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ABSTRACT DNA-binding interactions are an essential biological activity with important functions, such as
DNA replication, transcription, repair, and recombination. DNA-binding proteins (DBPs) have been strongly
associated with various human diseases, such as asthma, cancer, and HIV/AIDS. Therefore, some DBPs
are used in the pharmaceutical industry to produce antibiotics, anticancer drugs, and anti-inflammatory
drugs. Most previous methods have used evolutionary information to predict DBPs. However, these methods
have high computing costs and produce unsatisfactory results. This study presents EmbedCaps-DBP, a new
method for improving DBP prediction. First, we used three protein sequence embeddings (ProtT5, ESM-1b,
and ESM-2) to extract learned feature representations from protein sequences. Those embedding methods
can capture important information about amino acids, such as biophysics, biochemistry, structure, and
domains, that have not been fully utilized in protein annotation tasks. Then, we used a 1D-capsule network
(CapsNet) as a classifier. EmbedCaps-DBP significantly outperformed all existing classifiers in training
and independent datasets. Based on two independent datasets, EmbedCaps-DBP (ProtT5) achieved 12.65%
and 0.33% higher accuracies than a recent predictor on PDB2272 and PDB186, respectively. These results
indicate that our proposed method is a promising predictor of DBPs.

INDEX TERMS Capsule network, DNA-binding proteins, deep learning, machine learning, protein
sequence embeddings.

I. INTRODUCTION
DNA-binding proteins (DBPs) have recently emerged as a
significant research area in protein science due to their central
role in many biological processes [1]. DBPs perform various
essential intracellular and intercellular functions, including
DNA repair and replication; transcriptional regulation; the
separation and combination of single-stranded DNA; and
other DNA-related biological activities [2]. Several DBPs
are critical to understanding human diseases and developing
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drugs in the pharmaceutical industry. For example, gluco-
corticoid receptors function as the active components of
dexamethasone, which is used to treat allergies, asthma, anti-
inflammatory conditions, and autoimmune diseases [3], [4],
[5]. In addition, inhibitor DNA binding protein plays a sig-
nificant role in tumor-related processes, including metastasis,
chemoresistance, and angiogenesis [6].

Initially, various experimental methods were developed
to identify DBPs, including X-ray crystallography [7], fil-
ter binding assays [8], and genomic analyses [9]. However,
experimental procedures are expensive and time-consuming
[10]. The size of protein databases has nearly doubled
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every two years due to the exponential growth caused by
next-generation sequencing technologies [11]. Nevertheless,
less than one percent of the >220 million proteins in pro-
tein databases have experimental functional annotations [12].
Therefore, it is crucial to develop an automatic prediction
method for identifying DBPs.

In sequence-based predictions, a protein sequence is typi-
cally represented as a multiple sequence alignment to extract
the evolutionary information (EI) using a position-specific
scoring matrix (PSSM). Many machine-learning-based com-
putational methods that use EI have been developed to
predict DBPs, including DNAbinder [13], SVM-PSSM [14],
SVM-PSSM-DT [15], DNABINDPROT [16], DR_bind [17],
nDNA-prot [18], iDNAPro-PseAAC [19], Local-DPP [20],
iDNA-Prot [21], iDNAProt-ES [22], PseDNA-Pro [23], DPP-
PseAAC [24], DBPPred-PDSD [25], TargetDBP [26], and
Target-DBPPred [10]. However, there are several drawbacks
associated with EI. First, compiling the EI has higher com-
putational costs [27]. Second, EI is not available for all
proteins, such as dark proteome or intrinsically disordered
proteins [28], [29]. Lastly, predictions based on EI may not
be able to distinguish between two proteins belonging to the
same family because they average over an entire family [30].
In addition, implementing conventional machine learning as
a classifier also hinders the performance of these methods
when processing large datasets and requires more human
intervention in the feature selection procedure [31]. There-
fore, many researchers use pre-trained embedding in protein
sequence analysis without relying on EI.

Advances in natural language processing (NLP) and the
accessibility of supercomputers have led to pre-trained lan-
guage models being embraced in proteomics, resulting in a
radical paradigm shift [32], [33]. The current trend is to train
a language model on a large database of unlabeled protein
sequences in an unsupervised or semi-supervised manner,
enabling the models to learn sequence patterns, functions,
and structures. This pre-training provides us with a gen-
eral understanding of the protein sequence in the form of
embeddings that have been found effective in solving various
downstream tasks, such as protein function prediction [34],
[35], [36], [37], major histocompatibility complex binding
prediction [38], [39], [40], [41], protein classification [42],
[43], contact map prediction [44], and protein-protein inter-
action prediction [37], [45], [46]. These downstream tasks
adopted various sequence embeddings, including ProtTrans
[30], ESM-1b [47], SeqVec [48], and ProtVec [49].

This study introduces a new method named EmbedCaps-
DBP. Our study’s major contributions are as follows:

1) This study aims to simplify the prediction process
by utilizing protein sequence embedding and remov-
ing human intervention in feature selection from raw
sequences. This approach differs from previous studies
that relied on evolutionary information, which faced
higher computational costs.

2) We used protein sequence embedding to show the
benefit of learned embeddings as feature representa-
tions.We explored three embeddingmodels: ProtTrans,
ESM-1b, and the most recent ESM-2 [50]. To our
knowledge, this study is the first to implement protein
sequence embedding for predicting DBPs.

3) This highly accurate approach for DBP prediction has
12.65% and 0.33% greater accuracies than a recent
predictor for PDB2272 and PDB186, respectively.

4) Unlike previous studies that only performed well
on specific datasets, the proposed method performed
exceptionally on large and small datasets.

The rest of this paper is divided into three sections.
Section II describes the datasets and applied methods in
detail, Section III discusses the experimental results and anal-
ysis, and Section IV summarizes the conclusions.

II. MATERIAL
A. DATASETS
Selecting appropriate datasets for training and evaluating
a proposed model is a crucial research step. Table 1 lists
the two dataset pairs we used: PDB14189-PDB2272 and
PDB1075-PDB186. The training dataset (PDB14189) was
created by removing 25% of similar sequences and selecting
protein sequences 50–6000 amino acids long. The remain-
ing sequences in the training set comprised 7060 non-DBP
sequences and 7129 DBP sequences. Initially, the indepen-
dent dataset (PDB2272) included 1153 DPBs and 1153 non-
DBPs. However, the final dataset comprised 1119 non-DBPs
and 1153 DBPs after 25% of similar sequences were
removed. Similarity between sequences is a measure of their
empirical relationship to determine the probability that pro-
tein sequences evolved from a common ancestor. The proteins
in the training dataset with >40% sequence similarity to pro-
teins in the independent dataset were removed using CD-HIT
to prevent homology bias between the training and indepen-
dent datasets [10], [31], [51], [52], [53].

TABLE 1. Training and independent datasets.

PDB1075 was used as the training dataset, and PDB186
as the independent dataset, both having been widely used
by existing methods for identifying DBPs [15], [20], [21],
[23], [25], [54]. PDB1075 was extracted from the most cur-
rent Protein Data Bank (PDB) version and constructed by
eliminating protein sequences whose length was <50 amino
acids [55]. The PISCES 40 software was used to eliminate
protein sequences with a similarity of >25%. This training
dataset (PDB1075) contained 525 DBPs and 550 non-DBPs.
We used the independent dataset (PDB186) as the testing
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FIGURE 1. Visualization of the DBP embeddings of various models for DBP (yellow) and non-DBP (purple) proteins. All TSNE plots were
created with 15000 iterations and a perplexity of 30.

dataset to directly test and compare the performance of our
model with other existing methods for prediction. The same
stringent criteria were also applied to the construction of this
dataset. PDB186 was created by deleting protein sequences
whose length was <60 amino acids. NCBI’s BLASTCLUST
software was used to eliminate protein sequences with a
similarity of >25% [56]. The independent dataset (PDB186)
contained 93 DBPs and 93 non-DBPs.

B. PROTEIN SEQUENCE EMBEDDINGS
In recent years, NLP and artificial intelligence have shown
extraordinary advancements. Large pre-trained language
models have radically transformed the NLP field and demon-
strated useful capabilities. Previous studies have also demon-
strated that protein language models can extract specific
functional and structural properties of proteins, such as anti-
body structure, backbone structure, secondary structure, and
tertiary contacts [47], [57], [58], [59].
Since the Transformer’s inception has emerged as a

versatile tool for language modeling, several Transformer-

based models, including ProtTrans [30], ESM [47], and
ProteinBERT [60], have proven to be highly competitive
compared to other techniques [30], [47], [50], [60]. Most
of these models use Bidirectional Encoder Representations
from Transformers (BERT)-like architectures and denois-
ing autoencoding training objectives, meaning they are
pre-trained by corrupting input tokens and attempting to
reconstruct the original sentence [62]. While these models
could be modified to generate protein sequences, their most
straightforward application is sequence embedding. This
study explored three protein sequence embedding models to
predict DBPs: ProtTrans, ESM-1b, and ESM-2.

Fig. 1 visualizes the embedding using t-distributed stochas-
tic neighbor embedding (TSNE) plots. TSNE projects
n-dimensional embeddings into two dimensions. The visual-
ization of ProtT5, ESM-1b, and ESM-2 in Fig. 1 demonstrates
that proteins from the DBP and non-DBP classes with similar
properties tend to cluster together. Based on previous stud-
ies that have successfully implemented a protein sequence
model in downstream tasks, the important information about
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the protein captured by the protein sequence embedding
model, such as biophysical properties, biochemical proper-
ties, structure, and domains, is highly useful for the prediction
task [35], [37], [38], [44]. In other words, this clustering is
learned by pre-trained embeddings, even before seeing the
label associated with a particular class. We also demonstrate
the visualization of a one-hot encoding for comparison. The
TSNE plot for one-hot encoding shows that each protein is
separate from the others, making predicting protein classes
harder.

C. ProtTrans
ProtTrans offers novel pre-trained models for proteins using
various transformer methods. ProtTrans trained four autoen-
coder models (BERT, Albert, Electra, and T5) and two
autoregressive models (Transformer-XL and XLNet) using
data from UniRef and BFD containing up to 393 billion
amino acids. The ProtTrans model can extract diverse bio-
physical properties of amino acids, protein structure classes,
life and virus domains, and protein functions in conserved
motifs. Based on the evaluation in [30], embeddings from
their trained ProtTrans (ProtT5) model outperformed state-
of-the-art methods in the downstream tasks without using EI
for the first time.

This study employs ProtT5 sequence embedding, the best
ProtTrans model based on the T5 method [30]. ProtT5
was trained using eight-way model parallelism with approx-
imately three billion learnable parameters on UniRef50.
We encoded the protein sequence using the pretrained ProtT5
model. This model accepts the complete protein sequence as
input and returns an embedding vector of size 1024 for each
protein sequence. The source code for the ProtTrans method
is available at: https://github.com/agemagician/ProtTrans/.

D. ESM-1b
The ESM-1b is a self-supervised method for learning pro-
tein sequence embeddings by applying transformer models
to 250 million protein sequences extracted from the Uni-
Parc database, which contains 86 billion amino acids [47].
Initially, 100M-parameter transformer models were trained,
and hyperparameter optimization was performed systemat-
ically. After determining the optimal set of hyperparam-
eters, the model was scaled to 33 layers with approxi-
mately 650 million parameters. In this study, the ESM-1b
model generated an embedding vector of size 1280 for
each protein sequence. The source code for converting
protein sequences to ESM-1b embedding is available at:
https://github.com/facebookresearch/esm.

The trained ESM-1b transformer could acquire knowledge
of the biochemical properties of amino acids. The generated
embeddings allowed the clustering of amino acid residues
into several groups consistent with their aromatic, hydropho-
bic, and polar properties. In addition, charge information
and molecular weight were represented throughout the amino
acids. The learned embeddings of ESM-1b can also serve
as feature representations for various subsequent tasks, such

as contact map prediction, protein fitness prediction, protein
function prediction, and effects of mutations on protein func-
tion [34], [35], [44], [63].

E. ESM-2
The ESM-2 language model is the latest advanced model
designed to improve upon the previous model. ESM-2
improves training parameters, model architecture, computa-
tional resources, and data compared to ESM-1b. The ESM-2
uses rotary position embedding (RoPE) so that the model
can extrapolate beyond the context window on which it was
trained. RoPE marginally increases the model’s computa-
tional cost because it multiplies each query and key vector
within the self-attention with a sinusoidal embedding [50].

The ESM-2 was trained with UniRef50 database protein
sequences. Fifteen percent of amino acids were masked in an
input protein represented as a character sequence of amino
acids, and ESM-2 was used to predict the positions of these
missing amino acids. Achieving high success requires the
model to acquire complex internal representations of inputs,
even though this training objective only directly involves
amino acid prediction. In ESM-2, these representations are
taught to predict secondary structures, contact maps, and
binding sites. Like ESM-1b, we generated ESM-2 embedding
vectors with a size of 1280 for each protein sequence.

III. METHODS (EMBEDCAPS-DBP)
A. CapsNet
Hinton et al. introduced the capsule to overcome the dis-
advantages of convolutional neural networks (CNNs) [64].
A CNN’s pooling layers lose many important features when
extracting and resizing the features. In addition, a CNN
cannot learn the relationship between the various extracted
features due to the absence of a function capable of acquiring
the necessary information [64], [65]. CapsNet uses a squash
function, which is similar to the pooling layers in CNNs. This
function does not lose any information since it is a nonlinear
function that accepts input in vector form and resizes the
information in the unit vector without changing its orienta-
tion. The mathematical formulas for the capsule’s functions
are as follows:

ûj|i = Wijui (1)

where ûj|i is a prediction vector generated by capsule i that is
passed to capsule j and calculated by multiplying the weight
matrix Wij (affine transformation matrix) with output ui of
previous capsule layer i.

sj =

∑
i
cijûj|i (2)

where sj is derived from the sum of the product of ûj|i and
cij. In CapsNet, conventional CNN neurons are replaced with
capsules, and the input and output of each CapsNet unit are
converted to vectors. The orientation of the vector represents
the properties of a particular entity in the input data. The
length of a capsule vector is meant to represent the probability
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FIGURE 2. The architecture of EmbedCaps-DBP.

that an entity is present in the current input. The ‘‘squashing’’
function, like the CNN activation function, ensures that the
vector length is between 0 and 1 (77). The ‘‘squashing’’
function is defined by Eq. (3).

vj =
∥s∥2

1 + ∥s∥2
sj∥∥sj∥∥ (3)

where vj represents the output vector of capsule j and sj
represents the capsule’s total input vector.

cij =
exp(bij)∑
j
exp(bij)

(4)

The coupling coefficient cij in Eq. (2) is determined by the
dynamic routing algorithm. Its objective is to allow the input
capsule to choose its own path for transmission to the next
capsule layer. cij is determined as the softmax function over
bij, which represents the log prior probability between cap-
sules i and j. CapsNet uses the parameter bij to determine the
relationship between capsules i and j in the previous layers. bij
is initialized to 0 during the initial iteration, and the value of
the coupling coefficient cij is the same for all capsules within
a layer. The values of vj and ûj|i are then updated using Eqs.
(3) and (1), respectively. The parameter bij is updated by the
dot product of ûj|i and vj in subsequent iterations [64], [66]:

bij = bij + ûj|ivj (5)

When the dot product of ûj|i and vj yields a positive result,
bij will have a greater value after being updated using Eq.
(5). A greater value for bij will result in a greater value for
cij, leading to greater values for sj and vj, strengthening the
connection between capsules i and j. The connection between

capsules i and jwill be weakened if the dot product of ûj|i and
vj is negative.

This study designed an EmbedCaps-DPB model for the
automatic prediction of DBPs. The proposed model archi-
tecture comprises two layers (Fig. 2): an embedding layer
and a 1D-CapsNet layer. A protein sequence is first con-
verted to a numerical representation using protein sequence
embedding. Three sequence-embedding methods (ProtT5
[dimension 1024), ESM-1b [dimension 1280], and ESM-2
[dimension 1280]) were used to demonstrate the effec-
tiveness of learned embedding as feature representations.
We modified the CapsNet by substituting 2D-convolution
with 1D-convolution. The 1D-CapsNet layer comprises a
convolutional layer, a primary capsule layer, and a DigitCaps
layer (Fig. 1). In the convolution layer, the embedding form
of the protein sequence is input into a 1D-convolution layer
(Conv1D) to extract the feature representation. The primary
capsule also implements a 1D-convolution operation with a
specific filter size and number executed multiple times to
obtain detailed information about the feature. During this
process, the squashing function maintains the orientation
and length of each capsule between 0 and 1. The number
of classifications corresponds to the amount of DigitCaps
elements, and the length of each DigitCaps element indicates
the probability that the input sequence belongs to the DBP or
non-DBP class. Using the dynamic routing method ensures
that each element in the primary capsule layers corresponds
to a category for a DigitCaps element. In the final step, the
category of the input sequence (DBP or non-DBP) is deter-
mined by comparing the length of each DigitCaps element.

The proposed method uses several hyperparameters,
including batch size, epoch, hidden unit numbers, and rout-
ing numbers, that produce the best results. The values of
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the hyperparameters are summarized in Table 2. Experi-
ments are performed on a public Keras framework using
an NVIDIA Tesla T4 GPU with 16 GB of VRAM.
The source code of the proposed method is available at:
https://github.com/naimji/EmbedCaps-DBP.

TABLE 2. EmbedCaps-DBP hyperparameters.

B. VALIDATION METHODOLOGIES
According to previous research, the following two issues
must be consideredwhen evaluating the performance of a new
predictor. First, it is necessary to select the metrics that will be
used to evaluate the predictor’s quality. Second, the appropri-
ate method for calculating the metrics must be determined.
We used the six metrics as evaluation metrics: F1-score,
accuracy, precision, specificity, sensitivity, the area under the
receiver operating characteristic (ROC) curve (AUC), and
Matthew’s correlation coefficient (MCC). The F1-score was
utilized to evaluate dataset imbalance by considering recall
and precision value. Accuracy was used because it is the
most common measure of classification performance. It is
defined as the proportion of correctly classified samples to the
total number of samples. Specificity and sensitivity are used
because they are commonly used to evaluate classification
performance with imbalanced data. MCC was used because
it represents the relationship between observed and predicted
classifications. AUC was used because it is a significant
metric for calculating the prediction model’s success rate
[1], [10], [18], [21], [67]. These evaluation metrics can be
calculated using Eqs. (6)–(11):

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(6)

Precision =
TP

TP+ FP
(7)

Sensitivity/Recall

=
TP

TP+ FN
(8)

Specificity =
TN

TN + FP
(9)

F1 − Score =
2 × Precision× Recall
Precision+ Recall

(10)

MCC

=
(TN×TP) − (FN×FP)

√
(TP+FN )(TP+FP)(TN+FN )(TN+FP)

(11)

where true negative (TN) refers to the number of samples
correctly classified as negative, true positive (TP) refers to

the number of samples correctly classified as positive, false
negative (FN) refers to the number of positive samples mis-
classified as negative, and false positive (FP) refers to the
number of negative samples misclassified as positive. Pos-
itive samples are those that contain DBPs, and vice versa.
This study used two validation methodologies to evaluate
a computational predictor’s performance: independent test
sets and K-fold cross-validation. We used the five-fold cross-
validation method when evaluating the proposed model’s
performance, which has been shown empirically to produce
test error estimates that are neither biased nor highly variable.
The final evaluation of the proposed model’s performance
will be based on the average of the five trials’ results.

IV. RESULTS AND DISCUSSION
This section first presents the results of potential classifiers
for the proposed method’s development. Then, the perfor-
mance of the proposed method on the benchmark datasets
(PDB14189 and PDB 1075) and the independent test datasets
(PDB2272 and PDB 186) is reported.

A. RESULTS OF DIFFERENT CLASSIFIERS ON PROTEIN
SEQUENCE EMBEDDING
We explored five potential classifiers to determine which is
best for predicting DBPs using protein sequence embedding
(ProtT5, ESM-1b, and ESM-2): logistic regression (LR),
multi-layer perceptron (MLP), one-dimensional CNN (1D-
CNN), bidirectional long-short term memory (Bi-LSTM),
and 1D-CapsNet. Table 3 shows the individual predictive
abilities of each classifier as determined by five-fold cross-
validation. Initially, we used simple classifiers such as LR
and MLP to demonstrate the benefit of protein sequence
embedding as a feature representation for predicting DPBs.
We then used a grid search approach to identify the hyperpa-
rameters with the highest performance for LR and MLP. The
overall performance metrics of LR and MLP outperformed
some previous studies that used more complex methods,
such as DBP-CNN [1], Local-DPP [20], and MsDBP [31].
We used 1D-CNN, Bi-LSTM, and 1D-CapsNet for the deep
learning based-method. The detailed parameters and layers
of these deep learning networks are shown in Tables IX-XI in
the Appendix. Based on the simulation results, 1D-CapsNet
provided the highest F1-Score (94.16%), accuracy (94.71%),
sensitivity (96.56%), andMCC (0.88) with the ProtT5model.
In addition, 1D-CapsNet performed better than Bi-LSTM
with the ESM-2 model, with a higher F1-Score (by 0.56%),
accuracy (by 0.97%), sensitivity (by 2.74%), and MCC (by
0.1). However, its corresponding specificity was 1.92% and
lower than Bi-LSTM. Moreover, 1D-CNN performed better
than Bi-LSTMwith the ProtT5model, with a higher F1-Score
(by 1%), accuracy (by 1%), sensitivity (by 1%), specificity
(by 1%), precision (by 1%), and MCC (by 0.03). Table 3 also
shows that predictor performance could be further improved
by using a deep learning-based method that captures more
relevant protein sequence embedding features than LR and
MLP.
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TABLE 3. Comparison of various existing classifiers on PDB2272.

FIGURE 3. The accuracy of different classifiers.

To demonstrate the robustness of 1D-CapsNet, we also
compared the standard deviation of each classifier. According
to Table 3, 1D-CapsNet has the lowest standard devia-
tion among all metric evaluations for all protein sequence
embedding models. For example, based on Fig. 3, 1D-
CapsNet achieved the best overall accuracy with the lowest
standard deviation (0.13 with ProtT5, 0.36 with ESM-1b,
and 0.26 with ESM-2) compared to all other classifiers.
On the ESM-1b model, Bi-LSTM has slightly better perfor-
mance than 1D-CapsNet, with a higher F1 score (by 0.45%),
specificity (by 2.77%), and MCC (by 0.01) (Table 3 ). Nev-
ertheless, Bi-LSTM had a higher standard deviation than
1D-CapsNet. In addition, 1D-CapsNet achieved this result
with approximately one-eighth the number of parameters
required by Bi-LSTM. These results indicate that the ability
of 1D-CapsNet to capture the relationship between features
has a greater potential to produce a more accurate represen-
tation and understanding of a given annotation task than the
other classifiers.

B. PERFORMANCE COMPARISON WITH EXISTING
PREDICTORS USING PDB14189 AND PDB2272
The EmbedCaps-DBP method’s performance was compared
with state-of-the-art methods using the same training and

TABLE 4. Comparison with existing methods on a training set
(PDB14189).

independent test datasets to ensure a fair evaluation. Table 4
shows that we compared our proposed method with DNA-
Prot [67], iDNA-Prot [21], iDNA-Prot|dis [68], MsDBP
[31], DBP-CNN [1], and Target-DBPPred [10]. Most of
these methods are sequence-based, with EI as their input.
The EmbedCaps-DBP with ProtT5, ESM-1b, and ESM-2
models outperformed all existing state-of-the-art methods
with all evaluation metrics. The ESM-2 model achieved
the best performance among protein sequence embedding
models with 12.28%, 13.26%, 11.87%, and 0.28 improve-
ments in accuracy, sensitivity, specificity, and MCC, respec-
tively, over Target-DBPPred. Target-DBPPred is currently
the highest-performing among the existing classifiers that
employ a multi-evolutionary approach to extract diverse EI
features from protein sequences. Similarly, the ProtT5 and
ESM-1b models improved accuracy, sensitivity, specificity,
and MCC by >10%.
The proposed method’s quality was assessed based on its

optimal generalizability to unobserved datasets. This study
used an independent dataset (PDB2272) to validate the
proposed method. Table 5 compares the accuracy of its pre-
dictions with eight previous methods: DNA-Prot [67], iDNA-
Prot [21], iDNA-Prot|dis [68], Local-DPP [20], MsDBP [31],
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TABLE 5. Comparison with existing methods on an independent test set (PDB2272).

FIGURE 4. ROC curves for EmbedCaps-DBP (PDB2272) with (a) ProtT5, (b) ESM-1b, and (c) ESM-2.

TABLE 6. Comparison with existing methods on a training set (PDB1075).

DBP-CNN [51], Target-DBPPred [10], and HKAM-MKM
[69]. EmbedCaps-DBP (ProtT5) performed better than all
existing classifiers and had higher accuracy (by 12.65%),
sensitivity (by 9.46%), specificity (by 14.65%), and MCC
(by 0.25) than Target-DBPPred. However, its corresponding
specificity values were 2.23% lower than Local-DPP.

Two deep learning-based classifiers, MsDBP and DBP-
CNN, performed poorly on PDB2272, demonstrating

the difficulty of this task. In contrast, our proposed
EmbedCaps-DBPmethod achieved very significant improve-
ments in the training and independent test sets with all
protein sequence embedding models, making it a promising
predictor.

Figs. 4a, 4b, and 4c show the ROC curves for
EmbedCaps-DBP with the ProtT5, ESM-1b, and ESM-2
models, respectively, while evaluating the predictions on the
PDB2272 test set. All ROC curves in Fig. 3 demonstrate the
capability of EmbedCaps-DBP to achieve a high TP rate of
≥ 93% (rate of correct DBP predictions) with a very low
FP rate of around 10%. EmbedCaps-DBP with the ProtT5
model had the highest average AUC of 97.76%, 0.83% higher
than with the ESM-1b model and 0.35% higher than with
the ESM-2 model. The small performance gap between the
three embedding models reflects their almost identical data
distributions in the TSNE visualization in Fig. 1.

C. PERFORMANCE COMPARISON WITH EXISTING
PREDICTORS USING PDB1075 AND PDB186
The generalizability of EmbedCaps-DBP was further eval-
uated using PDB1075 as the training set and PDB186 as
the independent test set. The small number of samples is
one of the challenges of using the PDB1075 and PDB186
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TABLE 7. Comparison with existing methods on an independent test set (PDB186).

FIGURE 5. ROC curves for EmbedCaps-DBP (PDB186) with (a) ProtT5, (b) ESM-1b, and (c) ESM-2.

TABLE 8. Comparison with deep learning methods on PDB186.

datasets, particularly with deep learning methods that require
large datasets for optimal performance. Consequently, most
classifiers developed for this dataset are based on machine
learning, which requires more human intervention in the fea-

ture selection procedure. We compared the proposed method
with eight existing classifiers: PSSM-DT [15], DNAbinder
[13], Local-DPP [20], PseDNA-Pro [23], FKRR-MVSF [70],
HMMBinder [54], DBPPred-PDSD [25], and HKAM-MKM
[69]. Table 6 shows that EmbedCaps-DBP outperformed all
existing methods with remarkable results with all protein
sequence embedding models in the training set (PDB1075).
EmbedCaps-DBP (ESM-1b) performed best among the pro-
tein sequencemodels and provided 10.52%, 10.86%, 10.39%,
and 0.21 improvements in accuracy, sensitivity, specificity,
and MCC, respectively, over DBPPred-PDSD.

Table 7 shows the performance result for EmbedCaps-DBP
using PDB186 as the independent dataset. EmbedCaps-DBP
(ProtT5) achieved the highest accuracy (87.43%) and speci-
ficity (77.90%) compared to the recent predictor HKAM-
MKM. The machine learning-based HKAM-MKM method
uses six different feature extraction algorithms. Four algo-
rithms are used to capture EI, and two are used to extract
physicochemical properties. HKAM-MKM had the highest
sensitivity (100%) and MCC (0.77). However, it has a higher
computational cost than our proposed method. Figs. 5a, 5b,
and 5c show that ROC curves and AUC values vary among
folds with PDB186 due to the small number of data samples.
The proposed method achieved a TP rate of >91% with an
FP rate of approximately 23%. EmbedCaps-DBP with the
ESM1b model had an average AUC of 92.16%, 0.37% higher
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TABLE 9. Detail of Layers and Parameters of 1D-CapsNet.

TABLE 10. Detail of Layers and Parameters of Bi-LSTM.

TABLE 11. Detail of Layers and Parameters of 1D-CNN.

than with the ProtT5 model and 1.24% higher than with the
ESM-2 model.

D. DISCUSSION
A method that can be implemented in a real-world scenario
must be applicable to various datasets. However, most pre-
vious methods only perform well on small or large datasets.
For example, Local-DPP and HKAM-MKM perform better

with small datasets than large ones due to the limitations
of conventional machine learning-based classifiers. Target-
DBPPred is a machine learning-based method designed for
large datasets that performed better than deep learning-based
classifiersMsDBP andDBP-CNN. However, its performance
remained 12.65% below our proposedmethod. This consider-
able performance gap demonstrates the weakness of machine
learning methods on large datasets.
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The proposed method performed exceptionally well on
both datasets. CapsNet is a deep learning method that per-
formed better on small datasets than CNN and Bi-LSTM due
to its ability to capture the relationship between features [71],
[72], [73]. To confirm this, we compared CapsNet with 1D-
CNN and Bi-LSTM on PDB186 (Table 8).
The results show that ourmethod achieved higher accuracy,

sensitivity, and MCC than Bi-LSTM. In addition, we com-
pared the protein sequence embedding model with one-hot
encoding and word2vec to demonstrate how effectively it
captures essential information about proteins. Based on table
8, simulation results indicate that protein sequence embed-
ding outperforms one hot encoding and word2vec by an
average of more than 10% for all evaluation metrics.

The ability of protein sequence embedding to provide
important information has proven advantageous for pre-
dicting DBPs than EI. By combining protein sequence
embedding and CapsNet, we designed a new method that
was more successful than other existing classifiers in dis-
tinguishing DBPs from non-DBPs due to its robustness and
generalizability across all tested datasets.

V. CONCLUSION
This study introduced EmbedCaps-DBP, a novel computa-
tional method for improving DBP prediction performance.
EmbedCaps-DBP uses protein sequence embeddings as fea-
ture representations and 1D-CapsNet methods to capture
the relationship between features to predict DBPs. Based
on our experiment results, EmbedCaps-DBP significantly
outperformed all existing classifiers in both dataset pairs.
The EmbedCaps-DBP (ProtT5) method achieved an accuracy
of 94.71% with PDB2272 and 87.43% with PDB186. The
proposed method could potentially be a valuable tool for
the proteomic analysis of DNA binding sites, particularly
in humans. This research will assist medical professionals
in developing advanced and early diagnostic methods for
diseases such as allergies, asthma, HIV/AIDS, and cancers.
It will also benefit the pharmaceutical industry in producing
anticancer drugs, antibiotics, steroids, and anti-inflammatory
drugs at a low cost. Future research can focus on combining
protein sequence embeddingmodels withmore complex clas-
sifiers to enhance prediction performance in small datasets.

APPENDIX A
See Tables 9–11.
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