’ sections consume the least time for the
preprocessing step. On the other hand, the MalImg dataset
has samples already in the grayscale image format, hence its
preprocessing time is only for splitting samples into train-dev
and test sets. Even though BODMAS 1 and 2 have the most
samples, their disk sizes are not as big as those of datasets
with all sections because of the way they are compressed.

3) EVALUATION WITH DIKEDATASET
Models are required to be evaluated by samples that they
have never seen. DikeDataset contains 10,841 malware files
(PE and OLE) and 1,082 benign files. The benign files are
legitimate Windows software downloaded from Cnet, while
the malware files are collected from VirusShare and Malicia
Project. Unlike BODMAS, DikeDataset has a relatively small
number of malware families. The performance of each model
is evaluated based on its ability to detect a file as malware
or not.

Only PE samples in DikeDataset are used in this evaluation
phase. As a result, with scenarios involved with BODMAS
3.0.0 and 4.0.0, there are 8970 malware and 962 benign
samples. Whereas, there are 8903 malware and 947 benign
samples used for experiments with models trained by
BODMAS 3.1.0, 3.1.1, 4.1.0, and 4.1.1.

B. EVALUATION PARAMETERS
There are two types of evaluated parameters. The first one is
for the evaluation step in the first phase, and the second one
is for assessing the evaluation step with the DikeDataset.

The macro-averaged F1 score is used as the main metric
for evaluating the models. As stated in (1d), it is computed
based on the unweighted mean of all F1 scores for N classes,
where each F1 score is demonstrated via (1c). F1 score
is defined as the harmonic mean of precision and recall.
Precision is the proportion of positive labels that are correct.
As in (1a), precision is calculated as the number of true
positives (TPs) over the number of TPs plus the number of
false positives (FPs). Recall presents the proportion of actual
positives that were labeled precisely, as shown in (1b). Both
precision and recall must be high to produce a high F1 score.
In the multi-class classification task, F1 score for each class
is calculated with the One-vs-rest approach.

Precision =
TP

TP+ FP
(1a)

Recall =
TP

TP+ FN
(1b)

F1_score =
2PrecisionRecall
Precision+ Recall

(1c)

macro_F1_score =
1
N

N−1∑
i=0

F1_scorei (1d)

The macro F1 score is a useful metric to consider for
imbalanced datasets, as it treats all classes equally and can
provide insights into the classifier’s performance on minority
classes.

In the evaluation phase, malware classifiers are used for
a binary classification task, and ROC curves are plotted
to visualize the model’s ability to detect malware. The
ROC curve shows the true positive rate (TPR) (x-axis) and
false positive rate (FPR) (y-axis) at various classification
thresholds, and a good performing model is represented by
a curve that progresses from the bottom left to the top right
of the plot.

The area under the ROC curve (AUC) is used as the
optimizing metric to judge the performance of the malware
detector. Despite its limitations with imbalanced datasets,
it is still chosen because of the equal concern for predicting
malware files and avoiding false positives.

The best threshold T is determined by calculating the
G-Mean for each model’s prediction on DikeDataset, which
compares the classification performance of both majority and
minority classes based on TPR and FPR, as shown in (2). TPR
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is the same as recall, while FPR is the miss rate.

G_mean =
√
TPR(1− FPR) (2)

Apart from the macro F1 score and AUC score as main
evaluation metrics, model loading time and predicting time
are the ‘‘satisficing’’ metrics in the decision on choosing the
most suitable models for deployment with ESP. In this paper,
model loading time and predicting time per sample’s upper
bounds are 30s and 0.1s, respectively.

C. RESULT OF EVALUATION WITH DIKEDATASET
As described in Section V-A, fine-tuned models were
brought to the second phase to be evaluated by DikeDataset.
In this evaluation phase, models are compared based on the
prediction of whether a file is malware or benign. Therefore,
the problem is simplified as a binary classification task.

For each scenario, ROC curves are used for visualizing the
performance of models. In each chart, a blue line connecting
point (0, 0) and point (1, 1) represents a no-skill classifier.
Any line below this line is considered a terrible classifier
since it cannot make a prediction better than a random choice.
The other line acts as the ROC curve of the classifier. It also
has a red point indicating the coordination where the optimal
threshold was found. At this point, TPR is high and FPR is
low enough to obtain the highest value for G-Mean.

For each main version of the selected datasets, a table is
provided with various metrics recorded from the prediction
stage for the comparison between Mobilenet V2 and Incep-
tion V3. This table not only outputs the AUC but also shows
the optimal threshold and other metrics captured based on
this threshold. In detail, the threshold is used by classifiers to
make a decision on whether a file is malware or not. If the
output probability for a malware class is higher than this
threshold, the classifier will tag it as malicious.

1) MALIMG
In the section V-A, models fine-tuned with MalImg were
chosen as base line models. Hence, their evaluations were
taken first. Figure 12 depicts the ROC curves of two selected
models. Both models achieved ROC curves on the left-hand
side of the blue line. This proves that these baseline models
perform better than random choices. On the other hand, the
area under the curve is bigger in the case of Inception V3
compared to the other cases.

Specific details are listed in table 4. The optimal thresholds
of Mobilenet V2 and Inception V3 are found to be
0.8299 and 0.7301, respectively. The G-Mean calculated
from this threshold is also presented in the table. In this
scenario, Inception V3 obtained a higher G-Mean, FPR,
Accuracy, Precision and F1 score. However, Mobilenet V2
also performed better than the other one in terms of TPR
and Recall. Overall, although Inception V3 got the better
AUC, which was 0.6558, it is still not considered a good
classifier because its AUC is too far from the ideal AUC,
which is 1.

FIGURE 12. ROC curve of mobilenet V2 and inception V3 trained with
malimg in evaluation phase with DikeDataset.

TABLE 4. Metric values of Mobilenet V2 and Inception V3 trained with
MalImg in Evaluation Phase with DikeDataset.

2) BODMAS 3
Figure 13 depicts the bad performance of both chosenmodels.
In both experiments, the ROC curve is under the no-skill line.
Any points located beneath the blue line have an extremely
low TPR. As can be seen, Inception V3 had a bigger region
than Mobilenet V2. This means it does not have the ability to
recognize malware.
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FIGURE 13. ROC curve of Mobilenet V2 and Inception V3 trained with
BODMAS 3.0.0 in Evaluation Phase with DikeDataset.

As shown in table 5, AUC scores of both models fine-tuned
with BODMAS 3.0.0 are lower than 0.5. Contrary to the
previous scenario, all metrics of Mobilenet V2 based on the
found optimal threshold are all better than Inception V3. Even
so, its FPR is about 0.57, which is too high for a goodmalware
detector.

Similar results happened to the models fine-tuned with
BODMAS 3.1.0 and 3.1.1. The models in this scenario had
poor performance with DikeDataset. Both Mobilenet V2 and
Inception V3 obtained an AUC that was lower than 0.5, and
their optimal thresholds were also found to be pretty high.
Other metrics based on the optimal threshold are also around
0.5, as in table 5. Overall, for all models fine-tuned with all
subversions of BODMAS 3, Mobilenet V2 models attained
pretty closemetric values to their InceptionV3 corresponding
models.

3) BODMAS 4
In experiments with models fine-tuned with subversions of
BODMAS 4, the recorded AUC scores in table 6 are relative
good compared to previous scenarios.

TABLE 5. Metric values of Mobilenet V2 and Inception V3 trained with
BODMAS 3 in Evaluation Phase with DikeDataset.

With the help of the benign class in the dataset, models
trained with BODMAS 4.0.0 gained high AUC scores:
0.8615 and 0.9392 for Mobilenet V2 and Inception V3,
respectively. Although most of Inception V3’s recorded
metrics based on the found optimal threshold are higher
than Mobilenet V2’s, its optimal threshold is 0.1817, which
is quite low. On the other hand, Mobilenet V2 achieved
a 0.4995 optimal threshold, which might bring balance in
classifying a sample as malware.

As illustrated in figure 14, ROC curves of both models
in this scenario were found to be better than models’ in all
previous scenarios, even the baseline models’. Both the ROC
curves of the selected models are far higher than the no-skill
line. In particular, Inception V3 has its upper left corner (the
red point) close to the ideal (0, 1) point.

Models fine-tuned with BODMAS 4.1.0 and 4.1.1 also
obtained better AUC scores than the baseline models’. For
instance, the AUC scores of Inception V3 trained with
BODMAS 4.1.0 and 4.1.1 are 0.8763 and 0.825, while the
same model trained with MalImg only got 0.6558. On the
other hand, as shown by table 6, G-mean of Inception V3
trained with BODMAS 4.1.0 based on the optimal threshold
was saved as 0.8109, which is much better than Mobilenet
V2’s (0.678). However, Mobilenet V2 showed its ability to
catch up with Inception V3 when its AUC and other metrics
were quite near the other one’s. Moreover, the threshold of
Mobilenet V2 trained with BODMAS 4.1.0 is 0.5054, which
is considered safer when predicting malware. In fact, with a
small threshold like the one Inception V3 had in this scenario
(0.1939), the detector could get in trouble when it meets an
unseen benign file.

In this paper, an extra scenario has been added to
measure the ability of BODMAS 4.0.0 models. In particular,
models are trained with BODMAS 4.0.0 full (BODMAS
4.0.0 without the test set). With more samples per class,
the AUC scores of both models in this scenario were found
to be greater than 0.9, which totally outperformed other
experimented models. Moreover, other metrics based on the
optimal threshold were discovered to be much higher than in
other scenarios. For example, the best FPR in this scenario is
0.0634, while the best FPR in the baseline scenario is 0.4122.
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FIGURE 14. ROC curve of Mobilenet V2 and Inception V3 trained with
BODMAS 4.0.0 in Evaluation Phase with DikeDataset.

However, the optimal thresholds in this scenario are very
small. In particular, the optimal thresholds of Mobilenet V2
and Inception V3 are 0.1974 and 0.0441, respectively. The
cause of these small thresholds is that fine-tuned models
have overfitted the dataset, especially the benign samples in
the dataset. As mentioned earlier, with a small threshold,
the malware detector might output the wrong class for an
unseen normal user application. Therefore, to make use of
these models, a great number of benign classes must be fed
to the detector for continued learning.

Overall, the evaluation phase brings up various experi-
ments for models fine-tuned with different datasets. Models
learned with benign samples outperformed other models,
especially the baseline models. On the other hand, models
learned with ‘‘.text’’ related sections also produced quite
good performance in predicting malware. This shows the
ability to combine these models for further deployment in the
future.

D. SUMMARY
Through experiments, Mobilenet V2 has successfully shown
its potential for classifying malware. It not only achieved

FIGURE 15. Package design of launcher.

a macro F1 score in the training and an AUC score in
the evaluation that was close to Inception V3’s, but also
consumed less disk space and outperformed Inception V3
in terms of prediction time. Mobilenet V2 fine-tuned with
BODMAS 4.0.0 is better than other experimental models
and is chosen to be integrated with ESP. On the other hand,
Inception V3 fine-tuned with BODMAS 4.0.0 could be used
on the server to achieve high performance but still not affect
any user machine.

VI. APPLICATION BUILDING
A. PACKAGE DESIGN
In DOPS, the Launcher, Scanner, and DOCG are written in
Golang. In Go, each folder on the project is considered a
package. The Launcher is designed as shown in Fig. 15. The
core component is the strategy package, which is responsible
for controlling how the Launcher is run. When the Launcher
is configured to run in service mode, the strategy package
initiates the RPCAuth, opens the port, and waits for the
Scanner to connect via the RPC3 method. Then it calls the
ServiceManager to start the Scanner service and can also
install or uninstall the Scanner service if necessary. If the
Launcher is configured with the Windows Task Scheduler,
the service package is called by the strategy package.

As shown in Fig. 16, the Scanner contains two major
components: the core and the plugin. Controller package
in Scanner aims to find the right strategy to run plug-
ins. In service mode, ServiceStrategy will initialize the
data for components in the data package. Then it will

3https://www.ibm.com/docs/en/aix/7.1?topic=concepts-remote-
procedure-call
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TABLE 6. Metric values of Mobilenet V2 and Inception V3 trained with BODMAS 4 in Evaluation Phase with DikeDataset.

FIGURE 16. Package design of scanner.

select a predefined list of plugins, which are stored in the
knowledge_endpoint package, to start scanning.

The data package contains two sub-packages: knowl-
edge_endpoint and knowledge_plugins. The first sub-
package stores initialized data about the machine, which
is filled by discovery plugins. The second sub-package
holds the list of all plugins used in the project. The
core package takes care of monitoring, and the plugins
package contains all the specific plugins used for sweeping
purposes. The discovery package contains plugins used for

discovering user mode information about the machine; the
audit package contains plugins for scanning vulnerabilities;
and the response plugin takes responsibility for receiving
commands from administrators and responding to those
requests.

B. APPLICATION BUILDING
1) ACHIEVEMENT
The core idea of DOPS is the ESP, which provides a
process for continuously monitoring endpoints in an organi-
zation’s network and executing any protective action. ESP
includes four main executables: launcher.exe (Launcher),
scanner.exe (Scanner), DOMalwareDetector.exe (DOMD),
DOClientGo.exe (DOCG), and a kernel driver: deocdrv.sys
(DODriver).

To give an overview of the workload for this project,
statistics about each component are summarized in Table. 7.

2) DEPLOYMENT
The deployment stage of the DOPS system requires attention
from administrators and the blue team. The ESP can be devel-
oped by third-party security or the organization’s security
team, but the protocol between the ESP and DOPS must be
unified. ESP must be installed on every user machine to be
monitored, and the administrators must start ESP in service
mode with an authentication key to prevent its use outside
the organization’s scope. Additionally, all components can
be automatically started on the next run of the machine by
running Launcher with the authentication key.

The Launcher and DODriver are configured to auto-run,
and the latter is deployed in test signing mode. To deploy
a kernel driver on a real machine, the driver must be
signed with a paid certificate. However, the system was
deployed on a virtual machine running Windows 10 Pro
(8GB RAM) with test signing mode, which means that driver
signature enforcement is disabled and Microsoft Defender
Antivirus’s real-time protection is turned off. The REST
API used for Scanner in the data transferring step was
https://api.cystack.net/v3/endpoint.
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TABLE 7. Code statistics of ESP.

FIGURE 17. CPU usage and memory usage of scanner, DOCG and DOMD
in one hour.

In the simulation, Scanner’s discovery, audit, and response
plugins were scheduled to run at different intervals, and Scan-
ner was configured to send process notifications, malware
scanning results, and requests to DOMD at specific intervals.
In this paper, Scanner only looked up ‘‘Download’’ folders
instead of using a filter driver to receive new notifications
about programs. The performance of each ESP component

was measured in terms of CPU and memory usage for one
hour using a tool available in DOPS’s side project, which
estimated process resources every five seconds.

Fig. 17 shows the CPU and memory usage of each
component of ESP over an hour. Scanner’s CPU usage
increased significantly due to multiple goroutines continu-
ously gathering and sending data to the server. DOMD’s
CPU usage expanded gradually as it received requests
from Scanner and produced predictions. DOCG’s CPU time
was minimal because it only transferred data. Launcher
had the lowest CPU usage and memory usage. DOMD
required the first twenty seconds to be loaded successfully,
then took up nearly 686 MB to start operating properly.
Scanner’s memory usage gradually increased over time,
while DOMD’s memory usage was 847 MB, which is below
the expected memory usage.

VII. CONCLUSION
This paper presents a basic implementation of an EDR
system called DOPS, which includes the Endpoint Service
Pack (ESP), consisting of several components, as well
as an image-based malware detection system (DOMD).
A mini-project written in Golang has been included as a
public contribution, along with the fine-tuning of two CNN
networks (Mobilenet V2 and Inception V3) using MalImg
and BODMAS datasets. Through simulations, Mobilenet V2
fine-tuned with BODMAS 4.0.0 was found to be the optimal
image-based malware classifier, achieving a high AUC score
(0.8615) while also meeting the model loading time and
predicting time requirements for deployment with ESP.

This paper also describes the construction of an EDR
system. However, ESP still needs improvement in dealing
with real-life attacks and lacks a process for defending against
advanced persistent threats. Furthermore, the image-based
malware classification is a static malware analysis, and ESP’s
protection ability can be enhanced with the combination
of both static and dynamic malware detection. In terms
of performance, ESP needs better memory management,
and DOMD consumes a lot of disk space and physical
memory. In the future, ESP requires more applications from
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the microservice architecture to deal with the expansion of
each existing service and new components.

From an academic perspective, image-based malware
detection should be analyzed in more detail, along with its
integration with dynamic malware detection. The Divide and
Merge strategy [42] can also be applied to various sections of
the PE file to improve the model’s accuracy. Overall, further
efforts will be made to evaluate DOPS in a real-life scenario.
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