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ABSTRACT Short videos have become one of the most popular content mobile users consume nowadays.
However, unlike traditional videos, users watch many short videos each time and frequently skip those
not of their interest. Not taking into account this factor, conventional video streaming methods result in
a large amount of data wastage. Moreover, short videos are usually streamed over time-varying network
conditions, which requires preloading to provide satisfactory Quality of Experience (QoE). In this paper,
we formulate the QoE-Wastage trade-off optimization problem in short video streaming as a multi-objective
optimization problem. We then develop a lightweight joint preloading and bitrate adaptation algorithm that
utilizes cross-user behaviors to decide a suitable amount of preloaded data for each video. In addition, our
method dynamically adjusts video bitrate per chunk basis to achieve high user QoE. Experimental results
show that the proposed method improves QoE by approximately 12% to 45% and reduces data wastage by
up to 58% compared to existing methods.

INDEX TERMS Short video streaming, quality of experience, data wastage, preloading, bitrate adaptation.

I. INTRODUCTION
Short videos have become one of the most popular multime-
dia content consumed by mobile users these days. According
to [1], over a billion monthly users are watching short
videos. The global short video platform market is predicted
to double in size during 2022-2030 [2]. Short videos are
typically viewed on smartphone apps and are displayed
in full-screen mode. Users scroll up/down to go to the
previous/next video in a playlist containing a list of videos,
which are recommended to users. Short videos are stored
on a streaming server in which each video is divided into
multiple chunks with the same playback duration. A video
chunk might be further encoded into multiple versions of
different quality levels to support network adaptation. The
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user agent (i.e., mobile apps) needs to decide which chunk
should be downloaded at which quality. Then, it downloads
the video data from the streaming server chunk-by-chunk
using standard protocols such as HTTP [3].

There is a trade-off between users’ Quality of Experience
(QoE) and data wastage in short video streaming. To achieve
a high QoE under time-varying network conditions, the user
agent should preload a certain amount of video data before
starting the playback of a video. Using a high amount of
preloaded data (i.e., buffer size) can help reduce re-buffering
events when the network bandwidth suddenly drops [4]. Since
re-buffering causes negative effects on the user’s QoE, a large
buffer size can help improve the user’s QoE [5]. A large buffer
size, however, might result in a significant amount of data
wastage. For example, if the user agent buffers all segments
of a video but the user only watches half of the video, then
half of the downloaded data becomes wasted. In fact, a recent
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investigation found that most short videos are early skipped
by users, leading to a significant amount of data wastage [6].
Therefore, how to design an effective video chunk download
strategy for the best trade-off between the user’s QoE and
data wastage is the primary problem in short video streaming.
A chunk download strategy must decide 1) when to download
and 2) which version to download for every video chunk. The
chunk to download at each step is not necessarily belonging
to the video currently being viewed by the user. Instead, video
chunks of the next videos in the playlist can also be preloaded
to allow users to view the next video instantly.

Chunk download strategies for short video streaming have
been previously proposed. Early works focus on designing
appropriate chunk preloading strategies based on various
factors such as predicted user viewing time [7], and network
throughput [8]. Preloading and bitrate adaptation are jointly
considered in [9]. However, this method results in high
variations in video quality, causing negative effects on user
experience. More recent works employ a learning-based
approach in which user viewing data is collected and used to
train deep reinforcement learning models that decide chunk
download strategy [10], [11], [12], [13], [14], [15]. The
primary problem with the learning-based approach is that the
user agent needs to run complex machine learning models
on the user’s device. Running a machine learning model
consumes a significant amount of computational resources,
thus the learning-based approach is not suitable for resource-
constrained devices.

In this paper, we first present the system model for
short video streaming and formulate the QoE-Wastage
trade-off optimization problem in short video streaming
as a multi-objective optimization problem. To the best
of our knowledge, our work is the first that present a
detailed analysis of the QoE-Wastage trade-off in short video
streaming. We then propose a joint preloading and bitrate
adaptation method to improve the trade-off between the
user’s QoE and data wastage. Compared to learning-based
methods, the proposed method is much simpler, requiring
only statistics of the user’s viewing duration. The data can be
collected by the service providers and sent to the user agent
prior to a streaming session with insignificant overhead. The
proposed method dynamically adjusts the buffer size based
on the user’s retention rate to minimize data wastage. Also,
a Model Predictive Control (MPC)-based bitrate adaptation
method is proposed to decide the quality level on a per-chunk
basis to maximize user’s QoE. Comparison with five existing
methods shows that the proposed method achieves state-of-
the-art performance in terms of QoE while achieving the
smallest amount of data wastage.

The remainder of the paper is organized as follows.
Related work is presented in Section II. The QoE-Wastage
trade-off optimization problem in short video streaming is
formulated in Section III. The proposed method is described
in Section IV, followed by an evaluation in SectionV. Finally,
the paper is concluded in Section VI.

II. RELATED WORK
Recently, measurement studies have been conducted to
understand the characteristics of commercial short video
services. In [6], the authors analyze a top-10 short video
service in China and found that video content is extremely
short with a median video length of 22s, and about 77% of
the short video sessions are less than 40s. The study also
reveals that users of the considered short video service have a
very limited attention span of approximately 25s with nearly
70% of videos being skipped early. Since the service uses a
simple download-and-play adaptation scheme, a significant
amount of downloaded video data is discarded without
being viewed, causing data wastage. While the short video
services studied in [6] and [10] support only a single quality
level (version) of each video, other services such as that
in [3] support multiple video quality levels. The preloading
strategies also vary between different services. While some
services such as Douyin preload only the next video [11] in
the playlist, services such as YouTube Shorts, and Instagram
Reel preload several videos ahead [3]. A short video can be
preloaded in full (e.g., Douyin) or in part, (e.g., Facebook
Watch) [3].

Two main approaches have been used to develop preload-
ing strategies for short video streaming: Learning-based
approach [10], [11], [12], [13], [14], [15], and conventional
approach [7], [8], [9], [17]. In the learning-based approach,
user data such as viewing duration, and swipe times are
collected and used to train machine learning models that
decide the chunk download strategy. In [11], the authors
propose LiveClip, a deep reinforcement learning-based
method. The method collects the users’ staying time in the
past as input to predict when the user will scroll, then decides
the next action which downloads the next chunk of the current
video or the next 2 videos or pauses to save bandwidth
usage based on predicting user staying time. In [14], the
adaptation is made at the session level instead of the chunk
level. In general, the learning-based methods are found
effective in reducing data wastage. In [10], Wastage Aware
Streaming (WAS) method is developed based on viewing
behaviors and network conditions to minimize data wastage
while maintaining QoE. WAS tunes two wastage-aware
parameters, one for controlling video bitrate and another for
controlling buffer size. Both parameters are learned based
on past user behaviors and network conditions using greedy
search. In [12], DUASVS is introduced as an enhanced
iteration of WAS. This approach employs the Asynchronous
Advantage Actor Critic (A3C) algorithmwith an Actor-Critic
Network to optimize wastage-aware parameters. In [13],
the reinforcement learning-based agent decides which chunk
to download at which bitrate, as well as the pause time.
In addition, domain knowledge is incorporated via action
masking to improve transparency as well as accelerate the
training process. Moreover, in [15], the utilization of imita-
tion learning and multi-agent proximal policy optimization
(MAPPO) is observed. These techniques are employed to
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TABLE 1. Overview of the state of the art.

acquire a chunk download strategy that involves separate
execution of preloading and bitrate adaptation.

In the conventional approach, the buffer size and bitrates
of video chunks are decided using various factors such as the
user’s past viewing duration [7], and network throughputs [8].
In [7], the authors design an adaptive preloading mechanism
for short-form videos which is based on the Lyapunov opti-
mization. The method predicts the user’s viewing duration of
the next video and decides the number of next videos that can
be downloaded and the buffer length of all videos tomaximize
the playback smoothness (minimize the re-buffering) while
causing less waste of bandwidth. Next, in [8], a network-
based preloading method is proposed to dynamically adjust
the buffer size and a number of prefetched videos based on
network conditions. The above methods, however, do not
consider bitrate adaptation. In [9], the authors propose
PDAS, a probability-based adaptation method for short video
streaming, in which the maximum buffer size is chosen
based on chunk-level viewing probability and estimated
network bandwidth. Furthermore, in [17], the authors present
Dashlet, a system that predicts the re-buffering time for
each potential video chunk to determine the optimal chunk
buffering sequence for preloading. To select the appropriate
bitrate level for this buffering sequence, the authors employ
RobustMPC, a control algorithm with a moving horizon
based on time. Table 1 provides a quick overview of the state
of the art.

III. SHORT VIDEO STREAMING
A. GENERAL SYSTEM ARCHITECTURE
In this section, we describe the general architecture of a
short video streaming system. As shown in Figure 1, the
system consists of a streaming server and a user agent

(i.e.,Mobile App). The streaming server stores short videos in
which each video is temporally divided into multiple chunks
with the same playback duration. Each chunk is encoded into
multiple versions of different bitrates. The higher the bitrate
is, the better the quality becomes. Description information
of individual videos such as chunk duration, chunk bit rates,
and a number of versions are also stored in the server in
advance.

The user agent is located on the user device and
is composed of five main components: A recommender,
a download scheduler, a player, a downloader, and a buffer.
At the beginning of a session, the recommender engine
generates a list of recommended videos based on information
such as user preference, user’s past viewing history, etc. The
downloader then requests the metadata of the recommended
videos from the server. Such information is forwarded to
the scheduler that makes a decision on which chunk of the
video should be downloaded. The downloader fetches the
video chunks from the streaming server and stores them in
the buffer. In our system, chunks of each video in the playlist
are stored in a separate buffer. In short video applications,
videos are displayed in full-screen mode. The user can scroll
up/down to view the previous/next video in the playlist.When
a switching event occurs, the player will reset their current
status and start playing the new video from the beginning.
In this paper, we assume that users only switch to the next
video in the playlist.

The recommender and the download scheduler are the two
key components in short video applications. In this paper,
we design and develop an effective download scheduler,
highlighted in Figure 1. Recommending suitable videos to
users is an interesting issue and is reserved for our future
work.
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FIGURE 1. Short video streaming system.

FIGURE 2. Buffer dynamic of individual videos.

In the following section, the operation of our proposed
algorithm developed inside the download scheduler will be
described.

B. SHORT VIDEO STREAMING MODEL
Assume that a user watches a total of N short videos over
a streaming session. Video i (1 ≤ i ≤ N ) consists of Ki
consecutive video chunks or chunks, each has a playback
duration of τ seconds. Each chunk is encoded into different
bitrates. Let R be the set of all available bitrate levels. The
user agent can decide to download chunk k of video i at bitrate
Rik ∈ R. Downloaded video chunks of each video are stored
in a dedicated playback buffer.
For a video in the playlist, the user agent first enters the

initial buffering stage where it downloads the first B0 chunks
of the video. If the initial buffering has not been completed
at the time the user switches to a video, then the user
will experience a start-up delay. In video streaming, long
start-up delay is known to cause negative effects on user
experience [5]. After initial buffering, the video enters an idle
stage if the user has not switched to the video. Otherwise,
the playback of the video is started and the user agent enters
the steady-state stage in which the player gets downloaded
chunks out of the playback buffer while the downloader adds
new chunks to it.

The buffer dynamic of individual videos is shown in
Figure 2. Let Bi(t) ∈ [0,Bimax] be the buffer occupancy of
video i at time t . The buffer size Bimax should depend on not
only network conditions but also video start times. At the time

t ik , the user agent starts to download chunk k (1 ≤ k ≤ Ki).
The download time of chunk k , denoted d ik , is:

d ik =
S(Rik )

C i
k

, (1)

in which C i
k is the average download speed experienced

during the download process and S(Rik ) is the chunk’s data
size. If we denote Ct as the network throughput at time t ,
then we have:

C i
k =

1

d ik

∫ t ik+d
i
k

t ik

Ct dt. (2)

Once chunk k is completely downloaded, the user agent waits
for a time 1t ik and starts to download the next chunk k + 1 at
time t ik+1.

t ik+1 = t ik + d
i
k +1t ik . (3)

The waiting time1t ik is a decision variable, depending on the
playback status as well as the stage in which the player is.

The buffer occupancy changes according to chunk down-
load time and video playback status. In particular, in the
initial buffering stage, the buffer occupancy increases by
τ seconds for every chunk download. In idle stage, the
buffer occupancy remains unchanged. In steady-state stage,
the buffer occupancy decreases by chunk download time
and increases by a chunk’s playback duration. Thus, if the
download time of a chunk is higher than the buffer size when
the downloader starts downloading the chunk, the buffer is
depleted before the chunk is completely downloaded, causing
a re-buffering event. Let Bik = Bi(t ik ) be the buffer occupancy
when the downloader starts to download chunk k of the video
ic. The buffer dynamic of the current video can be formulated
as follows:

Bi
c

k+1=


((
Bi

c

k − d
ic
k

)
+

+ τ −1t i
c

k

)
+

, k ≥ B0

Bi
c

k + τ , k < B0.
(4)
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Here, (x)+ denotesmax(x, 0), ic is the current video, andB0 is
the number of chunks to download in the initial buffering
stage. In addition, the downloader can download chunks of
the next videos to avoid re-buffering events when the user
skips the current video, therefore, we have the buffer dynamic
when downloading chunk k ′ of a next video i′ (video i′ can
be any of the next videos that are considered to preload):

Bi
′

k ′+1 = Bi
′

k ′ + τ. (5)

This results in the current video having to wait until the chunk
k ′ is downloaded completely to continue preloading the next
chunk:

1t i
c

k = d i
′

k ′ . (6)

The re-buffering time at chunk k is dependent on not only
chunk download time but also video start times. If the initial
buffering has been completed by the time the user switches
to video i, then the player can start the video immediately
without delay. As a result, there is no re-buffering occurred
at the first chunk. Otherwise, the player has to wait until the
first B0 chunks are completely downloaded, resulting in a re-
buffering event. In the steady-state stage, re-buffering events
occur when the chunk download time is higher than the buffer
size at the start of the download. Let t is be the time when user
switches to video i, RBik be the re-buffering time at chunk k ,
we have:

RBik =


(
t iB0 + d

i
B0 − t

i
s

)
+

, k = 1

0 , 1 < k ≤ B0(
(d ik +1t ik )− B

i
k

)
+

, k > B0

. (7)

From Eq. (7), we can see that re-buffering at the first chunk
(i.e., start-up delay) can be eliminated by preloading B0 first
chunks prior to switching time t is. For later chunks, re-
buffering can be mitigated by maintaining a high buffer
occupancy Bik .
When the user switches to the next video in the playlist,

the buffered but not-yet-played data of the current video will
be discarded. The amount of discarded data is thus equal
to the total amount of buffered video data minus the total
amount of played data. Let k∗i be the last downloaded chunk
of video i, t ie be the time where user stops watching video i,
we have:

k∗i = argmax
k

(t ik |t
i
k < t ie). (8)

The total buffered data of video i can be calculated as the sum
of all downloaded chunks:

Buffered =
k∗i∑
k=1

S(Rik ). (9)

Let tpik denote the play time of chunk k , then we have:

tpik =

{
t is + RB

i
k , k = 1

tpik−1 + τ + RBik , k > 1
. (10)

Let k∗∗i denote the last played chunk before video i stops,
we have:

k∗∗i = argmax
k

(tpik |tp
i
k < t ie). (11)

The total played data of video i is calculated as follows.

Played =
k∗∗i −1∑
k=1

S(Rik )+
t ie − tp

i
k∗∗i

τ
S(Rik∗∗i

). (12)

The amount of discarded data of video i, denoted Wastagei,
is thus:

Wastagei = Buffered − Played

=

k∗i∑
k=1

S(Rik )− (
k∗∗i −1∑
k=1

S(Rik )+
t ie − tp

i
k∗∗i

τ
S(Rik∗∗i

)).

(13)

From Eq. (7) and Eq. (13), we can see the trade-off between
QoE and data wastage in short video streaming. To increase
QoE, one should maintain a high buffer occupancy (Bik )
to mitigate re-buffering. However, a high buffer size would
result in k∗i ≫ k∗∗i , leading to more data wastage.

C. QOE-WASTAGE TRADE-OFF OPTIMIZATION PROBLEM
The goal of the download scheduler is to decide which video
chunk to download at each time to maximize the user’s hlQoE
while minimizing data wastage. The data wastage can be
measured as the total discarded data over all videos in the
playlist.

Wastage =
N∑
i=1

Wastagei. (14)

In general, the QoE of a video streaming session depends
on start-up delay, chunk bitrate (quality), chunk bitrate
variations, and re-buffering times [5]. In this paper, we adopt
the QoE model proposed in [16]. Specifically, the QoE is
modeled as the sum of individual videos’ QoE values, which
is calculated as a weighted sum of average chunk bitrate, re-
buffering duration, and chunk bitrate variation as follows.

QoE =
N∑
i=1

QoE i, (15)

QoE i =
Ki∑
k=1

(
w1 × Rik − w2 × RBik

)

−

Ki−1∑
k=1

(
w3 ×

∣∣∣Rik − Rik+1∣∣∣) . (16)

The parametersw1,w2,w3 in Eq. (16) reflect the significance
of individual factors which is provided by [16].

The QoE-Wastage trade-off optimization problem in
short-form video streaming can be formulated as a
multi-objective optimization problem as follows.
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Given chunk sizes S(Rik ), network throughput {Ct }t>0,
video switch times {t is}1≤i≤N , find a chunk download schedule
{(Rik , t

i
k ), 1 ≤ i ≤ N , 1 ≤ k ≤ Ki} to maximize QoE while

minimizing data wastage.

max
(Rik ,t

i
k )

(QoE −Wastage) .

Subject to : Eq.(1) ∼ (16). (17)

If the network throughput and video switching times
are known in advance, it is possible to find the optimal
solution to the above problem using methods such as ε-
constraints [18]. However, both network throughput and
video switch times are difficult to predict in practice. Thus,
it is important to take into consideration errors in estima-
tions when designing adaptation solutions for short video
streaming.

IV. PROPOSED ALGORITHM
In this section, we present a novel algorithm that jointly
performs preloading and bitrate adaptation for short video
streaming that can reduce the amount of data wastage while
achieving high QoE. Our proposed algorithm consists of
three steps: 1)Bandwidth Prediction, 2)Adaptive Preloading,
and 3) Bitrate Adaptation. In the first step, we predict
future bandwidth from the past bandwidth samples that we
collect. In the second step, our algorithm considers cross-user
information and buffer occupancy to choose a video to
download the next chunk. In the third step, our algorithm
selects a bitrate level for the chunk selected in Step 2. In the
following subsections, we will describe the proposed solution
step by step.

A. BANDWIDTH PREDICTION
Our algorithm utilizes two bandwidth measures: average
bandwidth, and smooth bandwidth. To obtain these two
values, our algorithm calculates an average bandwidth sample
for every chunk download based on Eq. (2). Following that,
the average bandwidth Cavg over the latest M samples is
calculated:

Cavg =
1
M

M∑
m=1

Cs(m), (18)

where:

• M: the number of the latest past bandwidth samples.
• Cs(m): the average bandwidth of sample m-th (1 ≤ m ≤
M ).

The smooth bandwidth Csmooth(m) is calculated as a sum
of its previous value and the newest bandwidth sample with
a smooth weight parameter η:

Csmooth(m) = η × Csmooth(m− 1)+ (1− η)× Cs(m),

(19)

and its initial value is set as Csmooth(m) = Cs(m) with
m = 1.

Given the smooth bandwidth across the latestM bandwidth
samples, the estimation of future bandwidth is determined as
the smooth bandwidth of theM -th sample, as shown below:

Cfuture = Csmooth(M ). (20)

In the following step, our proposed method employs future
bandwidth prediction to estimate the download time of
the next chunk, thereby establishing a dynamic buffer
threshold.

B. ADAPTIVE PRELOADING
Our algorithm dynamically adjusts the amount of preloaded
data (i.e., buffer size) for each video based on cross-user
behavior. In particular, our algorithm utilizes chunk-level
user retention rate, which is defined as the percentage of
users who watch until chunk k of video i, denoted RET ik .
The user retention rate can be estimated by collecting
viewing information of past users and be distributed to
the user agent at the beginning of a streaming session.
When the user retention rate is high, the user will likely
continue watching the current video, thus a high buffer
level can be maintained for the video. When the user
retention rate is low, there is a high probability that the
user will switch to the next video in the playlist. Thus, it is
better to maintain a low buffer occupancy to minimize data
wastage.
We can calculate the user’s probability of staying until

chunk k-th (k > kc) of video i from the current playing chunk
kc as follows:

pist (k) =
RET ik
RET ikc

. (21)

The probability of leaving the current video, denoted by
pilea(k), is then:

pilea(k) = 1− pist (k). (22)

If the video i has not been played, thenRET ikc = 1 and kc = 0.
Next, we estimate the maximum download time d imax(k) of

the next chunk k of video i based on themaximal next chunks’
data size and the future bandwidth as follows:

d imax(k) =
max

(
S(Rik ), S(R

i
k+1), . . . , S(R

i
k+(µ−1))

)
Cfuture

.

(23)

Here, µ (µ ≥ 1) denotes the number of the next chunks
ahead that we consider. This parameter is also referred to as a
moving horizon utilized for MPC, and its details can be found
in Section IV-C.

Similarly, the minimum download time of chunk k of
video i, denoted by d imin(k), can be estimated as follows:

d imin(k) =
min

(
S(Rik ), S(R

i
k+1), . . . , S(R

i
k+(µ−1))

)
Cavg

. (24)
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Our proposed method presents a dynamic buffer threshold
for the current and the next video based on the information on
the probability of staying and the download time of the next
chunk as follows.

Bi
c

th(k) =

{
pi
c

st (k)d
ic
max(k)+ B

i′
th(k
′)+ τ, d i

c

min(k) < τ

pi
c

st (k)d
ic
max(k), d i

c

min(k) ≥ τ,

(25)

Bi
′

th(k
′) = pi

′

st (k
′)× d i

′

max(k
′). (26)

Here, Bi
c

th(k) and B
i′
th(k) denote the dynamic buffer threshold

for the current and the next video, respectively. We also set an
upper bound Bithup and a lower bound buffer threshold Bithlow
to prevent the dynamic buffer threshold Bith(k) becomes too
high or too low as follows:

Bithup = 4τ, (27)

Bithlow = τ + σ, (28)

where:

• τ : the playback duration of each video chunk.
• σ : the sleep time for the downloader.

If the buffer occupancy of the current and all the next
videos (the next videos that are considered to preload)
exceeds the buffer threshold, we will initiate a sleep mode
for the downloader lasting σ seconds, aimed at reducing
potential data wastage resulting from preloading extra
chunks. By incorporating upper bound and lower bound
buffer thresholds, along with a dynamic buffer threshold,
our proposed method effectively minimizes data wastage and
reduces re-buffering events.

C. BITRATE ADAPTATION
1) MODEL PREDICTIVE CONTROL (MPC)
In an ideal scenario, if we had accurate information about
future network throughput for the entire duration of user
viewing, we could calculate the optimal bitrate level for
every video’s chunks and maximize QoE in a single
optimization process. However, in reality, obtaining such
perfect information is impossible. Nevertheless, it is possible
to obtain reasonably accurate throughput predictions for a
short-term future chunk horizon [k, k + (µ − 1)]. This
is because network conditions tend to be relatively stable
within a short time interval. Building on this understanding,
we employ MPC to decide the bitrate level for the next
preloading chunk [19]. The concept behind MPC is to find
optimal bitrate selection within a short moving horizon µ

using the predicted throughput and the chunk level’s user
retention rate. The optimal bitrate selection is found by
searching for the one that maximizes a reward function. The
user agent then downloads the next chunk at the selected
bitrate. The horizon is then forwarded to [k+1, k+µ] and the
process is repeated for every video chunk. In video streaming,
it is important to note that the reward function is usually taken
into account information from past downloaded chunks.

2) REWARD FUNCTION
To implement MPC in short video streaming, we define
our reward function based on the QoE-Wastage trade-off as
described in Eq.(17). In this paper, the expected reward of
downloading chunk k of video i at bitrate Rik is defined as
follows:

Reward(Rik ) = 8(Rik )−9(Rik )− 0(Rik )−2(Rik ). (29)

The reward is a weighted sum of four factors. The first factor
of the reward, i.e.,8(Rik ), is the bitrate quality of downloading
chunk k of video i. It should be noted that higher bitrate
quality directly corresponds to an enhanced QoE for the user.
The bitrate quality factor is calculated by the bitrate Rik and
the weight parameter w1:

8(Rik ) = w1 × Rik . (30)

The second factor, denoted by 9(Rik ), is the bitrate variation
of downloading chunk k of video i with bitrate Rik . Abrupt
changes in bitrate quality between chunks lead to a decrease
in the user’s QoE. It depends on the weight parameter w3 and
the difference with the bitrate level of the previous chunk:

9(Rik ) = w3 × |Rik − R
i
k−1|. (31)

When the downloader makes the decision to download a
chunk, the process must continue until the download is
successfully completed. Let ϕ be the number of chunks which
is expected to play during the process of downloading chunk
k of video i:

ϕ =
d imax(k)

τ
. (32)

The third factor of the reward is the expected re-buffering
time. A re-buffering event can occur if the download time of
chunk k at video i exceeds the buffer occupancy of the current
video. Furthermore, the user might switch to the next videos
while downloading and cause a re-buffering event on that
video if it is not preloaded enough. As a result, the expected
re-buffering time can be determined as follows:

0(Rik ) = w2 ×

(
pi
c

st (k
c
+ ϕ)× (d imax(k)− B

ic
ki )+

+ pi
c

lea(k
c
+ ϕ)× pi

c
+1

st (ϕ)× (d imax(k)− B
ic+1
ki )+

)
.

(33)

Here, Bi
c

ki is the buffer occupancy of the current video when
starting to download chunk k of video i. The probability
pi
c

st (k
c
+ ϕ), pi

c

lea(k
c
+ ϕ), and pi

c
+1

st (ϕ) are calculated
using Eq.(21)(22). In practice, during the downloading
process, users may switch betweenmultiple videos. However,
in our proposed algorithm, we assume that users have the
probability of switching only one to the next video during
the downloading process. It is important to note that if a user
decides to switch to the next video while the downloader
is preloading a chunk of the current video, all of the data
downloaded for that particular chunk will be considered data
wastage. The fourth factor of the reward is the amount of
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Algorithm 1 Preloading and Bitrate Adaptation
Data: The latest M bandwidth samples Cs(m); buffer

occupancy Bik ; User retention rate RET ik ; the
next µ chunks’ data size S(Rik ); and the current
playing chunk kc at video ic.

Result: The optimal chunk’s bitrate Ropt to download
or go to sleep for σ seconds.

1 Calculate future bandwidth Cfuture using
Eq. (18)∼(20).

2 Calculate buffer threshold Bith(k) using Eq. (21)∼(28).
3 Initialize Rewardmax ←−∞.

4 for i← ic to ic + γ do
5 if Bik ≤ B

i
th(k) then

6 if i == ic then
7 Run MPC with the moving horizon µ = 5.
8 else
9 Run MPC with the moving horizon µ = 2.

10 end
11 Save the bitrate Rik corresponding to the score

Reward(Rik ).
12 if Reward(Rik ) ≥ Rewardmax then
13 Rewardmax ← Reward(Rik ),
14 Ropt ← Rik .
15 end
16 Break.
17 end
18 end
19 if Rewardmax ̸= −∞ then
20 Return Ropt to download.
21 else
22 Sleep for σ seconds.
23 end

data wastage incurred by switch events as follows:

2(Rik ) =

{
pi
c

lea(k
c
+ ϕ)× S(Rik ), Rik = Ri

c

k

0, Rik ̸= Ri
c

k
. (34)

While the quality bitrate has positive effects on the rewards,
the bitrate variations, re-buffering, and data wastage factors
have negative effects on the rewards. The objective of the
proposed algorithm is to decide the bitrates of video chunks
to maximize the total reward.

D. PRELOADING AND BITRATE ADAPTATION ALGORITHM
Our proposed algorithm, described in Algorithm 1, takes
inspiration from the PDAS study [9]. Both our proposed
algorithm and PDAS share a fundamental strategy for
managing short video streaming. The initial step involves
establishing a buffer threshold, followed by determining
the optimal bitrate level for the next chunk to download.
However, the difference between our method and the PDAS
method lies in details. In the initial step, a buffer threshold
is computed using the predictions of future bandwidth with

TABLE 2. Video characteristics [16].

the data of user retention rate, and size of the next chunks.
In the subsequent step, MPC is utilized with a varying
moving horizon for the current and next videos, accompanied
by a reward function that considers factors such as quality
bitrate, bitrate variation, re-buffering time, and data wastage.
By integrating these components, our proposed method can
outperform PDAS in terms of QoE and data wastage.

Algorithm 1 runs iteratively each time a chunk download
has been completed. Its detailed operation can be elaborated
as follows: Firstly, the algorithm calculates the future
bandwidth Cfuture and the buffer threshold Bith(k). Next, the
algorithm checks the buffer level across videos from the
current one to the subsequent γ videos. If a video has
the current buffer occupancy Bik less than or equal to the
buffer threshold Bith(k), the proposed algorithm runs MPC
with the moving horizon µ to determine the bitrate level Rik
and the corresponding reward Reward(Rik ) (i.e., lines 6-10).
In other words, within the range of the current video to
the next γ videos, our algorithm selects the first video that
meets the condition of having a buffer occupancy below the
buffer threshold to run MPC. It is important to note that
different moving horizons of theMPC are used for the current
video and the next videos. In particular, we set the moving
horizon of the current video to 5 and of the next videos
to 2. Subsequent to the MPC phase, the algorithm selects the
bitrate level with the highest reward as the optimal choice for
downloading the next chunk (i.e., lines 12-15), and terminates
the examination (line 16). If the buffer occupancy of the
current and all the next γ videos exceed the buffer threshold,
we will put the downloader to sleep for σ seconds (line 22).

V. EVALUATION
A. EXPERIMENTAL SETTINGS
For the experiment, we implement and evaluate the proposed
method under different network conditions and user behavior
using a simulator, and datasets provided by [16] and [20].
In each particular scenario, we compute the performance
metrics for both QoE and Data Wastage. Subsequently,
we calculate and present the average results across all cases in
Figure 5, Figure 6, and Figure 7 in the following subsection.
Related studies, including [9], [13], and [15], have also used
the same evaluation approach to assess the performance of
their proposed methods. This approach has allowed us to
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FIGURE 3. CDFs of throughput of four network trace types: (a) High,
(b) Medium, (c) Low, (d) Mixed.

draw valuable insights and demonstrate the effectiveness of
our proposed method.

The dataset consists of seven short videos with differ-
ent content characteristics as described in Table 2. The
dataset also contains network traces and user retention rate
information. The network traces are categorized into four
types, namely high, medium, low, and mixed. There are
twenty network traces for each type, each trace lasts for
2900 seconds. The network throughput is updated every
500ms to simulate real network conditions as accurately as
possible. The CDF of four network throughput types is shown
in Figure 3. Each video is encoded into three bitrate levels
in Variable Bitrate (VBR) mode, and the videos are divided
into multiple chunks with a duration of one second each
(τ = 1). The user retention rate data provides information
about the probability of users switching to the next video at
different points in time during video playback. For instance,
consider the following retention rate data: [(0, 1), (1, 0.95),
(2, 0.81), (3, 0.74), (4, 0.69), (5, 0.57), (6, 0.43), (7, 0)],
which represents the user retention rate of a 6-second video.
This data indicates that at the end of the first second, 95%
of users are still watching, and only 43% of users watch
the entire video [16]. In addition, the simulator supports five
video players, therefore, it allows the user agent to preload
chunks of the current and the next four videos in the playlist.
Therefore, in our algorithm, the parameter γ is set to 4 (line 4
in Algorithm 1).

In the bandwidth prediction step, the parameter settings
for achieving accurate results are crucial. Specifically, we set
the number of past bandwidth samples, denoted as M in
Eq.(18)∼(20), to 15, while configuring the smooth weight
parameter, represented as η in Eq.(19), to a value of 0.8.
It is noteworthy that increasing the value of M can cause
inaccuracies in predictions, attributed to the inclusion of
outdated samples. Conversely, a smaller value could result in
an insufficient representation of the network’s past behavior.

For η, opting for a lower value prioritizes the influence
of recent samples in bandwidth prediction, while still
considering past trends. This balanced selection effectively
captures both past and recent bandwidth trends, enhancing
the precision of bandwidth predictions. Additionally, our
proposed method includes the sleep time σ for the down-
loader, which is set to 0.5 seconds. This strategy lets the
downloader temporarily pause when no chunk downloads are
necessary at a particular step, preventing data wastage from
redundant preloaded chunks and reducing computational
efforts during inactivity. The impacts of these parameters on
the performance of the proposed method are investigated in
Section V-B.
In this study, we compare our proposed method with

five existing methods. The reference methods used in our
evaluation are as follows:

1) Next-One: This method preloads only the current and
the next video, without considering bitrate adaptation.
The next video will be preloaded once the preloading
of the current video is completed. This method is
applied by the Douyin app [11].

2) Network-Based: This is the proposed method in [8].
The user agent is allowed to preload chunks of the
current and the nextK videos. However, only B chunks
ahead can be preloaded. The parameters B and K are
calculated based on the past network throughput. This
method also does not encompass bitrate adaptation.

3) PDAS: This method is rank first at MMGC2022 Short
Video Streaming which is presented in [9]. The authors
proposed a dynamic maximum buffer size scheme
that utilizes the estimated harmonic mean network
throughput and the retention probability of the user
viewing each video. If the buffer occupancy reaches the
buffer size threshold for all videos, the user agent will
sleep for 50milliseconds. RobustMPC is used to decide
bitrate levels for each chunk.

4) Fixed-Preload: This method is a baseline algorithm
that is provided by MMGC2022 [16]. The downloader
only downloads the next video when the current
video is downloaded completely. The next videos are
preloaded up to 4 chunks ahead which depends on
the user retention rate. After that, the bitrate level is
decided by the buffer occupancy of the video.

5) No-Save: This is also a default baseline ofMMGC2022.
It is quite similar to the Fixed-Preload method except
that the next videos have a preloaded threshold of
800KBytes. RobustMPC [19] is also used to calculate
the optimal bitrate level.

It should be noted that for those methods where bitrate
adaptation is not considered, we use the highest quality
level for all video chunks. To evaluate the performance of
each method, 50 different traces of user viewing behaviors
are generated based on user retention rate data. The CDF
of the user retention time for each video in the dataset is
shown in Figure 4. Consequently, with 80 network traces and
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FIGURE 4. CDFs of users retention time for each video used in the evaluation.

FIGURE 5. Average QoE and its components of the proposed method and the reference methods.

50 user traces, our experimental results ensure fairness in the
performance comparison between the methods.

B. EXPERIMENTAL RESULTS
1) QOE-WASTAGE TRADE-OFF EVALUATION
Figure 5 and Figure 6 present the average QoE and the
average data wastage results for our proposed method

and five reference methods over 50 user traces under
four network conditions. Overall, our method demonstrates
a significant reduction in data wastage compared to the
reference methods, while achieving the highest QoE score.
Furthermore, our proposed method consistently outper-
forms the reference methods across all network scenar-
ios, including High, Medium, Low, and Mixed network
conditions.
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FIGURE 6. Average data wastage of the proposed method and the
reference methods.

FIGURE 7. CDF normalized QoE-Wastage trade-off of the proposed
method and the reference methods across all scenarios.

Figure 5 presents the average QoE value along with its
components, namely bitrate quality, re-buffering time, and
bitrate variation. In scenarios characterized by low and fluc-
tuating network throughput, bitrate adaptation plays a crucial
role. Despite the Next-One and Network-based methods
exhibiting the highest bitrate quality and no bitrate variation
(constant bitrate level), they demonstrate significantly low
QoE values due to a high amount of re-buffering time,
resulting in a poor user experience. On the other hand, our
proposed method achieves higher bitrate quality and lower
bitrate variation compared to the remaining methods, albeit
with slightly increased re-buffering time. Overall, our method
presents a noticeable enhancement in the QoE score, showing
a 25% increase compared to the PDAS method. Furthermore,
it significantly outperforms the other remaining methods,
improving QoE scores by 12% compared to No-Save, and
27% compared to Fixed-Preload. Our method also reaches
a more satisfactory QoE than the Next-One and Network-
Based methods by 45% and 40%, respectively.

Regarding the data wastage, Figure 6 demonstrates the
comparison of our proposedmethod to the referencemethods.

TABLE 3. Effects of four parameters on QoE-Wastage trade-off of the
proposed method.

It can be seen clearly that the proposed method achieves
the lowest amount of data wastage. Following close by is
the PDAS method, which causes approximately 9% higher
data wastage than ourmethod.Moreover, Network-Based and
Fixed-Preload engender even more data wastage, 44∼76%
more than our method. Compared to the No-Save and the
Next-One method, the proposed method can reduce data
wastage by 55% and 58%, respectively. Figure 7 illustrates
the CumulativeDistribution Function (CDF) of QoE-Wastage
trade-off across all scenarios, as it is observed, our method
consistently outperforms all reference methods, providing
a noticeable improvement in both QoE and data wastage
reduction.

Next, we investigate the impacts of the key parameters
on the performance of the proposed method. In particular,
we consider four parameters: 1) the number of bandwidth
samplesM that are required in Eq. (18)∼(20), 2) the smooth
weight parameter η in Eq. (19), 3) the moving horizon µ

of the MPC used for the next videos, and 4) the sleep
time σ . These four parameters are pre-determined and have
been empirically selected, with their value settings detailed
in Section IV-D and Section V-A. To reiterate for clarity,
the specific parameter values are as follows: M = 15,
η = 0.8, µ = 2, and σ = 0.5 seconds. By modifying
a single parameter value while keeping the others constant,
we examine the impact of each parameter on the QoE-
Wastage trade-off score. Table 3 shows the QoE-Wastage
trade-off of the proposed method at five different values of
the key parameters. It can be seen that the performance of
the proposed method increases as M increases from 5 to 10.
As the value of M increases further, the performance of
the proposed method is mostly stable. As for the weight
parameter η, the highest performance is observed when η =

0.8. In addition, the performance at η = 0.4 and η = 0.2 are
lower than those at η = {0.6, 0.8, 0.9}. This result indicates
that the weight should not be smaller than 0.5 for good
performance. Regarding the moving horizon of the MPC,
it can be seen that the shorter the moving horizon is, the
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FIGURE 8. Average running time of the proposed method and the
reference methods.

better the performance would become. Thus, a short moving
horizon should be used for the next videos. For the sleep time,
it is shown that there is a small difference in the performance
of the proposed method across different values of σ . This
result implies that the effects of sleep time are small.

2) RESOURCE USAGE EVALUATION
In this part, we analyze and evaluate the resource usage of
the proposed method in terms of memory usage and time
complexity.

a: MEMORY USAGE
Regarding memory usage, the operation of our proposed
method requires the availability of certain data elements,
including the most recent bandwidth samples, user retention
rate, data size of the following chunks, buffer occupancy,
and the current playing chunk. These data components are
essential for the computation of the reward function, which
is a crucial aspect of our proposed algorithm during the
MPC phase, enabling estimation of each future step. The
total required memory for the whole process is measured
approximately 56 KBytes.

b: TIME COMPLEXITY
The computational complexity of our algorithm can be
evaluated through both analytical and empirical approaches.
The complexity primarily originates from the MPC phase.
Within this phase of our proposed solution - Algorithm 1,
it calculates the reward function for all possible scenarios
of future chunks [k, k + (µ − 1)] while taking into
account a range of bitrate levelsR. This calculation involves
considering each potential download step. As a result, the
complexity of our proposed algorithm can be described as
O(µ×Rµ).

Next, we carry out experiments to measure the running
time of our proposed method and the reference methods. All
experiments are conducted on a 64-bit Windows 11 Laptop

equipped with a 2.3GHz AMD Ryzen 7 CPU and 16GB
Memory. As illustrated in Figure 8, the results show that
our proposed method has an average running time of
6.7ms, whilst PDAS takes approximately 19.5ms to execute.
Besides, the No-Save method has an average running time
of approximately 1ms, and the remaining methods complete
their executions in under 0.01 ms. Although our proposed
method does not achieve the fastest average running time,
it offers a significant improvement in terms of QoE and data
wastage. Moreover, the running time of 6.7 ms is negligible
when considering its application in the context of a real-time
adaptive short video streaming system, where the priority
lies in optimizing user experience and minimizing data
wastage.

From the above results, it can be concluded that
the proposed algorithm is relatively lightweight in both
terms of memory usage and time complexity. This char-
acteristic makes it well-suited for implementation on
resource-constrained mobile devices and for real-time
adaptation.

VI. CONCLUSION
In this paper, we present an analytical model for short
video streaming and formulate the QoE-Wastage trade-
off optimization problem as a multi-objective optimization
problem. We then propose a simple yet effective chunk
preloading and bitrate adaptation algorithm. The proposed
method uses user data and network status statistics to
decide on a suitable video chunk to download at each
step. Experiment results show that the proposed algorithm
outperforms the reference methods by approximately 12%
to 45% in terms of QoE and reduces data wastage by up
to 58%. In addition, the impacts of key parameters on the
proposed method are also investigated. Furthermore, our
proposed method is suitable for real-time adaptation due to
its reasonably low memory usage of 56 Kbytes and running
time of 6.7 ms. In future work, we will investigate advanced
adaptation techniques such as layered video coding to further
improve the system’s performance. Moreover, modeling
users’ perception of short video streaming is an important
research topic and will be addressed in our future work.
Also, we will develop mathematical models for predicting the
performance of the proposed method.
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