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ABSTRACT In the context of cattle farm environments, intricate environmental interferences have presented
challenges that impede seamless data acquisition. This paper introduces a novel approach, the integration
of a fusion gate transformation mechanism and a variational autoencoder GAN, which we term GCT-VAE-
GAN, aimed at enhancing low-light images from cattle farm settings. Initially, our approach involves the
design of an encoding network tasked with augmenting the original images. Subsequently, we advance
our methodology by formulating a generative network to effectively address the challenges of image
diversification and poor image quality. Notably, the inclusion of an attention mechanism block within the
FFN layer facilitates the fusion of these extracted features, resulting in the generation of high-quality images.
Furthermore, to achieve proficient image discrimination, we implement a dual-discriminator structured
discriminative network for the conclusive image discrimination task. The culmination of our approach
involves the formulation of a comprehensive joint loss function, thereby constituting the core of the model’s
loss module. Moreover, through comparative experiments, we aptly demonstrate the remarkable superiority
of the GCT-VAE-GAN approach. The conducted experiments reveal the model’s consistent performance
and resilience under varying illumination scenarios. The outcomes of our study underscore its significant
relevance in elevating the quality of low-light images within cattle farm contexts. Furthermore, our approach
exhibits the potential to enhance the efficacy of computer vision tasks, signifying a notable stride toward
improved agricultural imaging techniques.

INDEX TERMS Low-light image enhancement, GAN, VAE, quality evaluation.

I. INTRODUCTION
In practical scenarios, adverse weather conditions, limited
lighting, and equipment constraints frequently result in the
capture of underexposed images. These conditions give rise
to several challenges, including diminished detail clarity,
reduced contrast, and color distortion, as substantiated in
prior studies [1], [2]. Consequently, the implementation
of techniques aimed at enhancing low-light images holds
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substantial significance. These methodologies contribute to
the enhancement of image quality, the accentuation of
textural intricacies, and the overall improvement of image
comprehensibility and usability. The realm of deep learning
has paved the way for novel approaches to address the
enhancement of low-light images, as evidenced in recent
literature [3], [4]. Nevertheless, existing methodologies
continue to confront noteworthy challenges, particularly in
striking a balance between augmenting image details and
preserving the authenticity of the original image. Another
significant challenge lies in the acquisition of effective feature
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representations from a limited dataset of low-light images [5].
The fusion gate transformation (GCT) mechanism emerges
as a promising solution that adeptly fine-tunes network
parameters by assimilating inherent illumination information
from images. This augmentation enhances the network’s
adaptability across varying lighting conditions, thus strength-
ening its versatility and generalization capabilities, ultimately
leading to improved enhancement outcomes [6]. However,
it is important to note that the computational complexity of
this method is relatively high and may necessitate increased
computational resources. Simultaneously, the variational
autoencoder (VAE) primarily serves as a conduit for acquir-
ing latent representations of image data, encapsulating image
information within a lower-dimensional latent space [8].
The VAE operational framework comprises an encoder that
maps input images to the latent space and a decoder that
reconstructs the latent representation into enhanced images.
By effectively traversing the continuous latent representation
space, VAE streamlines the image enhancement process,
mitigating potential distortions and artifacts that may arise
during enhancement [9]. Furthermore, VAE excels in main-
taining image coherence and authenticity while acquiring
compressed representations. It should be noted that VAEmay
introduce some blurriness or pseudo-pixels when generating
images, particularly in cases with significant randomness.
In parallel, the generative adversarial network (GAN) plays
a pivotal role in generating lifelike enhanced images.
GAN’s architecture comprises a generator responsible for
producing enriched images and a discriminator designed to
differentiate between enhanced and authentic images, ulti-
mately yielding appropriate outputs. Through an adversarial
training framework, GAN systematically enhances image
fidelity, progressively reducing the gap between enhanced
and authentic images and significantly improving visual
perceptual quality [10]. It is important to acknowledge that
GAN are constrained by the quality of training data and may
introduce unrealistic details when generating images. The
main contributions of this paper are as follows:

1. This paper introduces a novel low-light image enhance-
ment network that seamlessly integrates the GCT, VAE, and
GAN. The encoding network is dedicated to augmenting
input images, while the generative network extracts salient
features from these enhanced images, orchestrating feature
fusion and subsequently generating refined images. Con-
comitantly, the discriminative network critically assesses the
synthesized images, yielding enhanced generated images that
closely approximate the characteristics of the original input
images.

2. A unified loss function has been developed, which
entails the formulation of distinct loss functions for the three
modules within the proposed network: the encoding network
loss, the generative network loss, and the discriminative
network loss. By synergistically accounting for diverse loss
components, this approach effectively integrates information
pertaining to image content, contrast, and illumination.

Consequently, the network is adeptly positioned to holisti-
cally enhance low-light images within cattle farm contexts.

3. Ablation experiments were conducted to validate the
contributions of individual modules within the GCT-VAE-
GAN framework, followed by a demonstration of the
method’s superiority through comparative experiments.

The structure of this paper is organized as follows:
Section II comprehensively reviews pertinent research and
the technical background; section III elaborates on our
proposed cattle behavior classification network in detail;
section IV presents the experimental outcomes and cor-
responding analyses; and ultimately, section V concludes
the paper while also outlining potential avenues for future
research. Grounded in our research, our objective is to
provide an efficient solution for enhancing low-light images
in cattle farm scenarios.

II. RELATE WORKS
A. COLOR AND CONTRAST ENHANCEMENT FOR
LOW-LIGHT IMAGES
Liu et al. [11] developed a comprehensive framework tailored
for enhancing degraded images to serve various purposes.
Zhu et al. [12] introduced a cross-view capture network
designed to accomplish the super-resolution of stereoscopic
images by leveraging global context and local features
extracted from two different views. Additionally, Zhu et al.
[13] presented a lightweight single-image super-resolution
network aimed at addressing the issue of high parameter
count and computational demands often associated with deep
learning-based super-resolution methods. Wang et al. [14]
conducted a comprehensive review of prominent techniques
developed in the last decades for low-light image enhance-
ment. These methods were classified, including grayscale
transformation, histogram equalization, retinex-based tech-
niques, frequency domain methods, image fusion methods,
haze removal models, and machine learning approaches.
Zhang et al. [15] introduced an innovative underwater image
enhancement methodology centered around retinex-inspired
color correction and the preservation of fine details. Their
strategy encompasses the correction of color bias induced
by light scattering through color correction techniques. In a
separate vein, Lv et al. [16] presented an end-to-end attention-
guided strategy founded on a multi-branch convolutional
neural network, precisely tailored to address issues associated
with low-light image enhancement. Hao et al. [17] outlined a
retinex-centered technique for the enhancement of low-light
images. Their approach was geared towards the resolution of
concerns linked to the inefficient decomposition of images
and pronounced imaging noise. Zhang et al. [18] presented
a robust and efficient method for the enhancement of
underwater images named maximum likelihood low-light
enhancement (MLLE). This approach facilitated localized
adjustments in color and details based on principles of
minimal color loss and guided fusion using maximum
attenuation maps. Their methodology further incorporated
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integral and squared integral images to gauge local block
means and variances, fortified by a color balancing scheme
aimed at harmonizing discrepancies within the a and b
channels of the commission internationale deleclairage lab
(CIELAB) color space. However, when we applied these
methods to low-light environments on cattle farms, we found
that they did not perform well, especially in terms of
tone and detail contrast. Fu et al. [19] introduced a novel
unsupervised low-light image enhancement network, termed
low-light image enhancement generative adversarial network
(LE-GAN), which featured an illumination-aware attention
module designed to bolster feature extraction. Zhao et al. [20]
proposed a novel approach, redefining retinex decomposition
as a generation problem. Furthermore, Zhuang et al. [21]
presented a retinex variational model inspired by the super
laplacian reflection prior, tailored for enhancing underwater
images. Hai et al. [22] introduced a retinex-based real-to-
real network (R2RNet), meticulously designed to tackle a
gamut of challenges inherent in low-light images. Li et al.
[23] unveiled the progressive recurrent image enhancement
network (PRIEN) for the enhancement of low-light images.
The enhancement of low-light images relies more on
the feature extraction of the optimized model to achieve
image enhancement. In the low-light image tasks applied
to cattle farms, the difficulty of feature extraction will be
increased due to the inclusion of more detailed feature
contrast. Our GCT-VAE-GANmethod solves these problems
by pre-processing the coding network and then feature
extraction. Li et al. [24] proposed a zero-reference deep curve
estimation technique, zero-reference deep curve estimation
for low-light image enhancement (Zero-DCE), showcasing
its accuracy in performing face detection under low-light
conditions. Additionally, Wang et al. [25] presented the
deep learning network (DLN) to address the challenge of
subpar visual quality in photographs captured under low-
light conditions. Jiang et al. [26] devised an innovative
self-regularization strategy grounded in retinex theory to
surmount color deviation issues in self-adjusting low-light
image enhancement. This method showcased a capacity
to enhance images across a broader spectrum of lighting
conditions [27].

B. APPLY TEXTURE AND SATURATION ENHANCEMENT TO
LOW LIGHT IMAGES
Lim et al. [28] introduced a low-light image enhancement
technique based on the advantageous properties of the
Laplacian pyramid in both image and feature spaces.Ma et al.
[29] developed the contextual scene decomposition (CSD)
Net network to address quality issues in low-light images.
This network comprises a dual-stream estimation mechanism
involving reflectance and illumination estimation networks,
connected through contextual scene decomposition based on
physical principles. Ren et al. [30] unveiled a pioneering
enhancement framework that leverages camera response
characteristics to mitigate distortions in low-light images.

Jiang et al. [31] introduced enlighten GAN, an efficient
unsupervised generative adversarial network for training in
the absence of low/normal light image pairs. Additionally,
Li et al. [32] designed a low-light image enhancement
network (LE-net), a convolutional neural network-based
light enhancement network, to tackle challenges inherent
in low-light image enhancement. These methods primarily
focus on addressing color deviation and contrast issues
in low-light images. However, they may not be ideal for
feature extraction from cattle bodies and enhancing the
contrast of cattle images in low-light conditions. Siriani et al.
[33] integrated an improved YOLOv4 model with a bird
tracking algorithm, incorporating a Kalman filter to track
chicken movement within low-light images. Wang et al. [34]
proposed the absorption light scattering model (ALSM) to
decipher the intricacies of absorption light imaging in low-
light scenarios. They obtained absorption light scattering
images via ALSM under uniform illumination, effectively
revealing contours and concealed details present in low-light
images. Lore et al. [35] introduced a deep autoencoder-based
approach for real-time on-board enhancement of brightness,
contrast, and noise reduction in images. Li et al. [36]
presented the contrastive learning-based unpaired image
enhancement network (CLUIE-Net) network to address light
absorption and scattering concerns in images, while also
supporting a semi-supervised learning mode. Liu et al. [11]
proposed a novel variational Retinex model that concurrently
estimates smooth illumination components and reflective
components displaying fine details. Li et al. [37] devel-
oped a lightweight and efficient brightness-aware pyramid
network (LP Net) to effectively counter underexposure in
low-light image enhancement. Zhang et al. [38] introduced
an attenuation map-guided color correction strategy. They
incorporated a weighted wavelet visual perception fusion
strategy to seamlessly combine high-frequency and low-
frequency image components at varying scales, resulting in
high-quality images. Lu et al. [39] proposed a dual-branch
exposure fusion network to tackle blind low-light image
enhancement. Their strategy involved a generative fusion
approach followed by adaptive attention unit-based fusion.
Yang et al. [40] introduced the deep recursive band network
(DRBN) as a solution for issues involving visibility degra-
dation and color deviation in low-light image enhancement.
Additionally, Li et al. [41] introduced a robust retinex model
that introduces noise images to enhance low-light images
while maintaining strong noise performance. Lee et al. [42]
presented a method utilizing a luminance-channel prior for
single-pass enhancement. Wu et al. [43] introduced an edge
computing and multi-task-driven framework designed for
rapid responsive image enhancement and object detection
tasks.

C. SUMMARY
Conventional techniques frequently lean onmanually devised
rules and heuristics for image enhancement, which can often
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FIGURE 1. Overall architecture of the GCT-VAE-GAN method.

falter in capturing intricate image attributes. In contrast,
the GCT-VAE-GAN framework excels in addressing content
preservation, lighting adjustments, and detail enhancement
across diverse image facets, leading to a more comprehensive
and refined enhancement process. Deep learning methodolo-
gies possess the inherent capacity to autonomously derive
features and patterns from data throughout the learning phase,
facilitating heightened adaptability [44], [45]. However,
when it comes to enhancing low-light cattle ranch images,
the previously outlined model tends to exhibit limitations
in terms of content retention and detail enhancement.
In contrast, our proposed model proficiently learns features
from data while accommodating varying lighting conditions,
thereby ensuring a more adept adaptation to a wide array of
lighting scenarios.

III. PROPOSED METHOD
Video frames captured from cattle farm videos serve as our
input images. Initially, these images undergo processing via
an encoding network to transform them into latent vectors.
Subsequently, these vectors are fed into the generating
network, which engages in feature extraction and fusion,
thereby generating enhanced images to serve as input
for the encoding network. In this process, the encoding
network integrates both a global discriminator and a local
discriminator. This enables ameticulous comparison between
the enhanced image details and the original image, enabling
the selection of high-fidelity images for retention while
discarding those of inferior quality. The holistic structure
of the GCT-VAE-GAN methodology is visually depicted in
Figure 1.

A. DATA ACQUISITION
The study and associated experiments were conducted at a
cattle farm situated in Yuanyang County. The experimental
cohort consisted of 50 fully mature Simmental cattle. The
cattle shed was bifurcated into two zones, separated by a
cattle barrier, with feed troughs symmetrically positioned on
either side of the walkway. Adjacent to the resting area, water
troughs were conveniently situated for the cattle’s accessibil-
ity. The vertical extent of the cattle shed measured 8 meters,
while cameras were strategically mounted 2.8 meters above
the ground at the extremities of the feed troughs. These
cameras were precisely angled at 45 degrees downward to
effectively monitor cattle activities. The doors flanking the
resting area were connected to the cattle yard through barriers

FIGURE 2. Camera deployment diagram.

FIGURE 3. Encoding network diagram.

[46]. Enclosed by barriers, the cattle yard accommodated
four cameras in each corner, positioned at an elevation of
3.5 meters above the ground. These cameras were similarly
oriented at a 45-degree angle to efficiently surveil the ground.
A diagram illustrates the specific deployment locations of
these cameras. Captured video data was transmitted to the
cloud with a resolution of 640×480 pixels. The experimental
dataset was meticulously curated, encompassing images
exhibiting diverse lighting conditions, as well as images
with varying degrees of blurriness, sourced from the video
data. Subsequent to frame extraction from the video content,
a dataset housing 3000 images under both low-light and
normal-light conditions was amassed. This dataset was
thoughtfully partitioned into training, testing, and validation
sets, adhering to an 8:1:1 ratio [47]. The camera deployment
diagram is shown in Figure 2.

B. ENCODING NETWORK
Within our encoding network, the original image undergoes a
transformation process, leading to the generation of n frame
images. The dimensions of these images are subsequently
diminished, and pivotal features are elicited through the
application of two 3 × 3 convolutional layers, complemented
by a subsequent max-pooling layer. These extracted features
are then transformed into flattened feature vectors, which
are further mapped onto mean and variance vectors via fully
connected layers. This orchestrated mapping underpins the
construction of the latent vector’s distribution. Eventually,
leveraging the mean and variance vectors, the latent vector
is expansively upsampled, facilitating direct sampling from
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FIGURE 4. Generating network diagrams.

the latent space. This, in turn, empowers the generator to
yield a spectrum of enhanced images exhibiting diversity.
The diagram affords a visual elucidation of the encoding
network’s architecture. The coding network diagram is shown
in Figure 3.

C. GENERATION NETWORK
The images procured from the encoding network serve as
the input for subsequent stages. This entails subjecting these
images to feature extraction via the feature extraction network
(FEN). Further refinement occurs through the integration of
the attention mechanism, channeling the extracted features
into the feature fusion network (FFN), ultimately yielding
enhanced generated images as the output. The architectural
configuration of the generation network is effectively visual-
ized through the accompanying diagram. In the progression,
the enhanced images derived from the encoding network
undergo initial processing via the GCT unit. This strategic
step is pivotal in extracting global contextual information
and modeling channel relationships. This facilitates the
comprehensive aggregation and integration of global contex-
tual insights. Subsequently, leveraging 3 × 3 convolutional
layers, further feature extraction is executed, fortified by the
leaky ReLU activation function to enhance the network’s
proficiency in feature extraction from images. To adeptly
accommodate the multifaceted characteristics of barn image
features, instance normalization (IN) layers are strategically
embedded, effectivelymitigating internal covariate shift. Cul-
minating the process, the introduction of a max-pooling layer
effectively trims computational complexity while upholding
pivotal features, culminating in the desired output. As for the
FFN, it is structurally comprised of convolutional residual
blocks intricately linked by lateral skip connections. These
blocks encompass a 3× 3 convolutional layer, a leaky ReLU
activation function, and a max-pooling layer. Operating in
tandem, these residual blocks play a pivotal role in the fusion
of image features extracted by the FEN, particularly at higher
hierarchical levels. This orchestrated design proficiently
prevents the unwarranted loss of valuable information
during forward propagation. The architectural layout of the
generation network is vividly portrayed through the illus-
trative diagram. The generating network diagrams is shown
in Figure 4.

FIGURE 5. Discriminant network diagram.

D. DISCRIMINANT NETWORK
Given the intricate interplay of intricate details and textures in
low-light images inherent to the complex cattle farm environ-
ment, a dual-discriminator architecture is embraced for the
construction of the discriminative network. The overarching
framework incorporates a global discriminator, which ingests
images enhanced by the generation network. This facet is
facilitated through the utilization of 4×4 convolutional layers
coupled with residual blocks, underpinned by Leaky ReLU
activation functions. This combination serves the purpose
of heightening color intensity while concurrently enhancing
overall brightness and contrast of the images. Following this
enhancement, the global discriminator leverages subsequent
4 × 4 convolutional layers to discern the distinction between
authentic and synthesized images. In instances where the
input garners verification as authentic, an image is then
produced; conversely, if it is deemed spurious, it is subjected
to iterative re-evaluation. Parallelly, the local discriminator
addresses the challenge of non-uniform local illumination
in the improved images by randomly cropping four equiv-
alently sized image patches as input. These input segments
subsequently undergo evaluation through a series of residual
blocks and convolutional layers, culminating in the derivation
of real and synthetic values. In particular, the synthetic values
undergo a re-evaluation step. The comprehensive structure of
the discriminative network finds its articulate representation
through the illustrative diagram. The discriminant network
diagram is shown in Figure 5.

E. JOINT LOSS FUNCTION
1) ENCODING NETWORK LOSS
The enhanced images generated in the encoding network
preserve the essential details of the input images, thus
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necessitating the use of a reconstruction loss. We employ the
Mean Squared Error (MSE) loss to quantify the pixel-wise
differences between the original low-light images and their
corresponding reconstructed images.The reconstruction loss
for a single image pair

(
I , I ′

)
is defined as follows in (1).

Lrecon =
1
N

N∑
i=1

(
Ii − I ′i

)2 (1)

where N represents the total number of pixels in the image, I
and I ′ denote the intensity values of the i pixel in the original
image. The KL divergence loss is given by the following as
shown in (2).

LKL =
1
2

∑N
i=1

(
µ2
i + σ 2

i − log
(
σ 2
i

)
− 1

)
(2)

where µi and σi respectively represent the mean and standard
deviation of the i element in the encoded latent vector. The
encoding loss is given by the following as shown in (3)

Lcod = Lrecon + LKL (3)

2) GENERATING NETWORK LOSS
Our generation network’s loss function is composed of
adversarial loss and GCT loss, aimed at generating visu-
ally plausible images with focused spatial attention. The
adversarial loss is intended to prevent the discriminative
network from distinguishing between generated images and
real images. The calculation of the adversarial loss is given
by the following is shown in (4).

Ladv = −EIreal
[
log (D (Ireal))

]
− EIenh

[
log (1 − D (G (Ienh)))

]
(4)

where Ireal represents the real low-light image, Ienh represents
the enhanced image, G represents the generation network,
and D represents the discriminative network. The GCT loss
encourages the generation network to focus on important
regions in the image, thus promoting spatial attention. The
calculation method is provided by the following as shown
in (5).

LGCT =
1
N

N∑
i=1

(
Ai − A′

i
)2 (5)

where Ai represents the attention map of the real image, A′
i

represents the attention map of the enhanced image, and N
represents the total number of elements in the attention map.
The loss function for the generation network is given by the
following is shown in (6).

Lgen = Ladv + LGCT (6)

3) DISCRIMINATE NETWORK LOSS
The discriminative network loss is comprised of global
discriminator loss and local discriminator loss. The global
discriminator loss consists of the logarithmic likelihood
loss of real images and the logarithmic likelihood loss of

Algorithm 1 Low-Light Image Enhancement With
GCT-VAE-GAN
Input: Low-light image Ilow;

Data preprocessing:
Perform data normalization on Ilow;

Encoding network:
Calculate global contrast mapMcontrast using Ilow;
Apply contrast enhancement to Ilow based on
Mcontrast ;

{zi} = E(I ilow); //Initial enhancement of low light
images

Generation network:
Encode Ilow using VAE to obtain latent representation
Zlatent ;
Generate enhanced latent representation Zenhanced by
adjusting Zlatent ;
Decode Zenhanced to obtain IVAE−enhanced ; // Feature
extraction and feature fusion

{I ienhanced} = G(zi); //Generate an enhanced image

Discriminant network:
Train a GAN model using Ilow and IVAE−enhanced ;
Generate enhanced image IGAN−enhanced using the
trained GAN model;

{D(I ienhanced)}; // Identify the generated image and
output the enhanced image

Joint Loss Function:
Fuse IGAN−enhanced and IVAE−enhanced using a fusion
method;
Obtain the final enhanced image Ienhanced ;
Lreconstruction =

1
N

∑
i ∥I

i
enhanced − I ilow∥;

Ladversarial = −
1
N

∑
i log(D(I

i
enhanced));

Lfeature =
1
N

∑
i ∥F(E(I

i
enhanced)) − F(I ienhanced)∥;//Calculate

the loss of each part

return Ienhanced ;
Output: Enhanced image Ienhanced ;

generated images. Its objective is to distinguish between
real and generated images. The global discriminator loss is
defined by the following is shown in (7).

LDglo = −Exreal
[
logDglo (xreal)

]
− Exg

[
log

(
1 − Dglo

(
xg
))]

(7)

where Dglo represents the global discriminator, xreal rep-
resents real images, and xg represents generated images.
The task of the local discriminator is to determine the
authenticity of the local regions in the images. We randomly
select local blocks from real images and compare them with
corresponding blocks from generated images. The calculation
of the local discriminator loss is given by the following as
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TABLE 1. Hyper parameter setting.

shown in (8).

LDloc = −Exreal,r
[
logDloc

(
xrreal

)]
− Exg,r

[
log

(
1 − Dloc

(
xrg
))]

(8)

where xreal,r represents the local block sampled from the real
image xrreal , xg, r represents the corresponding sampled local
block from the generated image xrg , r is the index of the local
block. The loss function for the discriminative network is
given by the following is shown in (12).

Ldis = LDglo + LDloc (9)

GCT-VAE-GAN algorithns are shown in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETTINGS
1) EXPERIMENTAL ENVIRONMENT AND PARAMETER
SETTINGS
The experiments were conducted on the LINUX operating
system with 16GB of memory. The GPU used was an
NVIDIA GeForce RTX 3070 graphics card, while the CPU
was an Intel Core i7. The network training was configured
using an Intel(R) Core (TM) i7-10750H CPU @ 2.60GHz
2.59GHz processor. The model was built using the pytorch
deep learning framework. The hyperparameters employed
during the training phase are outlined in the table 1.
The experiment selected peak signal-to-noise ratio

(PSNR), structural similarity index (SSIM), naturalness
image quality evaluator (NIQE), and level of enhancement
(LOE) as evaluation metrics. PSNR is used to measure the
difference between the enhanced and original images. In our
task, a higher PSNR value indicates a smaller difference
between the enhanced and original images, leading to better
image quality. PSNR is calculated by computing the mean
squared error (MSE) between the enhanced and original
images and then converting it to a logarithmic scale in
decibels. The calculation method is given by the following
is shown in (10) (11).

MSE =
1

M × N

∑M
i=1
∑N

j=1
(
I (i, j) − I ′ (i, j)

)2 (10)

PSNR = 10 × log10

(
MAX2

MSE

)
(11)

where M and N represent image coefficients,I and I ′

respectively denote the original and enhanced images, and
MAX is the maximum possible pixel value. SSIM is a

FIGURE 6. Ablation experiments for each module of GCT-VAE-GAN.

TABLE 2. Comparison of performance under ablation for each module of
GCT-VAE-GAN. In each case, the best result is shown in red, and the
second best result is shown in blue.

TABLE 3. Experimental results for joint losses. In each case, the best
result is shown in red, and the second best result is shown in blue.

FIGURE 7. Experimental results for components of joint losses.

measure of structural similarity, which takes into account
not only differences in pixel values between images but also
considers their structural information. In our task, SSIM
comprehensively reflects the degree of similarity between the
enhanced and original images. The calculation method for
SSIM is given by the following as shown in (12).

SSIM (x, y) =

(
2µxµy + C1

)
×
(
2σxy + C2

)(
µ2
x + µ2

y + C1

)
×

(
σ 2
x + σ 2

y + C2

) (12)

where x represents the original image, y represents the
enhanced image, µx and µy are the means of x and y
respectively, σx and σy represent the standard deviations of
x and y, σxy represents the covariance of x and y, C1 and C2
are two constants used to prevent division by zero. NIQE is
used in our mission to assess the quality of low-light images
of cattle farms, which are calculated as follows in (13).

NIQE = a · σa+s · σs + c · σc+µp · σµp+µ · σµ + σ 2
· σσ

(13)

where a stands represents coarseness, s represents structure,
c represents contrast, σ represents standard deviation, µ

represents mean, µp represents pixel mean.

B. ABLATION EXPERIMENT
We conducted ablation studies on each module of the GCT-
VAE-GAN method. Specifically, we started by ablating
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TABLE 4. Results of comparison experiments. In each case, the best
result is shown in red, and the second best result is shown in blue.

the GCT module. During training and testing on our self-
constructed dataset, we removed the operations related to
the GCT module and performed experiments solely with the
VAE-GAN module to obtain experimental data and resultant
images. Similarly, we then proceeded to individually remove
the VAE and GAN modules. The results of the ablation
experiments are presented in Table 2 and Figure 6.

We conducted experiments involving the joint loss func-
tion. We evaluated the image quality using individual com-
ponents of the encoding network loss, generation network
loss, and discriminative network loss. Through experimental
results, we observed that employing the joint loss function
yielded the best outcomes, resulting in higher visual quality of
the images. The results of the joint loss experiment are shown
in Table 3 and Figure 7.

C. COMPARISON EXPERIMENT
To assess the superior performance of the GCT-VAE-GAN
method, a meticulously planned series of comparative exper-
iments was conducted employing self-constructed datasets.
Given the distinctive characteristics of the cattle farm envi-
ronment, six distinct benchmark networks were chosen for in-
depth comparison: CNN, DLN, RUAS, Retinex Net, Lighten
Net, and Enlighten GAN. The selection of these benchmark
networks was driven by their unique architectural designs
and diverse feature extraction methodologies. Specifically,
CNN is renowned for its versatility and applicability to
image enhancement tasks across various domains. However,
it may prove less effective in preserving image details
and contrast under low-light conditions. In contrast, DLN
employs an extensive array of modules and layers to enhance
image quality, demonstrating superior performance in low-
light scenarios. Nevertheless, the limitation of DLN lies
in its demand for substantial training data, which can
potentially lead to overfitting. RUAS emerges as a prominent
method in image enhancement, distinguished by its appli-
cation of residual connections and attention mechanisms,
particularly suitable for enhancing aerial low-light images
from various angles. However, the utilization of RUAS
may entail higher costs and, for our specific tasks, serves
more as a point of reference. Grounded in Retinex theory,
Retinex Net concentrates on image illumination and contrast
enhancement, making it well-suited for low-light image
enhancement tasks. Yet, it exhibits sensitivity to image
noise, and its performance may exhibit significant variability
across different datasets. Lighten Net focuses exclusively on

FIGURE 8. Comparative experiment on low light data in cattle farm.

TABLE 5. Experimental evaluation on two publicly available datasets, LOL
[48] and SICE [49]. In each case, the best result is shown in red, and the
second best result is shown in blue.

optimizing image quality in low-light image enhancement.
However, it may grapple with color distortion in complex
environments. On the other hand, Enlighten GAN places
distinct emphasis on elevating the quality of low-light images
by leveraging GAN frameworks to generate lifelike enhanced
images. Nevertheless, this approach entails relatively high
computational complexity. In addition to the aforementioned
aspects, we consider elapsed time (RT) as a crucial factor
in our evaluation, quantifying the speed of execution for
each model. A detailed compilation of the results from these
comprehensive analyses can be shown in Table 4, while a
visual representation is shown in Figure 8.
To comprehensively assess the model’s generalization per-

formance, we conducted a series of experiments evaluating its
generalization effects using two publicly available datasets.
These datasets exhibit a wide coverage of diverse fields
and represent various environments, extending beyond the
specific scenarios encountered in cattle farming. To ensure
a thorough comparison of our methods, we included several
low-light image enhancement techniques, such as LIME,
HE, LLNet, and BIMEF. LIME, grounded in Retinex theory,
strives to enhance low-light images while preserving the
natural details within the images. However, it exhibits
relatively lower performance and imposes higher data quality
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FIGURE 9. Comparative experiments on LOL and SICE datasets.

requirements. The HE method boasts a simple yet effective
network structure, which successfully enhances the contrast
of low-light images. However, it often introduces some noise,
diminishing the natural feel of the images. LLNet specializes
in enhancing images under low-light conditions, deliver-
ing commendable performance. Nevertheless, its relatively
complex network structure results in high computational
complexity, limiting its applicability. BIMEF introduces
the theory of light and dark channel prior, facilitating
the preservation of texture details in images. However,
this method necessitates manual parameter adjustments,
which detracts from its level of automation. Our thorough
experimental evaluation encompassed these distinct low-light
image enhancement models, and the detailed results are
presented in Table 5 and Figure 9.

V. CONCLUSION
This paper introduces the GCT-VAE-GAN method, specif-
ically designed for enhancing low-light images in cattle
farm environments. Ablation experiments were meticulously
conducted to validate the efficacy of each individual module,
including GCT, VAE, and GAN. Notably, the GCT module
emerged as a pivotal contributor, proficient at extracting
global features and information. This strategic role helped
prevent the introduction of unnatural artifacts and distortions
in the generated images. Simultaneously, the VAE module
prioritized the learning of latent space representations,
substantially enriching the model’s generative capacity and
generalization through effective regularization. The outcome
resulted in a perceptible proximity between the generated
images and the distribution of authentic images. Comple-
menting this, the GAN module, facilitated by dual discrim-
inators, significantly enhanced the realism and naturalness
of the generated images. The assessment of the GCT-
VAE-GAN method’s capabilities was rigorously established
using a purpose-built dataset. The method’s superiority was
conclusively substantiated through meticulous comparisons
with six existing techniques, including CNN, DLN, RUAS,
Retinex Net, Lighten Net, and Enlighten GAN. In this eval-
uation, the GCT-VAE-GAN method demonstrated distinct
advantages in effectively managing low-light conditions,
adeptly preserving intricate details, and markedly improving
overall image quality. Despite these achievements, it is

important to acknowledge that the utilization of cattle farm
low-light image data introduced certain challenges. Notably,
suboptimal outcomeswere observed in the presence of factors
such as cattle barriers and inclement weather conditions.
Addressing these challenges remains the focal point of
our future research endeavors as we aim to enhance the
robustness and adaptability of our proposed solution.
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