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ABSTRACT High impedance faults constitute one of the biggest challenges in electrical power systems.
In overhead distribution systems, faults are caused by tree branches that touch the electrical grid or by the
rupture of energized conductors on low conductivity soils. They are also known as low-current faults, which
are not detected by conventional protection systems, compromising the quality of the power supply and
causing hazardous risks to the electrical system. This paper aims to address the problem of high impedance
faults detection using Artificial Neural Networks: two Multi Layer Perceptron networks, being one Neural
Pattern Recognition and another Neural Fitting, and a Convolutional Neural Network. The neural networks
are trained and analyzed in scenarios based on a medium-voltage distribution grid model, located in the
Basque Country, Spain. The network topologies are implemented, repeatedly trained considering multiple
architectures, and validated in other scenarios with different location, time, and duration of the fault using
the Matlab software. After, the criteria of accuracy, reliability, security, safety and sensitivity are evaluated.
At last, a comparative analysis between them is carried out, and from the results obtained, a superior
performance of the Convolutional Neural Network in compared to the Multi Layer Perceptron networks
is observed.

INDEX TERMS High impedance faults, detection, electrical system, artificial neural network, modeling,
performance comparison.

I. INTRODUCTION
Electrical power distribution systems are susceptible to
failures, which can be understood as abnormal operating
conditions of some equipment at one of the system primary
voltages [1]. Overhead electrical power distribution systems
are exposed to adverse conditions and weather phenomena,
making them more vulnerable to failures, such as those
caused by tree branches touching the electrical grid, or even
by the rupture of conductor cables on insulating surfaces
of low conductivity, such as asphalt. These types of failure
are considered High Impedance Faults (HIFs), also known
as low-current faults, whose current values are below the
starting values of traditional overcurrent relays, in the
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distribution feeders [2], [3]. Thus, HIFs are not detected
by conventional protection systems [4], compromising the
quality of electricity supply and causing high risks such as
hazardous shock, fires, and even deaths [2]. HIFs are also
considered a threat to facility assets and can cause irreparable
damage [5], [6], [7], [8].

The concern with this type of fault is not recent. In 1949,
the Power Systems Relaying Committee Working Group
concluded that it was impossible at that time to develop
techniques for detecting HIF [9]. However, especially in the
last four decades, many researchers have been working to
develop techniques that can detect, classify, and/or locate this
type of fault [3], [6], [10], [11]. Despite the several studies
presented in the literature, this research problem still lacks a
definitive solution that presents high reliability and security in
terms of detection and differentiation between the occurrence
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of HIF and other events common to distribution systems, such
as switching loads or capacitors bank [6], [12], [13].

HIFs detection techniques can be divided into passive
techniques, which are based on the fault signature identified
by an instrumentation system and detection algorithms, and
active techniques, which aim to identify fault conditions
through high frequency signals injected into the electrical
system [3]. In this research, passive techniques are addressed,
since they have the advantage of not being invasive to
traditional electrical systems. The main passive techniques
used for HIFs detection are the analysis of Low Order
Harmonics, Artificial Neural Networks (ANNs), Wavelet
Transform, Fuzzy Logic, among others. Although all these
techniques work relatively well, they have drawbacks when
applied to complex or different systems from what they
were trained, such as need for expensive equipment, yield
insatisfactory results in real world situations, computational
complexity, technique time consuming and difficult to
implement, and high incidence of false positives in HIF
detection tests and in the presence of capacitor banks [3].

A recurring concern over the years has been that most of
the proposed techniques and methodologies are capable to
detect HIFs, but they often confuse fault with normal system
events, generating false positives, usually in situations such
as switching capacitor banks and energizing transformers
[6], [13], [14]. Therefore, it is possible to state that an
adequate and permanent solution for HIF detection is still
lacking, although many attempts have been made by the
scientific community. In recent years, techniques based on
ANNs can be highlighted as promising. On the other hand,
there is still a gap in research related to this topic, as they
do not justify the ANN topology choice nor by which way
their architectures are defined, being used different types
of networks, in different contexts, without carrying out
validation tests in scenarios with different location, time and
duration of the fault. In other words, the procedures involved
often based rely on trial and error, reducing the objectivity of
ANN-based techniques [3], [6], [15].

In this context, this paper addresses the modeling of HIF
detection from three ANNs topologies that stand out in the lit-
erature: two Multi Layer Perceptron (MLP) networks, being
one Neural Pattern Recognition (NPR) and another Neural
Fitting (NF), and even a Convulational Neural Network
(CNN). All ANNs are trained in the same set of scenarios,
but are validated in different scenarios than those used in
training, considering variations of fault location, time and
duration. These scenarios are based on a real medium-voltage
distribution grid with five feeders, located in Basque Country,
Spain [16]. TheANNs are implemented, trained and validated
using MATLAB software. After the validation of the ANNs,
the criteria for accuracy, reliability, security, safety and
sensitivity are evaluated. At last, a comparative analysis is
realized of the three ANNs topologies in an equitable path.
Then, the more accurate ANN topology for the HIF detection
and distinction from other normal system events is obtained
from the results, considering the established criteria.

The remaining paper is organized as follows. Section II
summarizes the main related works in the field. Section III
presents research materials and methods, i.e., HIF model,
validation and training scenarios for HIF detection and the
investigated ANNs. Section IV shows the simulation results
and also makes a comparative analysis of the three ANNs
topologies in an equitable path. Finally, Section V presents
the paper’s main findings and conclusions, as well as the
possibility of future works.

II. RELATED WORKS
In literature, different methods are proposed for detecting
HIF. Sedighizadeh et al. [15] provide a chronological bibli-
ographic review of researches on this topic, presenting the
historical evolution of fault modeling. The authors present
225 related papers, of which 169 address the proposition
or use of algorithms for HIF detection and/or localization.
Ghaderi et al. [3] carry out a comprehensive literature review
survey on HIF, with emphasis on detecting, modeling and
localizing techniques, resulting in 133 papers. Gomes and
Ozansoy [6] cites the works of Sedighizadeh et al. [15]
and Ghaderi et al. [3], indicating that, although there are
surveys on this topic, it is not easy to find a comprehensive
contextualization of how and when research in this field
unfolds. These authors present the progress and development
historical narrative based on the most cited papers since
the beginning of this research subject, resulting a total of
131 papers, among which 94 on HIF detection methods, 7 on
location, and 5 on HIF modeling.

Based on a literature review, the main works related to HIF
detection methods with emphasis on the use of ANNs are
presented below. According to Ebron et al. [17], it was in
the 1990s that RNA-based techniques emerged, and they are
widely used to this day. Baqui et al. [18] propose a hybrid
method that combines the ANN and wavelet transform for
HIF detection. Sulaiman et al. [19] propose an intelligent
approach Probabilistic Neural Network (PNN) combined
with advanced signal-processing techniques such as Discrete
Wavelet Transform (DWT). Tonelli et al. [20] present a
comparison of two intelligent systems that aim to identify and
classify different critical situations such as HIF. Silva et al.
[21] apply a neuro-fuzzy learning method based on the use
of the wavelet transform to detect HIF in medium voltage
electrical networks. Lucas et al. [22] perform HIF detection
in smart grid using wavelet transform and ANNs, four types
of mother wavelet are tested and combined with four ANNs
architectures, a better performance is observed with type
Symlet 2 wavelet and Adaptive Artificial Neural Network
(AANN) architecture. Wang and Dehghanian [23] state that
monitoring devices and protection relays are unable to detect
HIFs, so they propose an onlinemonitoring system embedded
with analytics machine learning that ensures the detection of
HIF in power systems.

Zhang et al. [24], [25] consider features of a smart grid and
different types of wavelets, and employ a transfer learning
method for HIF detection. Niazazari et al. [26] use a CNN
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and DWT to detect HIF. Fan and Yin [27] present an analysis
of CNN’s differentials, using transfer learning to solve the
problem of missing data; in which different scenarios of
HIF variation and other system operations, such as switching
loads and capacitors bank are used, the performance of
CNN is compared to a MLP and the cross-entropy loss
calculation for performance analysis is done. Ledesma et al.
[28] describe a new method for locating and identifying HIF
in medium voltage networks of unbalanced distribution sys-
tems, considering: load variation, reconfiguration, distributed
generation, fault resistance variation, inaccuracy in feeders
data, and protection devices operations, this method is based
on ANN and it considers data from synchronized measure-
ment units. Veerasamy et al. [29] propose a DWT based
graphical language classifier algorithm for HIF detection in
medium voltage distribution networks, the method of clas-
sifier is developed using virtual instrumentation LabVIEW
facility.

Moradzadeh et al. [30] utilize the frequency response
analysis method to identify and locate HIF, the interpretation
of results associated with the frequency response analysis
procedure is considered a weak point of the method, other
techniques such as Support Vector Machine (SVM), Decision
Tree (DT), k-Nearest Neighbors (k-NN), CNN, Long Short
Term Memory (LSTM), and a hybrid model of convolutional
LSTM (C-LSTM) are used together to overcome the
problem. Aziz et al. [31] present a novel approach that
utilize deep two-dimensional CNNs to extract features from
2-D scalograms and detect faults in photovoltaic systems.
Rai et al. [32] propose a deep learning method for HIF
detection, considering convolutional autoencoders that learn
unsupervised from HIF signals, eliminating the need for
multiple non-fault or normal system condition scenarios
during training. Rai et al. [33] propose a new approach for
HIF detection and classification based on a state-of-the-art
deep learning model, the transformer network, stacked with
the CNN, while the transformer network learns the complex
HIF pattern in the data, the CNN enhances the generalization
to provide robustness against noise. Mohammadi et al.
[34] use the Conditional Generative Adversarial Network
(CGAN) technique with the CNN classifier for the first
time to detect HIF. Teimourzadeh et al. [13] state that
majority of existing methods still suffer from false detection
of HIF, so they propose a CNN and the hybrid model of
Deep Reinforcement Learning (DRL) to identify and locate
single-phase to ground short circuit faults in transmission
lines.

Shakiba et al. [35] discuss relevant methods proposed
since 2015, analyzing the advantages and disadvantages of
machine learning techniques for HIF detection. They also
identify notable issues in the field of HIF detection, such
as voltage amplitude variations and phase changes in power
systems, the scarcity of real-world faults for training, noise,
and false detection of HIF. Gupta et al. [36] used DWT and
machine learning techniques to efficiently detect HIF. They
classified features using the t-test’s class separability criterion

FIGURE 1. HIF model.

and employed the ExtremeLearningMachine (ELM)with the
four most significant features for classification. Additionally,
MLP and SVM networks were used for comparison. Simu-
lation results showed that the ELM method achieved good
accuracy compared to other, considering accuracy, reliability,
security, and sensitivityGupta et al. [36] Klein et al. [37]
detail the architecture of a CNN used for the classification of
non-contact partial discharges, considering a combination of
CNN stacking and autoencoders for time series classification
for the first time. However, the detection of HIF is not the
focus of this study.

Despite the large number of published works and the
variability of methods and combinations, the research
field still lacks comprehensive studies and solutions. One
persistent problem that has been recognized over time is
the difficulty in distinguishing HIF from normal system
events, leading to false positives [13], especially in scenarios
involving capacitor bank switching and transformer ener-
gization. Gomes and Ozansoy [6] highlight the increasing
number of published papers and the prevalence of ANNs and
wavelet transform as the predominant techniques employed
individually or in combination in HIF detection research.
While methods utilizing the wavelet transform offer certain
advantages, designing a systematic HIF detection technique
based on this transform is challenging due to its limited
support in high frequencies and the subjective nature of
selecting the mother wavelet, which can result in resolution
loss and reduced interpretability [3]. Approximately 23%
of HIF detection techniques employ ANNs, which offer
their own advantages, but also add complexity to the overall
detection algorithm design. Furthermore, while many authors
claim the robustness of their techniques, they often lack
detailed information regarding the specific architecture of
the neural network used, parameters, employed dataset, and
evaluation metrics.

III. MATERIALS AND METHODS
A. HIF MODEL
The non-linear model with antiparallel diodes, widely
employed in the literature, is used to analyze the HIF,
considering that the single-phase short-circuit to earth is
predominant, occurring in 63% of faults [7], [38]. Figure 1
shows the generic HIF model.

B. VALIDATION AND TRAINING SCENARIOS FOR HIF
DETECTION
Obtaining data is an important step in researching this
topic. Real-world voltage and current measurements under
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FIGURE 2. Distribution system model presented by Zamora et al. [16].

HIF conditions are expensive and dangerous to obtain, and
may be impractical due to space limitations. Moreover,
experimental replication of a real HIF in laboratory requires
complex high-voltage equipment and strict security mea-
sures to mitigate any potential hazards of the HIF arc.
Therefore, computer simulation models are often used for
analysis [2].
In this research, multiple fault scenarios are created based

on a real power grid located in Basque Country, Spain,
modeled and validated using real parameters and operating
conditions [16]. Figure 2 presents the complete representation
of this grid, in which voltage and current measurements
are taken in the transformer, at the substation output. It is
composed of a medium-voltage branched network, with a
substation and five distribution feeders of radial topology
and varied extension. These characteristics are considered
important in the ANNs sensitivity tests and in the phase-
to-ground fault detection. This system has a delta-wye

transformer with neutral, transformer ratio of 30 kV /13.8 kV
and 12 MVA; and 35.7 km of overhead cables and 8.9 km of
underground cables. It supplies a set of 98 loads.

Two sets of simulated data are obtained from this electrical
system, with variations in geographic location, time and
duration of both fault and capacitor bank; one set is used
for training and another for validating the ANNs topologies.
For the ANNs training 16 simulated scenarios are developed,
this number is defined considering the acquisition of at
least 100 samples necessary to carry out the CNN tests.
The scenarios include different operating conditions of the
electrical system, as follows: 5 scenarios with three HIFs
(Scenarios 1 to 5); 2 scenarios with two HIFs (Scenarios 6
and 7); 1 scenario with one HIF (Scenario 8); 1 scenario with
three HIFs and one capacitors bank is switched (Scenario 9);
7 scenarios with two HIFs and one capacitor bank being
switched (Scenarios 10 to 16).

In each scenario, the simulation and grid parameters
are equal to the real electrical system determined by
Zamora et al. [16], a simulated time of 2 s and a time step of
10−6 s are considered. The location, phase, time, and duration
of the HIFs vary for each scenario, as well as the location and
time of the capacitor bank activation. HIFs resistors are set to
10 k� in all cases [7], [16]. For the NPR andNF networks, the
RMS current data of each simulated circuit is used generating
matrices of size 198339 × 3. For the CNN, the images of
‘‘Time (s) x RMS Current (A)’’ graphs are used for each
scenario. All training scenarios are illustrated in Figure 3,
where Scenario 9 is shown in Figure 3(a) as an example where
three HIFs and one capacitor bank can be seen; all other
scenarios are shown in Figure 3(b), where the x- and y-axis
are the same than Figure 3(a) but have been suppressed for
better visibility.

For validation and comparative analysis of the results,
another set with 5 scenarios is developed. In each, the HIFs
are allocated at different points in the electrical system and
their duration and occurrence are also varied; the capacitor
bank switching is treated similarly. The scenarios are as
follows: Scenario Awith one HIF; Scenario B with two HIFs;
Scenario C with three HIFs; Scenario D with two HIFs and
one capacitor bank switching; Scenario Ewith three HIFs and
one capacitor bank switching. Figure 4(a) shows in detail the
three-phase RMS currents of Scenario D, while Figure 4(b)
depicts the other validation scenarios. The x- and y-axis of
Figure 4(b) are the same than Figure 4(a) but are suppressed
for better visibility.

C. ARTIFICIAL NEURAL NETWORKS
ANNs are known for their high accuracy in pattern clas-
sification and generalization, fast response, noise removal
and prediction capabilities. Currently, around 23% of HIF
detection techniques utilize ANNs topologies [3]. Despite
their advantages, these networks make the overall detection
algorithm design more complex. Furthermore, choosing the
number of layers and the number of neurons in each layer are
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FIGURE 3. (a) RMS current waveforms of training scenario 9; (b) training
scenarios used, all on the same x- and y-axis scale as in (a).

trial and error procedures that can reduce the objectivity of
ANNs based techniques [39], [40].

Pattern recognition and signal classification and processing
are among the many ANN applications, which are of interest
in this paper [40]. In this sense, there are feedforward type
networks where the output of one layer is used as input
for the next layer. They can be classified into three main
architectures classes: (i) single-layer networks; (ii) multilayer
networks, such as perceptrons (i.e., MLP); and (iii) recurring
networks [39]. For electrical power systems problems, the
use of MLP networks with retroactive error propagation (i.e.,
backpropagation algorithm) stands out in the literature, being
usual networks with 2 to 4-layers [3].

In this regard, two main types of MLP networks are used
in the literature to solve different problems, the NPR and NF
[39], [40]. The recent growth in CNN uses for HIF detection
is also highlighted [27]. These are the three ANNs topologies
of interest in this research, which are trained and validated
using software MATLAB®, as well as are compared using
an equitable path.

FIGURE 4. (a) RMS current waveforms of validation Scenario D;
(b) validation scenarios used, all on the same x- and y-axis scale as in (a).

1) NEURAL PATTERN RECOGNITION NETWORK
In this section, II to IV-layers feedforward NPR networks
are initially tested and evaluated. After testing, the 3 and
4-layers are discarded and the 2-layers network is chosen
because it is simpler and there were no significant changes
in the results, it has hidden sigmoid output neurons and uses
the softmax function, which can classify vectors arbitrarily
well as long as there are enough neurons in the hidden
layer. This network is then trained with scaled conjugate
gradient backpropagation and performance evaluation is
accomplished using the cross-entropy error calculation. In the
results, in addition to the overall error, it is possible to obtain
the confusion matrices and characteristic curves.

To define the neurons number, NPR networks from 10 to
300 neurons are tested for each of the 16 training scenarios.
This range proved to be sufficient for all scenarios, so that an
evolution in the method performance is observed, as well as
the moment when it becomes stagnant or tends to regress.
Thus, it is possible to define, for each scenario, the NPR
network with the best performance. In this paper, 80% of data
are used for training, 10% for validation and 10% for testing
[6], [41].
The NPR network with the best performance is chosen

for each scenario based on criteria such as the error by
cross entropy closer to zero, the best percentage of hits
in the confusion matrix, and therefore better graphically
representing the respective training scenario. Table 1 shows
a summary of the selected networks for each scenario,
describing theNPR networkwith the best performance and its
respective characteristics: neurons number, average general
performance value, accuracy according to the confusion
matrix, and total time required for training.
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TABLE 1. Characteristic of the selected NPR network for each training
scenario.

2) NEURAL FITTING NETWORK
In curve fitting problems, an NF network is expected to
map a dataset of numerical inputs and a set of numerical
targets. For this research, 2 to 4-layers feedforward NF
networks are also tested. The 2-layer network is chosen
because it is simpler and there were no significant variation
in the results when compared to multiple layers, it has
sigmoid hidden neurons and linear output neurons, it fits
arbitrarily well to multidimensional mapping problems, when
it has consistent data and enough neurons in the hidden
layer. This network is trained with the Levenberg-Marquardt
backpropagation algorithm, which stands out among others
in the literature [42], [43]. The network performance analysis
is accomplished using the Mean Squared Error (MSE)
calculation and regression analysis.

The same data percentage from the NPR network is used
for the NF network, training (80%), validation (10%) and
testing (10%), as well as tests with different neurons numbers,
10 to 300 neurons for each of the 16 training scenarios. Once
again, the best performing NF for each scenario is chosen
based on the MSE closest to zero, determination coefficient
R2 closer to 1, and therefore better graphically representing
the respective training scenario. Table 2 presents a summary
of the selected networks for each scenario, showing the NF
network with the best performance in each case and its
respective characteristics: neurons number, average overall
performance value, value of R2 in regression analysis, and
total time required for the network training.

3) CONVOLUTIONAL NEURAL NETWORK
CNN is a deep learning network that learns directly from
data, eliminating the need for manual feature extraction.
They are particularly useful for classifying data and finding
patterns in images. The use of CNNs for deep learning
is popular because of three important factors: (i) CNNs
eliminate the need for manual feature extraction, which are
learned directly over the network; (ii) CNNs produce highly
accurate recognition results; and (iii) CNNs can be retrained

TABLE 2. Characteristics of the selected NF network for each training
scenario.

for new recognition tasks, allowing for the reconstruction of
pre-existing networks.

A CNN can have tens or hundreds of layers that learn to
detect different features of an image. Filters are applied to
each training image at different resolutions, and the output
of each convoluted image is used as input to the next
layer. Like other ANNs, it is composed of an input layer,
an output layer and hidden layers between them. These
layers perform operations that change the data with the
intent of learning specific features from it. Three of the most
common layers are: convolution, activation or ReLU, and
pooling [44].

In this paper, the images of RMS current plots for each
16 scenarios are used for training the CNNs. Each simulation
has a total time of 2 s and a windowing of 0.2 s is performed
for each image. This windowing time is chosen because
it corresponds to approximately 10 complete cycles of a
60 Hz electrical system, which is enough time to represent
different system events. The images are in color, with a size
of 168 × 788 pixels, which results in a sufficient number of
samples to generate the 60Hz sinusoidal. In total, 100 images
(i.e., samples) are obtained and classified as: (i) 0, for
normal system operation condition, including capacitors bank
switching; and (ii) 1, for HIF condition (i.e., capturing only
the beginning, middle or end of a fault, or a complete HIF).
Thus, a total of 50 samples are obtained in each category, 80%
are used in training and 20% for testing/validation [24], [26],
[27], [41].

Similarly to the other ANNs, the CNN neurons number
choice is also subjective and challenging since it requires
the definition of parameters such as the filters’ size and
quantity used in the convolutions, in addition to the number of
layers. Approximately 200 different architectures are tested
by combining and varying these parameters in order to choose
the best CNN for each scenario. This results in a wide range of
CNN networks, from low complexity (training time of 0.54 s)
to higher complexity (training time of 3h30min). In this paper,
the testing values for filter sizes and quantities are equal or
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TABLE 3. Best results for NPR network.

multiple [23], [44], which proves to be a good strategy since
the resulting accuracy is over 80% in all tests.

The network choice is done based on complexity (fewer
layers and filters), accuracy (greater number of tests with
100% accuracy), and training time. A 3-layers network
architecture is then defined since it resulted in the best
accuracy indicator (achieving accuracy of 100%, 95%, and
90% in 40%, 25%, and 35% of the performed simulations,
respectively); with a training time for this network is 2min11s.

D. ERROR ANALYSIS AND VALIDATION
The applicability of each ANN is analyzed in the 5 validation
scenarios and evaluated according to five criteria, being:
accuracy (overall precision), reliability (accuracy in detecting
HIF occurrence), security (accuracy in detecting the normal
operating state of the system), safety (safety related criteria),
and sensitivity (sensitive load related criterion) [3], [6], [45].
These parameters are calculated by:

Accuracy:

A =
TP+ TN

TP+ FP+ FN + TN
· 100%. (1)

Reliability:

D =
TP

TP+ FP
· 100%. (2)

Security:

S =
TN

FN + TN
· 100%. (3)

Safety:

SF =
TN

FP+ TN
· 100%. (4)

Sensitivity:

SN =
TP

TP+ FN
· 100%, (5)

where: True Positive (TP) is the number of correct faults
detection, True Negative (TN) is the number of correct
decision of healthy conditions, False Positive (FP) is the
number of faults that are not detected, and, finally, False
Negative (FN) is the number of healthy conditions that are
erroneously classified as faults [3].

TABLE 4. Best results for NF network.

TABLE 5. CNN results in validation scenarios.

IV. RESULTS AND DISCUSSION
A. NEURAL PATTERN RECOGNITION NETWORK
In the training process, 16 NPR networks are obtained, one
for each scenario, according to the characteristics presented in
Table 1. Each of these is tested for the 5 validation scenarios,
totaling 80 different simulations. Table 3 shows the best
result obtained for each validation scenario, the evaluation
is done by performance, confusion matrix, and graphic
representation of the RMS currents (i.e., visual analysis).

The NPR network obtained in Scenario 13 (i.e., called
Network 13) is chosen, since it is one of the networks that
appears more often as best result in the simulation results
shown in Table 3. It is also highlighted that this network
presented good training performance as previously presented
in Table 1).

B. NEURAL FITTING NETWORK
Similarly to the previous section, 16 NF networks also
are obtained in the training process according to the
characteristics presented in Table 2 and each network is
tested for the 5 validation scenarios, totaling 80 different
simulations. Table 4 presents the best result obtained for
each validation scenario considering their performance and
graphical representation of the RMS currents (i.e., visual
analysis).

Results in Table 4 show heterogeneity since none network
demonstrated overall superior performance. However, the NF
network obtained from Scenario 13 (i.e., called Network 13)
is chosen for the final comparison in reason of being the best
performing network during training (Table 2) and for this
scenario being the same chosen for the NPR analysis. It is
also observed that the NF networks overall presented results
with greater noise than NPR networks. Furthermore, another
performance issue of the NF network is that, in many cases,
the validation scenarios results were inverted or mirrored and
with an unexpected decrease of RMS current value at the fault
time.

C. CONVOLUTIONAL NEURAL NETWORK
In all 5 validation scenarios, three-phase RMS current plot
images are used for the CNN validation. Each image is
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TABLE 6. Comparison of results of the three ANNs.

windowed every 0.2 s, resulting in 50 samples of size
168 × 788 pixels, this same methodology was used to train
the network. Considering all samples, 27 represent normal
system operating conditions (of which, two with capacitors
bank switching) and 23 represent HIF situations (of which,
9 capture the fault ending, 3 only the middle of the fault,
and the remaining samples capture either the beginning of
the fault or all of it). Table 5 presents the results for the CNN
validation.

The overall percentage of accuracy in the classification of
samples for the CNN network is 96%. It failed to classify
two images: (i) one that captured only the middle of a fault,
that is, it did not capture the current increase during the
HIF beginning, nor the current decrease during the grid’s
restoration; and (ii) another that captured only the fault ending
with the current decreasing in time.

D. COMPARISON OF ANNS PERFORMANCE
The validation results indicate that, among the two MLP
networks, the NPR gives better results and converges more
efficiently. In addition, theNF network does not seem suitable
for this research problem, with below expected performance
and random/unknown behavior during validation; also,
a higher computational cost and training time are needed for
NF networks. Furthermore, despite showing good accuracy
in verification tests, when the NF network is applied in
other scenarios (with variations in fault location, time, and
duration) it does not converge correctly.

Regarding the CNN, it is observed that it efficiently
captures most cases of HIF, does not confuse the fault
with other normal system events, such as capacitors bank
switching, which is one of the current challenges in HIF
detection methods. Also, parameter variation such as the HIF
location and timing do not affect its accuracy since the CNN
operates differently from the others.

To carry out a fair comparison among the three ANNs,
the accuracy, reliability, security, safety, and sensitivity of all
tested networks are calculated. Table 6 presents the results
considering the number of hits and errors of each network,
with regard to HIF and normal system operation, using the
previously described 5 validation scenarios.

The superior performance of CNN for HIF detection
is observed in Table 6, when compared to NPR and NF
networks. It is also important to mention that the training
time of the former is shorter than the latter. The CNN
network topology is hence more indicated for HIF detection
solutions.

V. CONCLUSION
The detection of HIF in electrical power distribution systems
remains a serious and unsolved problem. In this paper,
the modeling, analysis, and comparison of a HIF detection
method were carried out using three ANN topologies: two
MLP networks (i.e., NPR and NF), and a CNN. All ANNs
were trained on a set of 16 scenarios and validated on a set of
5 different scenarios, considering variations in fault location,
time and duration. These scenarios were modeled based on a
real distribution grid. The networks were trained repeatedly,
considering different architectures, and the best performing
network was chosen for further tests. These selected networks
were then applied to the 5 validation scenarios, where
the best performing network architecture among the NPR,
NF, and CNN were selected for a quantitative analysis.
For an equitable comparison the same criteria of accuracy,
reliability, security, safety, and sensitivity were used. From
the results obtained, a superior performance from the CNN
compared to NPR and NF networks is observed, showing that
it is the most suitable network to be used in the HIF detection.
For future research, it is suggested to expand this research
from its comparison with other AI-based and traditional
methods in the literature.
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