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ABSTRACT Over the last decade, significant advancements have occurred in global electricity networks
due to the widespread adoption of renewable energy resources (RES). While these sources offer numerous
benefits such as cost-effective operation of solar photovoltaic and wind power stations and reduction of
environmental hazards related to traditional power sources, they have also introduced various challenges
to power network scheduling and operation. The traditional optimal power flow (OPF) problem, which
is inherently complex, has become even more intricate with the integration of RES alongside traditional
thermal power generators. This complexity arises from the unpredictable and intermittent nature of those
resources. To tackle the intricacies of incorporating RES into conventional electric power systems, this
study utilizes a pair of probability distribution functions to predict the power generation of wind and
solar PV systems, respectively. The comprehensive OPF, which includes RES components, is expressed
as a singular objective problem encompassing multiple goals including reducing fuel costs, emissions,
real transmission losses, and voltage deviations. To tackle this challenge, a novel hybrid metaheuristic
optimization algorithm (ACGO) is introduced. The ACGO algorithm combines Chaos game optimization
(CGO)with the artificial ecosystem-based optimization (AEO)method to obtain the optimum solution for the
OPF problem considering stochastic RES. This technique aims to enhance solution precision by increasing
solution diversity through an optimization process. The modified optimizer’s validation begins by examining
its performance using well-known benchmark optimization functions, demonstrating its superiority over
CGO,AEO, and other competitive algorithms. Subsequently, themodified optimizer is applied to a combined
model of a wind and PV-incorporated IEEE 30-bus system. The ACGO technique proves to be highly
effective, yielding the lowest fitness values of 781.1675 $/h and 808.4109 $/h in their respective scenarios for
the modified IEEE 30-bus system. Additionally, the proposed ACGOmethod achieves the optimal total cost
of 31623.5 $/h and 31601.55 $/h for the modified IEEE 57-bus system. These results emphasize the accuracy
and robustness of ACGO in effectively addressing various instances of the OPF problem. The performance
of ACGO in solving the OPF issue is verified through statistical boxplot comparisons, non-parametric tests,
and robustness analyses. The evaluations indicate that the ACGO technique outperforms other well-known
optimization algorithms in achieving the optimum values for the OPF problem involving stochastic PV and
wind power systems. Additionally, the results show that ACGO offers faster convergence rates and higher
precision in convergence compared to conventional artificial ecosystem-based optimization, Chaos game
optimization, and other recent heuristic, metaheuristic, and hybrid optimization algorithms. The effectiveness
of the ACGO technique has been proven to be robust and efficient, making it suitable for multidisciplinary
problems and engineering optimization challenges.
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INDEX TERMS Optimal power flow, stochastic renewable energy sources, artificial ecosystem-based
optimization, chaos game optimization.

NOMENCLATURE
RES Renewable energy sources.
AEO Artificial ecosystem-based optimization.
GBO Gradient-based optimizer.
WT Wind turbines.
VPLE Valve Point Loading Effect.
MFO Moth flame optimization.
HPO Hunter–prey optimizer.
NGO Northern Goshawk Optimization.
PDF Probability density function.
STD Standard deviation.
ESMA Enhanced Slime Mould Algorithm.
WSA White Sharks Algorithm.
EHPO Enhanced Hunter-prey optimization.
DEEPSO Differential evolutionary particle swarm opti-

mization.
CFPA Chaotic flower pollination algorithm.
HHO Harris Hawks optimization.
GOA Grasshopper optimization algorithm.
GWO Grey wolf optimizer.
CSA Crow search algorithm.
ABC Artificial bee colony algorithm.
JS Jellyfish search (JS) optimizer.
GPC Giza pyramids construction.
FPA Flower pollination algorithm.
GTO Gorilla troops optimization.
OPF Optimal power flow.
CGO Chaos game optimization.
SPV Solar photovoltaics.
ML Machine learning.
CT Carbon Tax.
EEO Enhanced equilibrium optimizer.
TSO Transient search optimization.
HPO Hunter-prey optimization.
EO Equilibrium Optimizer.
SSA Salp Swarm Algorithm.
WHO Wild Horse Optimizer.
ACGO Hybrid AEO-CGO algorithms.
MPSO Mutation-based particle swarm optimization.
EES Elite evolutionary strategy.
FACTS Flexible Alternating Current Transmission

Systems.
WRST Wilcoxon rank-sum test.
BWOA Black widow optimization algorithm.
ALO Ant lion optimizer.
GSA Gravitational search algorithm.
BMO Barnacles mating optimizer.
TLBO Teaching-learning-based optimization.
IEO Improved Equilibrium Optimizer.
HGS Hunger games search.
OPA Orca predation algorithm.

I. INTRODUCTION
A. BACKGROUND
The urgent need to reduce fuel costs in traditional power
generation facilities and mitigate greenhouse gas emissions
from thermal power generators has prompted numerous
electric power companies to transition towards harness-
ing renewable energy sources. Moreover, advancements
in renewable energy technologies have played a crucial
role in establishing them as the most cost-effective and
environmentally conscious options. The strategic integration
of wind and solar photovoltaic (SPV) systems in well-
suited locations, combined with optimal adjustments to
conventional power network parameters, can significantly
influence the effectiveness of power system control and
operation. In order to enhance accuracy and authenticity
of wind and SPV modeling, the utilization of the Weibull
probability distribution function for wind speed prediction
has been documented [1], while previous research has
employed the lognormal probability distribution function for
simulating the sporadic nature of solar irradiance [2].

B. LITERATURE REVIEW
In the realm of contemporary electrical power system design,
the OPF stands as a foundational optimization challenge
that has persisted over numerous years and remains of
paramount significance to the current era. TheOPF represents
a notable non-convex and nonlinear conundrum, with its
primary objective being the refinement of control parameters
to attain optimal values. This pursuit is aimed at the
dual goal of diminishing fuel expenses and power losses,
all while accommodating a multitude of diverse equality
and inequality restrictions within a given power system
framework [3]. A multitude of works within the academic
literature have delved into the examination of the Optimal
Power Flow (OPF) dilemma within systems encompassing
both conventional and renewable energy sources. The pri-
mary focus of this quandary centers on the identification
of optimal configurations for control parameters. These
configurations aim to optimize specific objective functions,
which may encompass factors including fuel costs, emissions
expenditures, transmission losses, and voltage profiles. All
the while, these sought-after optimizations must conform to
a predefined array of functioning and physical limitations.
Notably, the control variables of the OPF predicament involve
various aspects, including the effective power outputs at unit
nodes (without the slack bus), voltage magnitudes at all unit
nodes, transformer tap changers, and shunt compensators.

A diverse array of conventional optimization techniques
has successfully addressed issues related to OPF concerns.
These techniques, predominantly reliant on derivatives and
gradient approaches like non-linear and quadratic program-
ming [4], exhibit remarkable convergence properties. How-
ever, their utility is tempered by several shortcomings. They
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struggle to identify global solutions in the presence of non-
convexity and encounter challenges when tackling problems
involving non-differentiable and discontinuous objective
functions. More recently, there has been a surge in interest
surrounding metaheuristic optimization algorithms. These
algorithms are captivating due to their adaptability, absence
of dependence on derivatives, and ability to circumvent
local optima. Over the past few decades, these metaheuristic
algorithms have been cultivated, drawing inspiration from
physical phenomena, animal actions, and evolutionary prin-
ciples. They offer direct and efficient resolutions to the
aforementioned problems.

An investigation was conducted into a novel hybrid
approach, termed the Gradient-Based optimization algorithm
based on moth flame Optimization (GBO-MFO) approach.
This method seeks to detect optimum positioning and dimen-
sions of FACTS devices within an altered power system.
The system takes into account stochastic wind sources and
conventional thermal power plants, all within the context of
the OPF. The GBO-MFO approach was employed to choose
the most appropriate location and suitable sizing for FACTS
devices. This task was accomplished by expressing a multi-
objective function that encompasses two critical aspects:
the cost of maintaining reserves to account for potential
overestimations and penalties incurred for underestimating
intermittent renewable sources. Additionally, the algorithm
considered the minimization of active transmission losses as
part of the optimization process [5]. A rising and significant
effort has been made in recent years to model and attain
the optimal results for the OPF problem as well as RES.
The OPF problem with considering uncertainties in the PV
energy, wind, and load prediction and improved by a hybrid
optimization technique according to amachine learning (ML)
method and transient search optimizer (TSO) (ML-TSO)
algorithm is presented in [6]. The classical and probabilistic
OPF problem for two large-scale power networks (IEEE 57-
bus, and IEEE 118-bus) was solved by a ML-TSO. The
results demonstrated the strength and efficacy of theML-TSO
approach to solve the OPF problems.

An enhanced hunter-prey optimization (EHPO) approach
in [7] was suggested to tune the parameters of a FACTS
devices and optimize OPF, with wind and solar power.
Moreover, it is confirmed that EHPO is robustness to achieve
the global search exploration than the conventional hunter-
prey optimization (HPO) and the HPO algorithm as well
does not success during attaining the optimum solution
for the large-scale power systems. A hybrid Harris hawks
optimization method (HHO) to the incorporation of RES
is proposed in [8]. An optimum reactive power dispatch
with considering uncertainties PV power and its influence
on reducing the active transmission losses is optimized by
the Rao-3 technique for addressing this problem [9]. The
Rao-3 algorithm was confirmed by three standard test power
systems. AEO algorithm has been applied for the large scale
optimal reactive power dispatch problem [10]. OPF problems
incorporating intermittent sources was solved using slim

mould optimizer [11]. Gorilla troops optimization (GTO)
technique was used to achieve best solution for the OPF
considering uncertainty of RES [12]. Hybrid wind PV power
systems are addressed by the differential evolutionary PSO
(DEEPSO) that can perform probabilistic OPF with high
precision [13]. Indeterminate wind speed and solar irradiance
were simulated using Rayleigh probability and log-normal
distributions. The fuel cost, fuel cost with VPLE, emission,
active power losses, and voltage deviation are minimized
and optimized using an improved equilibrium optimizer
(EO), known as EEO algorithm. This method has numerous
benefits, such as simple encoding, integer discrete handling,
rapid convergence, and high-quality feasible solutions for
various OPF issues [14]. Besides, OPF problem is optimized
by an enhanced version of the salp swarm algorithm (SSA)
called ISSA technique [15].

A modified Rao-2 (MRao-2) technique is applied to find
the best solution for OPF, as well as wind and solar. The
primary objective of the OPF’s fitness function is to minimize
fuel costs across various scenarios. In the context of the IEEE
30-bus system, it seeks to reduce fuel costs in 3 study cases:
without and with Renewable Energy resources, and with RES
under contingency conditions. Meanwhile, for the IEEE 118-
bus system, the fitness function focuses on fuel cost reduction
in 2 cases: without and with RES [16]. The OPF, considering
the wind and solar power, is modeled and optimized
based on a mutation-based particle swarm optimization
(MPSO) approach. Solar radiation and wind speed were
supposed to find the normal and Weibull distributions and
the uncertainty was executed by Monte-Carlo method [17].
An elite evolutionary strategy (EES) based on evolutionary
methods to enhance the Wild Horse Optimizer (WHO),
forming an improved hybrid algorithm called EESWHO is
solved and optimized the OPF considering uncertainties PV
power and wind. The prediction solar PV and wind are
modeled by lognormal and Weibull probability distribution
functions [18]. The constrained OPF problem participating
a hybrid solar PV and wind power for IEEE 30-bus,
57-bus, and 118-bus is addressed by an enhanced chaotic
flower pollination algorithm (CFPA) [19]. This method can
successfully to enhance the search competence, variety, and
convergence rate.

C. CONTRIBUTION AND PAPER ORGANIZATION
Artificial Ecosystem-based Optimization (AEO) [20], and
chaos game optimizer (CGO) [21] techniques are both potent
and robust population-based metaheuristic algorithms. They
draw inspiration from different aspects of nature: AEO
is inspired by the energy flow within Earth’s ecosystem,
while CGO incorporates principles of chaos theory, utilizing
fractal arrangements through the chaos game concept and
addressing self-similarity challenges in fractals. While CGO
offers advantages such as easy implementation and strong
adaptability, it faces difficulties in escaping local optima
once trapped in them. Similarly, like many other optimization
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methods, both AEO and CGO begin by generating an initial
population of solutions randomly within the problem space
[22]. Subsequently, these solutions undergo updates based
on historical data and information derived from alternative
solutions within a confined number of iterations [23].
Through this gradual progression, the solutions’ quality is
enhanced, leading to the discovery of more optimal solutions
for the given problem. These algorithms have been deployed
across diverse problem domains and subjected to rigorous
testing using a multitude of test functions, yielding promising
outcomes. Nevertheless, they exhibit certain limitations.
For instance, their convergence rate proves inadequate for
certain high-dimensional and intricate issues, and they do not
assure a definitive optimal solution within a reasonable time-
frame. Furthermore, the AEO algorithm demonstrates limited
exploratory capacity and suboptimal performance in scenar-
ios involving multiple modes. Additionally, susceptibility to
local optima hampers their effectiveness. Once trapped in a
local optimum, these algorithms lack the ability to explore
other regions of the problem space with extended iterations.
This remark proves especially detrimental when applied to
real-world NP-Hard applications. Addressing the aforemen-
tioned deficiencies and others requires a significant endeavor
in conceiving and advancing novel optimization algorithms,
presenting an ongoing challenge. Academics have provided
several methods to deal with these weaknesses, such as
having benefit of the chaos concept [24], [25], utilizing of
orthogonal learning [26], [27], hybridizing supplementary
algorithms [28], [29], employing oppositional learning [30],
[31], using a quantum-based strategy [32], [33], etc.
This article aims to address the limitations of the

original AEO and CGO techniques by proposing a hybrid
metaheuristic optimization algorithm called ACGO. The
ACGO algorithm is suggested as a solution to overcome the
limitations and optimize the OPF problem with incorporated
renewable energy sources (RES). This enhancement in
the ACGO technique enhances its exploration capability
compared to the AEO and CGO algorithms. Moreover, the
ACGO method’s exploration capability remains unaffected
by the number of iterations, preventing it from getting stuck
in local minima solutions. The ACGO technique is verified
on the improved IEEE 30-bus with RESs and simulation
results are compared with many recent techniques. The main
contributions of this paper are summarized in these points:
✓ Proposing the hybrid metaheuristic optimization tech-

nique (ACGO) as a means to enhance exploration
capabilities and prevent entrapment in local optima
zones.

✓ Introducing a novel application of the AEO, CGO,
and ACGO methodologies to achieve optimal solutions
for the OPF problem, taking into consideration the
incorporation of uncertainty models for RESs.

✓ The fitness function outlined in this research encom-
passes the generation cost of the conventional ther-
mal units, accompanied by the direct, reserve, and
penalty costs attributed to WT and SPV generators.

Additionally, an investigation into the influence of
changing reserve and penalty costs on the optimum
configuration is conducted.

✓ The statistical outcomes obtained through the proposed
algorithm are juxtaposed against those of traditional
AEO and CGO techniques, as well as other widely
recognized methods.

✓ The efficacy and consistency of the ACGO approach
in addressing the optimal power flow problem, while
accommodating uncertainty models for RESs, are duly
substantiated.

The rest of this paper is divided into the following sections
that are obviously itemized as follows: Section II introduce
the OPF’s mathematical formulation and operating restric-
tions, Section III describes the models of WT and SPV units’
output. The original AEO, CGO and the ACGO technique is
presented in section IV. In Section V, the ACGO approach is
applied for achieving the best solution for the 23 benchmark
functions and the OPF problem with the existence of RESs,
also showing the attained results. Section VI summarizes the
main work’s conclusions.

II. THE CALCULATED MODEL OF THE OPF
The OPF is a complicated and non-linear problem in the field
of power system engineering and solving the OPF problem
effectively is a critical task in power system operation
and planning. The solving of OPF depends on defining
the optimum value of the control variables that reduce the
fitness function, taking into consideration several operating
constraints. The essential fitness function of this article is
decreasing the total generating cost which contains the fuel
cost of the thermal generators without or with RESs units’
outputs. Moreover, the optimum control variables are the
active and reactive of the units and voltages, shunt VAR
capacitors, and transformer tap ratio.

A. FUEL COST FOR THE THERMAL UNITS
Fuel cost is a critical factor in the operation and optimization
of thermal power units within the framework of OPF in the
field of electrical engineering and power systems. Thermal
units operate using fossil fuels, and the cost of fuel is
determined as follows [14]:

F(Pcg) =

∑Ng

i=1
αiP2cg,i + βiPcg,i + γi (1)

where F denotes to the fuel cost, Ng represents the total
number of the conventional units, Pcg,i is the active power
produced from unit i. αi, βi, and γi refer to the cost’s
coefficients based on the i-th thermal generators. Though,
with taking into consideration VPLE, the quadratic fuel cost
become specific with further accurate [34]. Subsequently,
the cost function based on the multi-valve loading effect is
presented as follows [35]:

F(Pcg) =

∑Ng

i=1
αiP2cg,i + βiPcg,i + γi + |ei

× sin (gi(Pmincg,i−Pcg,i))
∣∣∣ (2)
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ei and gi are the i-th thermal unit’s valve point cost
coefficients of, and Pmincg,i is the minimum real power that the
i-th thermal units generates.

B. THE COST OF WT AND SOLAR PV UNITS
Wind Turbine and solar PV units do not require fuel in order
to the operation and only require primary maintenance or
expenditure costs [34]. The energy generated from RES that
is scheduled according to the jointly contracted agreement.
The direct cost of SPV andWTunits is associatedwith private
parties and can be defined as follows:

CWj

(
PWs,j

)
= gWdPWs,j (3)

where CWj represents the direct cost of the j-th WT unit, gWd

is the direct cost’s coefficient for the WT unit, while PWs,j is
the scheduled generation of the j-th wind unit. Furthermore,
the calculation of the direct cost associated with the k-th
SPV unit in relation to its scheduled power is mathematically
performed in the following equation [18]:

CSk
(
PSs,k

)
= gSdPSs,k (4)

where gSd represents the the SPV unit’s direct cost coeffi-
cient, whilePSs,k refers to the scheduled generation of the k-th
solar PV unit.

C. COST CALCULATION OF WT UNITS
Regarding the power of RESs, two scenarios will arise. The
first scenario occurs while the RESs generate more power
than expected, known as ‘‘underestimated output power.’’
In this situation, there is a risk of excess power going to
waste. To mitigate this concern, power grid operators’ goal
to decrease the output from thermal units, incurring a cost
denoted to as the ‘‘penalty cost.’’ This cost is incurred using
the operators of this system for the surplus power generated
by WT generators and is expressed as follows [18]:

CUw,j

(
PWa,j − PWs,j

)
= pW ,j

(
PWa,j − PWs,j

)
= pW ,j

∫ PWr,j

PWs,j

(
PW ,j

−PWs,j

)
FW

(
PW ,j

)
dPW ,j (5)

where PWa,j , and PWs,j , refer to the accessible, schedule
output power from j-th WT unit, respectively and PWr,j

denotes the rated output power of the j-th WT unit. pW ,j is
the coefficient of the penalty cost for the j-th WT generator
and FW

(
PW ,j

)
denote the PDF of produced power of the j-th

WT unit.
The second case arises while the power of RES falls

short of the predictable value, referred to as ‘‘overestimated
output power.’’ In order to mitigate this state, the system
operators should assign spinning reserves to thermal units
to recompense for the overestimated power of the RES
and confirm uninterrupted power supply for the whole
customers. The expense associated with maintaining these

power reserves is termed the ‘‘reserve cost’’ and can be
computed using the following equation [18]:

COW ,j

(
PWs,j − PWa,j

)
= RW ,j

(
PWs,j − PWa,j

)
= RW ,j

∫ PWs,j

0

(
PWs,j

−PWa,j

)
FW

(
PW ,j

)
dPW ,j (6)

where RW ,j is coefficient the reserve cost for the j-thWT unit.
Additionally, the produced power probability determination
of several WT units at various wind speeds.

D. COST CALCULATION OF SPV UNITS
Furthermore, the electricity generated by SPV units for the
grid is inherently uncertain. The approach used to address
underestimation and overestimation of solar PV units is akin
to that employed to WT units, with the key difference being
the modeling of solar radiation using a lognormal probability
distribution function (PDF). The penalty cost for the k-th SPV
generator is defined as follows [18]:

CUS,K

(
PSa,K − PSs,K

)
= pS,K

(
PSa,K − PSs,K

)
= pS,K · FS

(
PSa,K > PSs,K

)
· [E

(
PSa,K > PSs,K

)
− PSs,K ] (7)

where PSa,K and PSs,j refer to the existing and schedule
power of the K-th SPV unit, respectively, pS,K refers to
the coefficient of the penalty cost relating to the K-th SPV
units, FS

(
PSa,K > PSs,K

)
is the probability of surplus power

produced using the k-th SPV unit compared to PSa,K , and

E
(
PSa,K > PSs,K

)
denotes the expectable surplus output

power. In the overestimation case, the reserve cost is assessed
from the following equation [18]:

COS,K

(
PSs,K − PSa,K

)
= RS,K

(
PSs,K − PSa,K

)
= RS,K · FS

(
PSa,K < PSs,K

)
· [PSs,K

− E
(
PSa,K < PSs,K

)
] (8)

where RS,K denotes the reserve cost’s coefficient for the K-th
SPV unit, FS

(
PSa,K < PSs,K

)
refers to the lack possibility of

the SPV units, and E
(
PSa,K < PSs,K

)
denotes the predictable

power of the SPV unit fewer than PSs,K .

E. CARBON TAX MODEL
The conventional units discharge emissions to the environ-
ment. During the production from thermal units rises, these
gasses including SOx and NOx also increases. The dangerous
emissions are described in (ton/hr) as below:

E =

∑NG

i=1

(
aiP2cg,i + biPcg,i + ci

)
× 0.01

+ ωie(Pcg,iµi) (9)

where ai, bi, ci, ωiandµi are the emission coefficients of the
thermal units.
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Lately, to protection the environment, generate clean
energy, and address global warming hazards, numerous
countries are obliging a carbon tax on harmful gases
emissions. Furthermore, the power generation companies are
target to huge pressure in order to produce unpolluted energy
fromRES and to decrease their harmful gases. CT is forced on
these harmful gases model. The carbon emission cost ($/hr)
can be represented as below:

CEC = CT × E (10)

where CT is the gasses’ carbon tax per unit value.

F. FITNESS FUNCTIONS
In OPF, mathematical models are used to find the optimal
set points for generators and other controllable devices in the
power system, enabling power system operators and planners
to make informed decisions about the optimal dispatch of
power units. The fitness functions of optimal power flow
problem are stated consists of various models described in
the preceding subsections. There are two considered fitness
functions in this article as below:

1) DECREASING OF THE TOTAL COST
The initial fitness function in this study focuses on minimiz-
ing the total cost without considering emissions. In contrast,
the second fitness function incorporates emissions as a factor.
Therefore, the primary goal of the first fitness function is to
minimize [18]:

F1 = F
(
Pcg
)
+

NW∑
j=1

[
CWj

(
PWs,j

)
+ CUw,j

(
PWa,j − PWs,j

)
+COw,j

(
PWs,j − PWa,j

)]
+

NP∑
K=1

[
CSk

(
PSs,k

)
+ CUS,K

(
PSa,K − PSs,K

)
+COs,K

(
PSs,K − PSa,K

)]
(11)

whereNW andNP denote the total number of wind turbine and
SPV generators, respectively. With taking into consideration
the modeling of CT, the second fitness function is described
by addition the CT from Eq.10 to the Eq.11.

F2 = F
(
Pcg
)
+

NW∑
j=1

[
CWj

(
PWs,j

)
+ CUw,j

(
PWa,j − PWs,j

)
+COw,j

(
PWs,j − PWa,j

)]
+

NP∑
K=1

[
CSk

(
PSs,k

)
+ CUs,K

(
PSa,K − PSs,K

)
+Cos,K

(
PSs,K − PSa,K

)]
+ CEC (12)

Additionally, these two fitness functions are subjected to
equality and inequality restrictions that are represented as
follows.

2) THE ACTIVE TRANSMISSION LOSSES
The active transmission losses are described from the
following equation [18]:

PL =

nl∑
k=1

Gk
[
V 2
i + V 2

j − 2ViVjcos
(
θi − θj

)]
(13)

where PL represents the real transmission loss, Gk denotes
the conductance of k’th line, Vi,V j, θi and θj represent
the magnitudes of voltage and the angles at buses i and j,
respectively.

3) THE VOLTAGE DEVIATIONS
The voltage deviations at load buses can be described as
follows:

VD =

NL∑
j=1

|Vk − 1| (14)

a nominal value represents 1 p.u. that can be used as a
reference value.NL refers to the buses’ number for the load.

4) EQUALITY RESTRICTIONS
The equality limitations represent the load flow equations
utilized to ensure power balance, which can be written from
the following equation:

PGi − PDi − Vi
NL∑
j=1

Vj
(
Gij cos θij + Bij sin θij

)
= 0 (15)

QGi − QDi − Vi
NL∑
j=1

Vj
(
Gij sin θij − Bij cos θij

)
= 0 (16)

where PGi and QGi represent the real and reactive power
generated, respectively. PDi represents demand active power
of the bus j while QDi denote demand reactive power of
the bus j. Gij refers to the transfer conductance between
2 buses while Bij represents the susceptance between
2 buses.

5) INEQUALITY RESTRICTIONS
The inequality limitations define operational bounds for
elements within the power network, encompassing secu-
rity restrictions associated load buses and transmission
lines.

6) UNIT RESTRICTIONS
Voltage levels and real power outputs at all generator buses
must be restricted to fall within their specified lower and
upper limits:

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i = 1, 2, 3 . . . ,NT (17)

Pmincg,i ≤ Pcg,i ≤ Pmaxcg,i , i = 1, 2, 3 . . . ,Ng (18)
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PminWs,j
≤ PWs,j ≤ PmaxWs,j

, j = 1, 2, 3 . . . ,NW (19)

PminSs,K ≤ PSs,K ≤ PmaxSs,K , k = 1, 2, 3 . . . ,NP (20)

Qmincg,i ≤ Qcg,i ≤ Qmaxcg,i , i = 1, 2, 3 . . . ,Ng (21)

QminWs,j
≤ QWs,j ≤ QmaxWs,j

, j = 1, 2, 3 . . . ,NW (22)

QminSs,K ≤ QSs,K ≤ QmaxSs,K , k = 1, 2, 3 . . . ,NP (23)

where NT is the number of unit buses. Equation 17 is the
voltage bounds of the unit buses. Eqs. 18−20 are the real
power bounds for the thermal generators, WT and SPV units.
Eqs. 21−23 are the reactive power capabilities for wholly
generating buses.

7) LINE AND LOAD BUS VOLTAGES’ CONSTRAINTS

Sli ≤ Smaxli , i = 1, 2, 3 . . . ,Nl (24)

Vmin
Li ≤ VLi ≤ Vmax

Li , i = 1, 2, 3 . . . ,NL (25)

where Sli is the apparent power of the line i’th. Smaxli denotes
the maximum boundary of the apparent power of line i’th.
Vmin
Li ,Vmax

Li refer to the lower and upper voltage magnitude,
respectively. Nl is the transmission lines’ number.

III. THE STOCHASTIC WT AND SPV POWER MODELS
To model the mean power output of the wind turbine units,
Weibull probability density functions (PDFs) are utilized in
the following equation:

fν(ν) =
K
C

.(
ν

C
)
K−1

.e−( ν
C )

K
(26)

where ν refers to the wind speed m/s, K denotes Weibull
distribution shape parameter, while C represents the Weibull
distribution scale parameter.

The mean ofWeibull distribution is represented as follows,

Mwt = C .0(1 + 1/
K ) (27)

The gamma function is calculated as:

0x =

∫
∞

0
tx−1e−tdt, x > 0 (28)

The WT units output basically is influenced by the speed
of wind andWT’s power curve and can be described from this
equation:

Pw(ν) =


0 ν ≤ νci&ν > νco

ν2 − ν2ci

ν2nom − ν2ci
.PWr νci < ν ≤ νnom

PWr νnom < ν ≤ νco

(29)

where νci, νco, and νnom denote the cut-in, cut-out and rated
wind speed, respectively. Whilst PWr represent the rated
power from the WT units. As observed from Equation 29,
when ν surpasses νco but remains below νci, the output power
becomes zero. Additionally, the wind turbine (WT) generates
power as soon as the wind speed falls between νnom and νco.
The probabilities associated with these discrete regions can
be expressed as follows [36]:

In contradiction of the stated discrete regions, the WT

Fw (Pw) {Pw = 0} = 1 − exp
(

−

(vci
c

)k)
+ exp

(
−

(vco
c

)k)
(30)

Fw (Pw) {Pw = Pwr } = exp
(

−

(vnom
c

)k)
− exp

(
−

(vco
c

)k)
(31)

output power is continuous between cut in and rated wind
speeds. Thus, possibility for this area is given from the
following equation [36]:

Fw (Pw) =
K (vnom − vci)
CK ∗ Pwr

(vci

+
Pw
Pwr

(vnom − vci)
)k−1

∗ exp

−

(
vci +

Pw
Pwr

(vnom − vci)

c

)k
 (32)

Likewise, to accommodate a broader range of weather
conditions, the lognormal function is employed to provide a
more precise description of the frequency distribution. The
mean and standard deviation (STD) values of the global
irradiation is employed for deriving the parameters of the
lognormal distribution function. The output power of Solar
Photovoltaic units is correlated with solar irradiance (I),
which follows a lognormal probability distribution function
(PDF). The probability distribution of solar irradiance can be
stated using the following equation:

fI (I ) =
I

Iµ
√
2π

.e(
−[lnX−σ ]2

2µ )
, I > 0 (33)

where µ is the mean while σ denote the STD. The lognormal
distribution mean can be represented from the following
equation:

Mld = e(σ+
µ2
2 ) (34)

The direct correlation between irradiance of the solar and
the SPV units’ energy can be expressed from the following
equation [37].

Psr (I ) =


Psr

(
I2

Isr Ic

)
; 0 < I< I c

Psr

(
I
Isr

)
; I > Ic

(35)

where Psr refers to the rated output of the SPV units, Ic
represents a definite irradiance point, and Isr denotes the solar
irradiance at rated environment. It’s worth highlighting that
the scheduled energy for solar power is not fixed; instead,
it represents a mutually agreed-upon power level between
system operators and the private entity selling solar power.
The computing of underestimation and overestimation costs
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FIGURE 1. The flowchart of ACGO for the OPF problem.

for Solar Photovoltaic (SPV) units can be determined as
follows [38]:

CUS
(
PSa − PSs

)
= pS

(
PSa − PSs

)
= pS

N+∑
N=1

[
PSS+

− PSS
]
∗ fps+ (36)

COS
(
PSs − PSa

)
= RS

(
PSs − PSa

)
= RS

N−∑
N=1

[
PSS−PSS−

]
∗ fps− (37)

where PSS+
and PSS−

refer to the surplus power and shortage
power.fps+ and fps− represent the relative frequencies for the
happening of PSS+

and PSS−
.

Figure 1 showcases the flowchart of the proposed ACGO
technique for optimizing the OPF problem with renewable
energy sources. The flowchart visually represents the detailed
steps involved in the OPF process using the ACGO method.
It presents a sequential series of operations that outline
how the OPF, incorporating RES, is solved by the ACGO
technique to attain an optimal solution within a power system.

IV. MATHEMATICAL MODEL OF THE METAHEURISTIC
ALGORITHMS
Hybrid metaheuristic algorithms are a powerful class of
optimization techniques that combine elements of multiple
metaheuristics to enhance their performance and problem-
solving capabilities. These algorithms are designed to tackle
complex optimization problems, where traditional optimiza-
tion methods may struggle to find satisfactory solutions. The
mathematical models underlying hybrid metaheuristic algo-
rithms integrate the strengths of different search strategies

in order to exploit their synergies and overcome their
individual limitations. In this paper, it was suggested hybrid
metaheuristic optimization algorithm between the CGO
algorithm and AEO algorithm. By fusing these techniques,
hybrid metaheuristic algorithms aim to strike a balance
between exploration and exploitation. This section outlines
the original procedure of the CGO and AEO techniques.

A. CHAOS GAME OPTIMIZATION
This process adheres to specific guidelines derived from the
chaos concept, employing a fractal approach inspired via
the chaos game concept. Initially, an initialization process
is executed using establishing the initial locations of the
candidate solutions as follows [21]:

X =



X1
X2
.

.

Xi
.

.

Xn



=



x11x
2
1 . . . ..x j1 . . . ..xd1

x12x
2
2 . . . ..x j2 . . . ..xd2

....

....

x1i x
2
i . . . ..x ji . . . ..x

d
i

....

....

x1nx
2
n . . . ..x jn . . . ..xdn


,

{
i = 1, 2, . . . .,m
j = 1, 2, . . . .., d

(38)
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x ji (0) = x ji,min + rand .
(
x ji,max − x ji,min

)
,

{
i = 1, 2, . . . .,m
j = 1, 2, . . . .., d

(39)

where d is the problem’s dimension andm represents the total
number of initialized candidates within the problem space.
x ji,min, x

j
i,max are the lower and upper limits of the decision

variables. The mathematical representation of the seed1i is as
follows [21]:

seed1i = Xi + αi × (βi − GB− γi ×MGi) ,

i = 1, 2, . . . .,m (40)

where GB denotes the global optimum, αi is the movement
constraint factor, and βi and γi are vectors randomly formed
by numbers in the range of [1,0]. MGi represents the mean
group. seed2i can be calculated as follows [21]:

seed2i = GB+ αi × (βi × Xi − γi ×MGi) ,

i = 1, 2, . . . .,m (41)

While seed3i is mathematically computed as below [21]:

seed3i = MGi + αi × (βi × Xi − γi × GB) ,

i = 1, 2, . . . .,m (42)

Finally, seed4i is mathematically calculated as follows [21]:

seed4i = Xi
(
xki = xki + R

)
, k = [1, 2, . . . ., d] (43)

where R is randomly formed by numbers in the range
of [1,0].

B. ARTIFICIAL ECOSYSTEM-BASED OPTIMIZATION
The original AEO technique was presented by Zhao et
al which is according to the concept of the energy flow
within a natural ecosystem [20]. This algorithm has three
types of behaviors included production, consumption, and
decomposition The conventional AEO technique including
three operators [39];

• Production serves the determination of maintaining the
balance between the exploration and exploitation stages,

• The consumption plays a role in an enhancement of
exploration,

• The decomposition operator is utilized to improve
the exploitation aspect of the original AEO
technique.

1) PRODUCTION
The production operator is modeled as below [40]:

x1 (t + 1) = (1 − a) xn (t) + a× xrand (t) (44)

a = (1 −
t

max_it
)r1 (45)

xrand = r (ub − lb) + lb (46)

where, a denotes a linear weight coefficient, while xrand
refers to a randomly generated individual location within
the search space, and max_it denotes the maximum number

of iterations, r1 is a random number that is in the range
[1,0]. r refers to the random vector inside the range of
[1,0], and ub and lb are the upper and lower bounds,
respectively.

2) THE CONSUMPTION
There are of three types of consumers as the following
equations:

a) herbivore is mathematically formulated as follows:

xi (t + 1) = xi (t) + C × (xi (t) − x1 (t)) ,

i ∈ [2, . . . , n] (47)

C =
1
2
v1
|v2|

(48)

v1 ∼ N (0, 1) , v2 ∼ N (0, 1) , (49)

where, N (0, 1) denotes a normal distribution.
b) carnivore is presented mathematically as

below:
xi (t + 1) = xi (t) + C ×

(
xi (t) − xj (t)

)
,

i ∈ [2, . . . c., n]
j = randi([2i− 1])

(50)

c) omnivore can be modeled and calculated mathemati-
cally from the following equation:

xi (t + 1) = xi (t) + C × (xi (t) − x1 (t))
+ (1 − r2)(

xi (t) − xj (t)
)
, i = 3, . . . c., n

j = randi ([2i− 1])

(51)

3) DECOMPOSITION
The decomposition operator is modeled mathematically as
follows:

xi (t + 1) = xn (t) + D×
(
s× xn (t) − q× x i (t)

)
,

i = 1, . . . , n (52)

D = 3u, uN (0, 1) (53)

s = r3 × randi ([12]) − 1 (54)

q = 2 × r3 − 1 (55)

where, the D denotes the decomposition factor D, while s
and q represent the weight coefficients. The flow chart of the
ACGO technique is displayed in Figure 2. The hybrid ACGO
algorithm offers several advantages over the original AEO
and CGO techniques:

Advantages of ACGO:
1) Improved Exploration Capability: ACGO enhances the

exploration capability compared to AEO and CGO
algorithms. This means that it is better at searching
through the solution space to find potentially better
solutions. It can explore a wider range of possibilities,
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FIGURE 2. The flowchart of the hybrid ACGO technique.

which is crucial for solving complex optimization
problems like the OPF problem with RES.

2) Avoidance of LocalMinima: A significant advantage of
ACGO is that its exploration ability does not diminish
based on the number of iterations. This is a critical
feature as it helps the algorithm to avoid getting trapped
at local minima solutions. Localminima are suboptimal
solutions that can mislead optimization algorithms into
converging prematurely. By maintaining strong explo-
ration throughout the optimization process, ACGO is
better equipped to find globally optimal or near-optimal
solutions.

However, like any algorithm, ACGO may have its own
shortcomings. One potential disadvantage of the hybrid
ACGO algorithm could be:

Integrating different optimization techniques and main-
taining robust exploration capabilities can increase the
computational burden. Therefore, ACGOmay not be suitable
for problems with where quick results are needed.

V. SIMULATION RESULTS AND DISCUSSION
In this section, the outcomes of the trials performed
on seven standard test functions utilizing the proposed
optimizer and contemporary algorithms are exhibited. The
experiments offer a thorough assessment of the methods

from diverse angles, such as exploration and exploita-
tion capabilities and convergence. Furthermore, the section
comprises four instances that evaluate the efficiency and
appropriateness of the ACGO algorithm that has been
introduced.

A. BENCHMARK FUNCTIONS
In this subsection, we illustrate the effectiveness of the ACGO
technique through evaluations on seven benchmark functions.
The mathematical expressions for those test functions are
detailed in Table 1. The experiments for these benchmarks are
conducted by MATLAB (R2016a) on a computer equipped
with an Intel(R) Core i5-4210UCPU running at 2.40GHz and
8GB of RAM. This study employs seven widely recognized
benchmark test functions to assess and compare the ACGO
technique’s performance. For all the metaheuristic methods
discussed in this paper, a uniform maximum iteration limit
of 200 iterations is adopted, accompanied by a consistent
population size of 50. In this subsection, the ACGO technique
is compared with five recently proposed techniques such
as: GBO [41], INFO [42], NGO [43], AEO, and CGO
algorithms.

This study establishes the predominance of the achieved
solution through the utilization of mean value and stan-
dard deviation. The algorithm demonstrating lower mean
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TABLE 1. Benchmark functions.

value and standard deviation emerges as possessing robust
capabilities for global optimization and greater stabil-
ity. The statistical outcomes obtained from the ACGO
algorithm and five widely recognized algorithms, employed
to solve seven benchmark functions, are showcased in
Table 2. According to the information in the table, the
ACGO technique outperforms other assessed methodolo-
gies across the majority of benchmark functions in rela-
tion to mean value. The data indicates that the ACGO
algorithm consistently obtains more favorable solutions
compared to recently proposed techniques for solving
various benchmark functions. Furthermore, it is evident that
the ACGO approach surpasses GBO, INFO, NGO, AEO,
and CGO techniques in addressing benchmark functions.
This analysis underscores the efficiency of the ACGO
algorithm.

The tied rank method is a statistical approach employed
to compare the performance of several techniques when
the performance metric has ties, meaning that there are
two or more observations that have the same value. Once
the ranks have been assigned, the ranks for each algorithm
are summed and compared. The algorithm with the lowest
rank sum is considered to have performed better than the
others. The data presented in Table 2 clearly indicates
that the ACGO technique exhibits superior performance
across the majority of the 7 benchmark optimization
problems, as evidenced by its ranking order. Following
closely in second and third positions are the CGO and AEO
algorithms, both of which demonstrate robust efficacy. This
collective evidence demonstrates that the ACGO technique

stands out as a highly effective algorithm for successfully
identifying optimal solutions within this category of
problems.

Furthermore, the convergence curves indicate that the
ACGO technique consistently exhibits superior performance
compared to the other techniques across most of these bench-
mark functions, demonstrating its robustness and versatility
in handling a varied range of optimization problems. The
superior performance of the ACGO technique is attributed
to its effective combination of the AEO algorithm and
CGO technique, which enables it to competently explore
the search space and exploit promising regions, leading
to faster convergence and better solutions. In addition, the
convergence curves reveal that the original GBO, INFO,
NGO, AEO, and CGO techniques exhibit slower convergence
rates and may get stuck in local optima. The convergence
curves in Figure 3 demonstrate that the ACGO technique
not only achieves fast convergence but also maintains stable
and consistent performance throughout the optimization
process. This is an important characteristic of an optimization
algorithm since it confirms that the technique can reliably
find the optimum solution without being stuck in local
minima. Moreover, the experimental results suggest that the
ACGO technique is robust to the choice of optimization
parameters, such as population size and crossover probability.
This indicates that the ACGO algorithm can be easily adapted
to different problem domains without requiring extensive
parameter tuning. Overall, the results prove that the ACGO
technique is a powerful and versatile optimization technique
that is effectively utilized to attain the optimal solution for

122936 VOLUME 11, 2023



M. H. Hassan et al.: Optimal Power Flow Analysis with Renewable Energy Resource Uncertainty

TABLE 2. The statistical results of seven benchmark functions by the ACGO algorithm and other well-known techniques.
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TABLE 2. (Continued.) The statistical results of seven benchmark functions by the ACGO algorithm and other well-known techniques.

a widespread range of real-world optimization problems.
The fast convergence, stable performance, and robustness to
parameter settings make the ACGO algorithm an attractive
choice for practitioners and researchers alike. The numerical
data is depicted in box plots, illustrating the diverse optimal
values achieved across various runs corresponding to a
specific algorithm. Figure 4 displays the box plots for
seven benchmark functions, utilizing data gathered from the
algorithms over 30 individual iterations. Box plots excel at
representing data distribution, making them excellent tools
to underscore data agreement. Upon examining Figure 4,
it becomes evident that the box plots for the proposed ACGO
technique exhibit narrow spreads and rank among the lowest
values across most functions. These visual representations
serve as effective tools for assessing the performance of the
nonlinear system, offering a clear juxtaposition of various
techniques. The results underscore that the ACGO method
outperforms its counterparts.

1) WILCOXON’S RANK TEST RESULTS
In this subsection, the variances between ACGO and
other techniques are additional analyzed statistically using
the Wilcoxon rank-sum test (WRST), which is a paired
assessment is employed to notice significant differences
between the two techniques. The obtained results of the
test between ACGO and each technique, conducted at a
significance level of α =0.05 are presented in Table 3,
where the symbols ‘‘+/=/-’’ show whether ACGO executes
better, similarly, or worse than the compared technique.
Additionally, the table includes statistical findings for
ACGO across different dimensions and functions, indicating
whether ACGO performs better, similarly, or worse than the
comparison algorithm. ACGO demonstrates superior statis-
tical performance in F1-F7 with Dim=30 when compared

to other techniques, affirming its significant dominance
across most functions. Consequently, it is confidently
concluded that the proposed ACGO technique exhibits
the best overall performance when compared to other
methods.

2) FRIEDMAN’S RANK TEST RESULTS
Table 4 shows the statistical results achieved using Fried-
man tests [44] for seven benchmark functions using the
studied algorithms. A lower ranking value indicates superior
algorithm performance. According to the results, the ranking
order of the six techniques is as follows: ACGO, CGO, AEO,
GBO, INFO, and NGO.

Furthermore, Figure 5 presents the mean ranks obtained
from Friedman’s rank test for the seven benchmark functions
using various algorithms. This visualization provides a
clear comparison of the algorithms’ performances across
the cases, helping to identify any significant differences
in their ranks. The top-ranking position clearly indicates
that ACGO is the most effective algorithm among the six
considered.

B. THE STUDY CASE RESULTS
In this subsection, the competence of the ACGO method
is presented using the modified IEEE-30 bus test system.
The simulation results of the ACGO technique which are
compared with that attained using the original AEO and
CGO for the modified IEEE-30 bus test and the modified
IEEE-57 bus test system. The target of the ACGO technique
is to reduce both the total generation cost and improve
convergence speed. eight scenarios are assessed including
various kinds of RES. The use of original AEO, CGO
and the proposed ACGO algorithms to OPF problem with
and without RES have been executed on laptop. The
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FIGURE 3. The convergence characteristics of the studied techniques for the benchmark functions.
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FIGURE 4. Boxplots of the studied techniques for the benchmark functions.
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TABLE 3. Statistical results of the Wilcoxon rank-sum test.

TABLE 4. Friedman test for the six algorithms.

specifications of the system are presented in Table 5. The
number of iterations for each technique was determined
as 100 for the modified IEEE-30 bus test system and it
was determined as 200 for the modified IEEE-57 bus test
system. Also, in order to confirm the consequence of the
algorithms, all algorithms were run 20 times for the studied
cases.

1) THE MODIFIED IEEE-30 BUS TEST SYSTEM.
The IEEE 30-bus system has 6 generators and twenty-four
load buses. Moreover, there are forty-one branches which
connection the generation units and load busses. Bus 1 was
chosen to be the slack bus. The magnitude bounds of the
voltage for the generators and load busses limits between
0.95 p.u. and 1.1 p.u. The setting of the tap changing
transformers is changed from 0.9 p.u. to 1.1 p.u. Additionally,
the VAR compensators are varied between 0 and 0.05 p.u.
[35]. This system was modified in this article as defined in
[35] to incorporate wind turbine and SPV units to the thermal

TABLE 5. Running platform specifications.

units as shown in Table 6. The thermal generators are located
at buses one, two and eight. Though, there are a SPV unit that
is placed at bus 13 while there are 2 WT units are positioned
at bus 5 and 11 [18].
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FIGURE 5. Mean ranks achieved using Friedman’s rank test for the seven benchmark functions using various
algorithms.

TABLE 6. Analysis of the modified IEEE-30 bus system.

Figures 6a and 6b are presented the wind frequency distri-
bution using Weibull fitting [13]. After running 8000 Monte-
Carlo scenarios, the power curve was obtained. The Weibull
PDF parameters for the WT unit at bus 5 are c =

9 and k = 2, and at bus 11 they are c = 10 and
k = 2. The mean for the Weibull distribution is Mwt =

7.976 for bus 5 whileMwt = 8.862 m/s for bus 11. The rated
power of each turbine is 3 MW and it was used with cut-in
wind speed νci= 3 m/s, cut-out wind speed νco= 25m/s and
rated wind speed νnom= 16m/s.
In the similar way to define the output of PV genera-

tors, the lognormal PDF parameters are selected according
to the mean and STD of the global irradiation as in [45].

The σ= 6,µ= 0.6 while lognormal mean is I=483 W/m.
Afterward executing the Monte-Carlo method with a sample
size of 8000, the frequency distribution along with solar
irradiance’s lognormal fitting is displayed in Figure 7a. while
Figure 7b. displays the histogram for the output of the SPV
units, it can be obvious that the output of the SPV has
stochastic nature because of the change in solar irradiance.
The cost factors of RESs for direct, penalty, and reserve costs
are presented in Table 7.

Table 8 provides a comprehensive overview of the cost and
emission coefficients utilized in the calculations pertaining to
the thermal generating units.

The ACGO technique is used in this case to solve the
optimal power flow framework considering stochastic RES
as follows:

a) Case 1: Optimizing Fuel Cost with RES
Based on Eq.11, optimal scheduling of both thermal units,
WT and SPV units for decreasing the total cost is achieved
in this case. Table 9 presents the achieved optimal control
variables with integrating RES to the system. The attained
results indicate that the ACGO technique is more effective
in solving the OPF problem than the original AEO and
CGO techniques, producing superior results. Specifically,
the total cost achieved by the ACGO algorithm in this
scenario is $781.1675/h, outperforming the AEO and CGO
techniques. The convergence characteristics of the ACGO
approaches are depicted in Figure 8, with the ACGO
algorithm demonstrating a smooth and rapid convergence.
Figure 9 presents the boxplots of these techniques for
case 1. Furthermore, Figure 10 illustrates the voltage profiles
of the ACGO, AEO and CGO techniques. The voltage
magnitudes for both techniques remain within the specified
limits; however, the proposed ACGO algorithm exhibits
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FIGURE 6. Wind speed distribution for WT units.

TABLE 7. Energy source cost factor of the RES for the modified IEEE 30-bus and 57-bus systems.

FIGURE 7. Solar irradiance distribution and Active power distribution for SPV generators at bus13.

TABLE 8. Cost and emission coefficients of thermal generators for the system under study.
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TABLE 9. Results of ACGO, AEO and CGO techniques for case 1.
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FIGURE 8. Convergence curves of the studied techniques for the first
case.

FIGURE 9. Boxplots of the studied techniques for the first
case.

a better voltage profile compared to the AEO and CGO
techniques. Figure 11 presents the reactive power of units
for all algorithms. For this case, Statistical results the
studied algorithms ACGO, AEO and CGO algorithms and
previous researches are presented in Table 10. Moreover,
Table 11 shows the comparison with these studied algorithms
and previous researches in terms of fuel cost, emission,
transmission losses, and voltage deviation values.

b) Case 2: Optimizing the Fuel cost with a carbon tax and
RES.

Based on Eq.12 with incorporating RES, the ACGO tech-
nique is employed to reduce the total cost with the imposition
of the CT. Additional, RES penetration is predicted to rise,
and this is confirmed using the simulation results. Table 12
display the optimal solution achieved by the ACGO and
AEO and CGO techniques for improving the power schedule
of all parameters mandatory. Table 12 clearly shows that a
higher penetration of RES has been attained in this scenario

FIGURE 10. Voltage magnitude of the studied techniques for the first
case.

FIGURE 11. Representation of reactive power generation for the first
case.

compared to case 2. The range of RES penetration in
the optimal schedule is influenced by the number of CTs
implemented and the level of emissions. Moreover, Figure 12
presents the convergence curves attained using the ACGO,
AEO and CGO techniques for this scenario. It is evident
that the ACGO algorithm delivers optimal performance in
minimizing the total cost. Figure 13 shows the boxplot of the
ACGO compared with the original AEO and CGO techniques
for case 2. Also, Figure 14 presents the voltage profiles for
the second case. For all voltage buses, they are inside definite
limit. The reactive power of generators for all techniques is
displayed in Figure 15.

Finally, Table 13 shows the statistical analysis achieved
using several techniques as well the algorithm, including
GOA, black widow optimization (BWO), GWO, ALO, PSO,
GSA, MFO, BMO, Wild Horse Optimizer (WHO), elite evo-
lutionary strategy Wild Horse Optimizer (EESWHO), AEO
and CGO for the case 2. It is clear that the ACGO algorithm
superiors these techniques from the previous literature as well
as the conventional AEO and CGO algorithms for case 2. It is
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TABLE 10. Statistical analysis the ACGO, AEO and CGO algorithms and previous researches for case 1.

FIGURE 12. Convergence characteristic of the studied techniques for the
second case.

presented from this table that the proposed ACGO technique
provides a best result in terms of precision and strength.
Moreover, the results of well-known algorithms, such as
EESWHO, WHO, JS, ABC, CGO, GPC, FPA, GA, CSA,

FIGURE 13. Boxplots of the studied techniques for the second case.

SHADE-SF, GWO, PSO, MFO, MODE, and HPSO-GWO
for the second case are shown in Table 14. Table 14 approves
the effectiveness of the ACGO algorithm and demonstrates its
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TABLE 11. Comparison of the ACGO, AEO and CGO algorithms and previous researches for case 1.

superiority onmore than 10well-known algorithms in various
Scenarios of the OPF problem. The study demonstrates
that the newly introduced hybrid overcomes the limitations
of CGO, resulting in better performance of their hybrid
approach. This modification suggests that the use of the
hybrid approach can enhance the results of the basic algo-
rithms. Thus, the suggested operator can potentially improve
the performance of metaheuristics and other optimization
techniques.

In Figure 16, a graphical representation is provided to
illustrate the branch power flow analysis of two cases for the
ACGO technique. The analysis is conducted on a modified
IEEE 30-bus system, a well-known benchmark in power
system research. The essential focus of this figure is to
visually convey the results of power flow computations
within specific branches of the system for the two cases
considered. The power flow analysis is a fundamental

aspect of power system studies, aimed at determining the
distribution of electrical power across various components
of the network. Overall, Figure 16 provides the branch
power flow results generated by the ACGO technique for
the modified IEEE 30-bus system. Its clear visualization
aids in the assessment of the algorithm’s performance and
its ability to maintain branch power flow within acceptable
limits, crucial for confirming the stability and consistency of
power systems.

2) THE MODIFIED IEEE-57 BUS TEST SYSTEM.
The modified IEEE 57-bus system, depicted in Figure 17,
serves as the testbed for evaluating the performance of the
proposed ACGO algorithm concerning global optimization
and stability capabilities, particularly for larger systems. This
IEEE 57-bus system comprises 7 thermal generators, 57 load
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TABLE 12. Results of ACGO, AEO and CGO techniques for the second case.
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TABLE 13. Statistical analysis of the ACGO, AEO and CGO algorithms for case 2.

TABLE 14. Comparison of the ACGO, AEO and CGO algorithms and previous researches for case 2.
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FIGURE 14. Voltage magnitude of the studied techniques for the second
case.

FIGURE 15. Representation of reactive power generation for the second
case.

buses, 80 branches, 17 transformers, and 3 reactive power
compensators. In this modified configuration, wind farms
have replaced thermal power plants. Specifically, thermal
power plants originally located at buses 1, 2, 3, 8, and 12,
along with two wind farms comprising 50 and 40 wind
turbines, have replaced thermal power stations at buses 6 and
9. You can find detailed data for the IEEE 57-bus system and
parameters for the wind farms in Table 15. The wind power
parameters for modified IEEE 57-bus system are provided in
Table 16, while Table 17 contains information on the direct
cost coefficients, penalty costs, and storage costs associated
with Renewable Energy Sources (RES).

a: CASE 3: OPTIMIZING FUEL COST WITH RES
In Case 3, the fitness function aimed to decrease the overall
cost, which comprised the fundamental thermal fuel cost
and the wind-related expenses. In this case, the ACGO
algorithm achieved a total cost value of $31,601.55 per
hour. As indicated in Table 17, ACGO outperformed the
original AEO and CGO algorithms in addressing this
problem. Moreover, when compared to other algorithms, the
difference in total cost became even more pronounced in the

TABLE 15. Analysis of the modified IEEE-57 bus system.

modified IEEE 57-bus system, which is a larger and more
complex power system compared to the IEEE 30-bus system.
Specifically, the results obtained from the ACGO technique
were $30.67 per hour cheaper than AEO and $5.68 per hour
cheaper than CGO.

Figure 18 presents the convergence curves of the ACGO
technique and other algorithms for the IEEE57-bus sys-
tem with RES. Figure 19 presents the boxplots of these
techniques for case 1. In Figure 20, you can see the
voltage profiles of all buses in the results obtained from the
ACGO, AEO, and CGO techniques for this case study. It’s
evident that the voltage values produced by the proposed
ACGO and CGO algorithms all fall within the prescribed
upper and lower limits. Additionally, Figure 21 displays
the reactive power generated by the units for all these
methods.

Table 18 presents significant findings obtained from the
statistical analysis of the 57-bus system. Notably, the lowest
standard deviation is observed in the case of ACGO, while
the highest deviation is recorded in the PSO algorithm.
The ranking clearly demonstrates that ACGO outperforms
all other techniques. Additionally, Table 19 shows the
comparison with these studied algorithms in terms of fuel
cost, emission, transmission losses, and voltage deviation
values.

b: CASE 4: OPTIMIZING THE FUEL COST WITH A CARBON
TAX AND RES
In Case 4, the fitness function aimed to simultaneously
decrease both the total cost and total emissions in an
examination system comprising wind power and thermal
generators. The carbon tax value in Equation (10) was
set at 17.83. In this multi-objective scenario, the proposed
ACGO algorithm yielded total cost and emissions values
of $31,602.55 per hour and 1.175097 tons per hour,

122950 VOLUME 11, 2023



M. H. Hassan et al.: Optimal Power Flow Analysis with Renewable Energy Resource Uncertainty

FIGURE 16. Power flow in branch of two cases of the proposed ACGO algorithm for the modified IEEE 30-bus system.

FIGURE 17. Modified IEEE 57-bus test system combined with wind energy.
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TABLE 16. The parameters of wind power for the modified IEEE 57-bus test system.

FIGURE 18. Convergence curves of the studied techniques for the third
case.

FIGURE 19. Boxplots of the studied techniques for the third case.

respectively. Referring to Table 20, the optimal fitness value
achieved was $31,602.55 by ACGO, which was 16.41 lower
than that obtained with AEO and 3.98 lower than CGO.
In other words, for Case 4, ACGO outperformed the original
AEO and CGO algorithms and emerged as the superior
method.

The convergence curves of the original AEO, CGO
techniques, and the ACGO technique are displayed in

FIGURE 20. Voltage magnitude of the proposed algorithms for the third
case.

FIGURE 21. Representation of reactive power generation for the third
case.

Figure 22, showing that the rapidity convergence of the
ACGO algorithm was better than that of the AEO and
CGO technique, i.e., the ACGO method was more effective
in achieving an optimum solution compared to the other
techniques for this test case. Figure 23 displays the boxplot of
theACGOmethod comparedwith the original AEO andCGO
techniques for this study case. Figure 23’s boxplots efficiently
show the comparative performance of different algorithms
for the fourth case, enabling researchers to make informed
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TABLE 17. Results of the proposed ACGO, AEO, and CGO techniques for case 3.
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TABLE 17. (Continued.) Results of the proposed ACGO, AEO, and CGO techniques for case 3.

TABLE 18. Statistical analysis of the ACGO, AEO and CGO algorithms for case 3.

decisions and draw insights about algorithm behavior and
effectiveness within this specific scenario. Figure 24 displays
the voltage profiles of all load buses for the ACGO, AEO and

CGO techniques. The voltagemagnitudes for both techniques
remain within the specified limits. The reactive power of
units for all techniques is presented in Figure 25. Moreover,
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TABLE 19. Comparison of the ACGO, AEO and CGO algorithms and previous researches for case 3.

FIGURE 22. Convergence curves of the proposed techniques for the
fourth case.

FIGURE 23. Boxplots of the proposed techniques for the fourth case.

Figure 26 provides the branch power flow results generated
by the proposed ACGO algorithm for the modified IEEE
57-bus system.

Table 21 presents key findings obtained from the sta-
tistical analysis of a 57-bus system for case 4. Espe-
cially, the ACGO algorithm demonstrates the smallest
standard deviation, while the PSO algorithm exhibits the

FIGURE 24. Voltage magnitude of the proposed algorithms for the fourth
case.

FIGURE 25. Representation of reactive power generation for the fourth
case.

highest deviation in this case. The ranking indicates
that ACGO surpasses all alternative methods in perfor-
mance. Moreover, Table 22 provides a comprehensive
contrast involving the studied algorithms, encompassing total
cost, emissions, transmission losses, and voltage deviation
metrics.

3) WILCOXON’S RANK TEST RESULTS
A nonparametric test, namely the WRST, was employed
to establish the superiority of one technique over another.
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TABLE 20. Results of the proposed ACGO, AEO, and CGO algorithms for case 4.
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TABLE 20. (Continued.) Results of the proposed ACGO, AEO, and CGO algorithms for case 4.

TABLE 21. Statistical analysis of the ACGO, AEO and CGO algorithms for the fourth case.

In this subsection, a detailed statistical analysis was
conducted using the WRST to examine the distinctions

between ACGO and the other techniques. The results
derived from the WRST provide clear evidence that
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TABLE 22. Comparison of the ACGO, AEO and CGO algorithms and previous researches for case 4.

FIGURE 26. Power flow in branch of two scenarios of the ACGO techniques for the modified IEEE 57-bus system.

TABLE 23. Statistical results of the Wilcoxon rank-sum test.

ACGO surpasses the other proposed techniques, as depicted
in Table 23.

4) FRIEDMAN’S RANK TEST RESULTS
Table 24 shows the statistical results attained using Friedman
tests for the four test cases using the proposedACGO, original
AEO, and CGO algorithms. According to the results, the
ranking of these approaches is as follows: ACGO, CGO, and
AEO.

TABLE 24. Friedman test for the all-study cases of the proposed ACGO
and other algorithms.

VI. CONCLUSION
The ACGO method has been formulated to enhance the
optimization of the non-linear OPF problem. To validate its
efficacy, the approach was implemented on seven numerical
optimization test functions. Subsequently, the method was
deployed to stochastic OPF solutions for two modified
power networks (IEEE 30-bus and IEEE 57-bus systems)
connected to RES. These stochastic OPF solutions were
derived, accounting for uncertain solar and wind power
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generators. The objectives centered around minimizing both
fuel costs and fuel costs in conjunction with total emissions.
To illustrate the superiority of the ACGO algorithm, four
scenarios were tested.

Within these scenarios, the OPF issue was simulated
with the integration of renewable energy resources, uti-
lizing the ACGO method to pinpoint the optimal control
variables. It is seen that the ACGO approach exhibited
exceptional performance, yielding the lowest fitness values
of 781.1675 $/h and 808.4109 $/h in their respective cases
for the modified IEEE 30-bus system. Also, the proposed
ACGOmethod achieved the optimal total cost of 31623.5 $/h
and 31601.55 $/h for the modified IEEE 57-bus system.
These outcomes underscore the precision and robustness of
the ACGO in efficiently tackling diverse instances of the OPF
problem.

With the existence of RES, the ACGO technique outper-
formed other methodologies. It achieved the optimal total
fuel cost of 781.1675 $/h, surpassing EESWHO (781.6322),
WHO (781.6862 $/h), JS (781.6387 $/h), CGO (782.195 $/h),
FPA (782.8596 $/h), and GPC (782.4229 $/h) for the first
case. In the second scenario involving a carbon tax, the
ACGO algorithm also demonstrated superior performance,
attaining the lowest total cost of 808.4109 $/h. This again
exceeded EESWHO (808.462 $/h), WHO (808.6027 $/h),
JS (810.121 $/h), CGO (811.4568 $/h), FPA (811.6664 $/h),
and GPC (810.324 $/h). These outcomes underscore the
effectiveness of the ACGO technique in minimizing both
total fuel costs and overall costs, even when factoring in
carbon taxes, for the two systems (modified IEEE 30-bus
and IEEE 57-bus) enriched with RES. Moreover, to validate
the superiority of the ACGO technique over the existing
algorithms, the attained results were compared with the
results previously published in the related research work.
In all examined cases, the ACGO algorithm emerged as the
superior solution.

Statistical measures were employed to confirm the con-
sistency and effectiveness of the technique. In forthcoming
research endeavors, strides will be taken to enhance the
ACGO algorithm’s performance, particularly for larger-
scale systems. Furthermore, the method will be extended to
address the OPF problemwhile incorporating FACTS devices
and other RES including hydrogen, fuel cells, and hydro
generation.
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