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ABSTRACT Social networks are becoming increasingly popular and significant. One of the most distinctive
features of these networks is their dynamic nature, which means that they change over time. Consequently,
the community structure on these platforms also changes with time, making the detection of community
structure a crucial area of research. Specifically, there is still a lack of understanding of how social
networks and communities evolve over time. In this paper, we reveal that individual changing topics
(i.e., individual temporal semantics) are a vital factor that drives community evolution. A novel dynamic
community detection model is proposed, which takes into account natural evolutionary features. The model
first partitions social networks into snapshots. It then detects the community structure at each snapshot
by utilizing individual changing topics and information from the previous snapshot. Finally, the evolution
of users’ interested topic distributions and topic distributions of communities are identified. The model is
compared with five state-of-the-art baselines on two real datasets, and the experimental results demonstrate
that our model outperforms all baselines.

INDEX TERMS Community detection, social network, graphical model, community evolution, topic model.

I. INTRODUCTION
Community detection has garnered considerable attention in
the realm of social network analysis [1], [2], [3]. Communi-
ties refer to groups of nodes that exhibit strong interconnec-
tionswithin themselveswhilemaintaining sparse connections
with nodes from other groups [4]. Understanding the com-
munity structure holds crucial importance in comprehending
the intricacies of social networks. Nevertheless, social net-
works evolve over time, leading to continuous changes in
their community structure. Conventional static community
detection methods fall short in capturing temporal dynamics.
Therefore, there is a pressing need to address the challenges
of detecting community structures dynamically andmodeling
the evolving communities in temporal social networks.

Numerous dynamic community detection models have
been proposed in the literature [5], [6]. These models
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approach the analysis of social networks by either partitioning
them into successive snapshots or treating them as temporal
networks [7], [8]. Three classes of dynamic community detec-
tion models have been proposed by researchers. The first
class consists of independent community detection methods
that partition the network into snapshots and identify commu-
nities in each snapshot separately. However, these methods
do not consider the connections and relationships between
the snapshots. On the other hand, earlier research has mainly
focused on the network’s topology, neglecting the importance
of its content. However, network content plays a crucial role
in community detection. The challenge lies in seamlessly
integrating both the network’s topology and content, a task
that has been identified as a significant obstacle [9].
This work is driven by four unsolved challenges in current

dynamic community detection models, highlighting the need
for further research.

1) The first common drawback of the existing methods
is that none of them address the issue of identifying the
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driving factors behind the evolution of communities. They
fail to explain why communities undergo changes over time.
This issue holds significant importance for several reasons.
First, social networks undergo transformations due to key
factors, and understanding these factors is essential for effec-
tively modeling the dynamic nature of social networks and
their evolving community structures. Second, the underlying
mechanisms responsible for community generation remain
unknown, and resolving these issues would enable more
accurate community detection and unveil the patterns of
community evolution. Moreover, beyond just the community
structure, comprehending community semantics is crucial.
In dynamic social networks, the meaning and context of com-
munities also change alongside their structures. Therefore,
the changing network content plays a vital role in driving the
evolution of communities [10].

2) Furthermore, gaining a comprehensive understanding of
social networks necessitates research at both the individual
and network levels. However, focusing solely on the network
scale overlooks the individual-level effects that influence
network characteristics. Therefore, it is crucial to consider
both aspects appropriately. Communities offer an appropriate
research granularity since they are composed of individuals.
The shared interests and social behaviors among individuals
give rise to community semantics and interactions across
different communities. Nevertheless, the process of how
communities emerge from an individual perspective remains
unknown. The concept of community structure implies a
trade-off between network topology and semantics. Even
though individuals within a community may communicate
more frequently, theymight engage in diverse discussions due
to different interests [11].

3) Existing studies on dynamic social networks lead us to
the conclusion that individual topic shifts play a key role in
motivating changes within social networks and communities
[12]. As depicted in Fig. 1, when nodes in a network maintain
their interests unchanged, the network remains stable. How-
ever, if some users alter their topics of interest, they tend to
interact with others who share similar interests, leading to
the formation of new edges in the network. Therefore, the
crucial factor driving community topology and semantics is
the individual’s changing topics.

4) Moreover, given that community structure involves
high-order relationships, certain nodes within the same com-
munity may not have direct links [13]. In light of this, a new
structure called the ‘‘semantic sub-community’’ should be
considered. Individuals within a semantic sub-community
belong to the same overarching community while also shar-
ing a common topic preference. Therefore, capturing the
finer nuances of community dynamics and their underlying
semantic associations is significant.

To resolve the above four challenges, we propose a
novel community detection model called DCEITS (Detect-
ing Community Evolution by utilizing Individual Temporal
Semantics) by seamlessly integrating individual changing
topics with network topology and content. DCEITS consists

of two key sub-models that address network topology and
content, both originating from individual topic changes.
During the generation process, individuals form semantic
sub-communities based on their discussions and topics. Each
edge in the network is evaluated to determine whether it
belongs to an intra-community or inter-community relation-
ship, thereby reflecting the connections between different
communities. Research has demonstrated the existence of
various types of diffusion between communities [14], making
it crucial to accurately discriminate these edges to achieve
better community detection results.

The contributions and innovations of this research include
the following aspects:

1. We unveil the primary drivers behind community evo-
lution, namely, individuals’ changing topics, which play a
pivotal role in the dynamics of communities over time. This
represents the primary innovation in our study.

2. To address the conflict arising from the definition of
community, we delve into community semantics, encom-
passing a resolution between individual-level granularity
and community-level granularity, which marks our second
innovative contribution. Moreover, we identify node topic
distributions and topic distributions of communities.

3. We rigorously evaluate the effectiveness of our proposed
model on two real datasets through comprehensive experi-
ments. The results demonstrate that DCEITS outperforms all
the baseline models.

The structure of the paper is organized as follows:
Section II provides a review of related works in the field.
In Section III, we present the intricate details of our proposed
model. Section IV outlines the process of model inference.
In Section V, we conduct experiments to validate our model’s
performance. Finally, Section VI concludes the paper and
discusses potential future directions for further research.

II. RELATED WORK
Extensive research has been conducted on community detec-
tion models [5], [6]. Certain methods focus on static networks
and solely aim to identify the static community structure
[4]. In such approaches, nodes within networks are grouped,
and the communities remain unchanged over time. Recently,
there has been significant interest in dynamic community
detection techniques due to the ever-changing nature of
networks influenced by user activities such as posting and
replying. As communities evolve with their members and
semantic properties, researchers have focused on addressing
this dynamic nature [15], [16].
In dynamic community detection models, networks are

divided into snapshots, typically by day, month, or year.
By considering the relationships between these snapshots,
researchers can detect how communities evolve over time
[17]. However, determining the nature of these relationships
can be challenging. One approach, presented in [18], involves
quantitative analysis of community evolution in dynamic
networks. This analysis includes events such as community
growth, merging, birth, contraction, splitting, and death.
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FIGURE 1. A toy social network. If user ‘‘A’’ changes interested topics at some time point, he/she would communicate
with users who are also interested in these topics. Then, new edges are generated between these pairs of users and
communities also change.

However, the evolution of communities remains a complex
procedure, especially the evolution of community semantics.
Some methods extend the classical Louvain model [19] and
use loss functions to minimize differences between commu-
nities in adjacent snapshots. The main objective is to improve
efficiency. Another classical approach, introduced in [20],
is called the FacetNet dynamic community detection model,
which leverages historical community information to analyze
community evolution through a unified process.

To intuitively and rigorously integrate community struc-
ture and community evolution, a random block model that
changes with time was proposed. This model uses a prob-
ability transition matrix to store the communities to which
all nodes in the snapshot belong [21], [22]. The process
involves placing a new node and its newly added or deleted
neighbor nodes or edges into a separate community. Another
approach in [9] transforms the content network into an edge
network addressing the evolving nature of connections and
content. The adaptability of the method makes it a valu-
able contender in understanding complex network structures
over time. In [23], community evolution is modeled as a
multiple-object optimization problem, resulting in a method
called DYNMOGA for dynamic community detection. It is
a promising method for understanding how communities
evolve over time, providing valuable insights into com-
plex network dynamics. The multiobjective aspect enhances
its versatility, making it a valuable tool for researchers in
network analysis.

In [24], each community is viewed as a group of fol-
lower nodes following potential leader nodes, with a popular
node acting as the central node. This innovative method
offers a unique perspective on how influential nodes drive
community evolution over time. It could be a valuable con-
tribution to understanding dynamic network structures and

their key drivers. The concept of closed triplets, proposed
in [25], is believed to affect the formation and evolu-
tion of networks. This work presents a novel approach to
dynamic network embedding by explicitly modeling the tri-
adic closure process. The authors argue that existing network
embedding methods often overlook the temporal depen-
dencies and the importance of triadic closure in dynamic
networks.

Numerous studies have been proposed to mine community
semantics [26], [27], [28], [29]. In the context of community,
the discussions among community members are regarded as
community semantics. Therefore, topic models are integrated
into community detection models. One innovative method,
as proposed in [30], takes a holistic approach to dissecting
and modeling concise texts within social networks, con-
sidering both their spatial and temporal dimensions. This
methodology confronts the inherent challenge of compre-
hending succinct texts in social platforms, such as tweets
or status updates, which often lack extensive length and
context. Additionally, another study [31] introduces an inven-
tive topic modeling technique that gains insights into user
preferences and intentions within social networks. This
research addresses the challenge of analyzing large-scale
social network data and extracting meaningful information
from user-generated content. Moreover, the exploration of
dynamic topic modeling finds its niche in the work of [32],
which is specifically tailored for short text streams. This
approach tackles the challenge of capturing the evolution of
topics in short texts, a common phenomenon in social media
platforms such as Twitter. Last, a unique approach to uncov-
ering trending topics within vast social network data emerges
in [33]. A blend of sparse representation and recurrent neural
networks (RNNs) is employed to identify bursty topics. This
innovation addresses the distinctive challenge posed by the
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TABLE 1. Notations.

high volume, variety, and speed characterizing social network
data.

III. METHODS
A. PROBLEM FORMULATION
All notations are shown in Table 1.
Definition 1: A social network with textual content is

defined byG = (U ,E,D).U ,E andD represent sets of users,
directed links and documents, respectively.
Definition 2. The community membership distribution

is defined by πi, where, i is the user ID and |C| is the number
of communities. Element πi,c represents the probability of
belonging to community c.
Definition 3. A topic k is defined by φk that follows a

multinomial distribution over vocabulary. For a word w, the
element φkw represents the probability of belonging to topic
k . The number of topics is |K |.
Definition 4. The topic distribution of the community at

time stamp t is defined by θc,t . The element θc,t,k represents
the probability of belonging to topic k for community c at the
time stamp t .
Definition 5. The time stamp distribution of user and

topic are defined by ψik , i ∈ U , k ∈ K , which is a
multinomial distribution over network snapshots. |T | is the
number of network snapshots.
Definition 6. Community diffusion ηc,c′ defines the

tendency of forming a link between community c and com-
munity c′. When c and c′ are closely related, ηc,c′ is larger.
Otherwise, the value of ηc,c′ is determined by the correlation
of c and c′.

B. MODEL STRUCTURE
In this section, a community detection model that gener-
ates network topology and content is designed which is
called DCEITS (Detecting Community Evolution by Utiliz-
ing Individual Temporal Semantics). Fig. 2 illustrates the
probabilistic DCEITS model graphically. It includes two
components: a) Network topology component; b) Network
content component.

1) NETWORK TOPOLOGY COMPONENT
A link E tij from user i to user j is generated as follows.
ηc,c′ represents the tendency of forming a link from user i
in community c to user j in community c′. Then, a sigmoid

function is utilized to generate this link.

P(E tii′ = 1|ci, ci′ , η)=σ (ηc,c′ ) = 1/(1 + e−ηc,c′ )

=
1
2

∫
∞

0
ϕ(ηc,c′ , ξij)P(ξij)dξij, (1)

where ξij is a parameter of the Pólya-Gamma distribution.
A joint probability distribution is derived for inference:

P(E tii′ = 1, ξij) =
1
2
ϕ(ηc,c′ , ξij)P(ξij|1, 0) (2)

2) NETWORK CONTENT COMPONENT
Network content is generated on the basis of several latent
factors, i.e., user’s community membership distribution,
community-snapshot-topic distribution and topic-word dis-
tribution. The content of the current link is generated as
follows. User i’s community indicator cij is sampled based
on its community distribution πi, which means that user i
belongs to community cij. Then, the topic ziq is sampled
based on community-topic distribution θc,t which means that
the topic of the current content is ziq. Finally, all words and
the snapshot indicator of the content are generated based on
topic-word distribution φzij and community-topic distribution
over time ψizij .

3) GENERATION PROCEDURE
The generation procedure is described as follows.

1) For each snapshot t = 1, 2, 3 . . . , |T |

a) For community indicator c = 1, 2, . . . ,C,

i) Topic distributions are sampled from θct |

α ∼ Dir(α);

b) For topic k = 1, 2, . . . ,K ,

i) Word distribution is sampled from φk | β ∼

Dir(β);

c) For each user i = 1, 2, . . . ,U ,

i) Community distribution is sampled from πi |

ρ ∼ Dir(ρ);
ii) For community indicator c = 1, 2, . . . ,C,

A) Snapshot distribution is sampled from
ψic | ϵ ∼ Dir(ϵ)

iii) For each link q = 1, 2, . . . ,

A) Community indicator is sampled from
ciq | πi ∼ Mul(πi);

B) Sample topic indicator from ziq | θciqt ∼

Mul(θciqt );
C) Sample the link from i to i′:

E tii′ | ciq, ci′q, η
∼ Ber(σ (ηciq,ci′q ));

D) For each word r = 1, 2, . . . ,

• Sample word from wiqr | φziq ∼

Mul(φziq );

E) Sample snapshot
tiq | ψiziq ∼ Mul(ψiziq );
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FIGURE 2. The graphical representation of our model.

IV. MODEL INFERENCE
A. APPROXIMATE INFERENCE
In this section, an approximate inference technique is adopted
to infer all parameters. The full posterior distribution of the
model is:

P(θ, η, ψ, φ, π, c, z, ξ |U ,E,D, ε, t, ρ, α, β)

∝ P(θ |α)P(φ|β)P(π |ρ)P(ψ |ε)P(c|π )P(z|c, θ)P(wd |z, φ)

· P(td |z, ψ)P(e, ξ |I , η, c, z). (3)

First, marginalizing {π, θ, φ, ψ} in Eq. (3):

P(c, z|.)

∝

∫
P(π |ρ)P(c|π )dπ

∫
P(θ |α)P(z|c, θ)dθ

·

∫
P(φ|β)P(wd |z, φ)dφ

∫
P(ψ |ε)P(td |c, z, ψ)dψ

· P(e, ξ )). (4)

The first integral in Eq. (4) is calculated as follows.∫
P(π |ρ)P(c|π )dπ

=

∫
(
|U |

5
i=1

0(|C|ρ)

(0(ρ))|C|

|C|

5
c=1

π
ρ−1
ic )(

|U |

5
i=1

|Di|
5
j=1

|C|

5
c=1

π
n(c)j
ic )

=
|U |

5
i=1

0(|C|ρ)

(0(ρ))C

∫
|U |

5
i=1

|C|

5
c=1

π
n(c)i +ρ−1
ic dπ

=
|U |

5
i=1

0(|C|ρ)

(0(ρ))|C|

|C|

5
c=1

0(n(c)i + ρ)

0(n(·)i + |C|ρ)
, (5)

where n(c)i represents the number of times user i is assigned
to community c. The dot in n(·)i denotes the aggregation of all
communities. For the second integral in Eq. (4),∫

P(θ |α)P(z|c, θ)dθ

=

∫
(
|C|

5
c=1

0(|K |α)

(0(α))K
|K |

5
k=1

θα−1
ctk )

|U |

5
i=1

|Di|
5
j=1

|K |

5
k=1

θ
n(k)jc
ctk dθ

=
|C|

5
c=1

0(|K |α)

(0(α))K

∫
|C|

5
c=1

|K |

5
k=1

θ
n(k)Dct+α−1
ctk dθ

=
|C|

5
c=1

0(|K |α)

(0(α))|K |

|K |

5
k=1

0(n(k)Dct + α)

0(n(·)Dct + |K |α)
, (6)

where n(k)Dct is the number of documents (i.e., contents of links)
with topic k in community c at time stamp t . For the third
integral in Eq. (4),∫

P(φ|β)P(wd |z, φ)dφ

=

∫
(
|K |

5
k=1

0(|W |β)

(0(β))|W |

|W |

5
w=1

φ
β−1
kw )

|U |

5
i=1

|Di|
5
j=1

|W |

5
w=1

φ
n(w)jz
zw dφ

=
|K |

5
k=1

0(|W |β)

(0(β))|W |

∫
|K |

5
k=1

|W |

5
w=1

φ
n(w)Dk+β−1
kw dφ

=
|K |

5
k=1

0(|W |β)

(0(β))|W |

|W |

5
w=1

0(n(w)Dk + β)

0(n(·)Dk + |W |β)
, (7)

where n(w)Dk is the number of times word w in document D is
assigned to topic k . The last part in Eq. (4) is calculated by
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Eq. (8).∫
P(ψ |ε)P(td |c, z, ψ)dψ

=

∫
|C|

5
c=1

|K |

5
k=1

0(|T |ε)

(0(ε))|T |

|T |

5
t=1

ψε−1
ck

|U |

5
i=1

|Di|
5
j=1

|T |

5
t=1

ψ
n(t)jcz
cz dψ

=
|C|

5
c=1

|K |

5
k=1

0(|T |ε)

(0(ε))|T |

∫
|C|

5
c=1

|K |

5
k=1

|T |

5
t=1

ψ
n(t)Dck+ε−1
ck dψ

=
|C|

5
c=1

|K |

5
k=1

0(|T |ε)

(0(ε))|T |

T
5
t=1

0(n(t)Dck + ε)

0(n(·)Dck + |T |ε)
, (8)

where n(t)Dck represents the frequency of links associated with
topic k in community c being assigned to time stamp t . All
latent variables are sampled by Eq. (10) – Eq. (11). Finally,
all parameters are calculated by Eq. (12) – Eq. (15).

P(cij = c|c¬ij, zij = k, tij = t)

=
P(c, z)
P(c¬ij, z)

=

∫
P(π |ρ)P(c|π )dπ∫
P(π |ρ)P(c¬ij|π )dπ

∫
P(θ |α)P(z|c, θ)dθ∫
P(θ |α)P(z|c¬ij, θ)dθ

·

∫
P(ψ |ε)P(td |c, z, ψ)dψ∫
P(ψ |ε)P(td |c¬ij, z, ψ)dψ

=
n(c)i,¬ij + ρ

n(·)i,¬ij + |C|ρ

n(k)Dct,¬ij + α

n(·)Dct,¬ij + |K |α

n(t)Dck,¬ij + ε

n(·)Dck,¬ij + |T |ε
. (9)

P(zij = k|z¬ij, cij = c, tij = t)

=
P(z, c)
P(z¬ij, c)

=

∫
P(θ |α)P(z|c, θ)dθ∫
P(θ |α)P(z¬ij|c, θ)dθ

·

∫
P(φ|β)P(wd |z, φ)dφ∫
P(φ|β)P(wd |z¬ij, φ)dφ

·

∫
P(ψ |ε)P(td |c, z, ψ)dψ∫
P(ψ |ε)P(td |c, z¬ij, ψ)dψ

=
n(k)c,¬ij + α

n(·)c,¬ij + |K |α

5
|W |

w=15
n(w)ij −1
q=0 (n(w)Dk,¬ij + q+ β)

5
n(·)ij −1
q=0 (n(·)Dk,¬ij + q+ β)

·
n(t)Dck,¬ij + ε

n(·)Dck,¬ij + |T |ε
. (10)

P(ξij|.) ∝ e
−

1
2
ξijω

2
ijP(ξij|1, 0) = PG(1, ωij). (11)

B. PARAMETER ESTIMATION

π̂ic =
n(c)i + ρ

n(·)i + |C|ρ
. (12)

θ̂ctk =
n(k)Dct + α

n(·)Dct + |K |α
. (13)

φ̂kw =
n(w)Dk + β

n(·)Dk + |W |β
. (14)

ψ̂ki,t =
n(t)Dck + ε

n(·)Dck + |T |ε
. (15)

C. ALGORITHM SUMMARIZATION AND TIME
COMPLEXITY

Algorithm 1 Inference for DCEITS
Require: U , D, E ;
Ensure: π , θ , φ, ψ , η;
1: Initialize η, β, ρ, ϵ, α;
2: for lo = 1 : Ter do
3: for e ∈ E do
4: Sample cij according to Eq. (10);
5: Sample topic indicator zij according to Eq. (10);
6: Sample ξij according to Eq. (11);
7: end for
8: for each link e ∈ E do
9: Update η by aggregating community and topic of

two endpoint users;
10: end for
11: end for

Algorithm. 1 outlines the inference procedure. Parameter
lo denotes the iterations required for convergence. During
steps 4-5, community indicators and topic indicators are
sampled. Eq. (10) requires constant time for a specific com-
munity. In line 5, the second fraction of Eq. (10) takes2(|W |)
for a specific topic. Steps 4-5 have a time complexity of
2(|U | × |D| × |C| + |U | × |D| × |K | × |W |). In step 6, ξij is
computed. Eq. (11) takes constant time, therefore, step 6 have
a complexity of 2(|E| × |C| + |E| × |K | × |W |). Step 9 cal-
culates η, with a time complexity of2(|E|). In summary, the
overall complexity is linear with respect to the size of the data.

V. EXPERIMENT
Our model’s accuracy for community detection is evalu-
ated on two real datasets compared with five state-of-the-art
baselines. All experiments are implemented on a personal
computer with Intel 5.3 GHz CPU and 128 GB RAM.

A. DATASETS
To accurately evaluate the community detection results of
DCEITS and other baselines, we utilized two authentic
datasets with known ground-truth: the Reddit dataset and
DBLP dataset, as shown in Table 2.

The Reddit data is sourced from reddit.com and pre-
processed according to the methods described in reference
[9]. It encompasses four distinct forums: Science, Movie,
Olympic Games, and Politics. In this context, users within
these forums are treated as nodes, and the connections
between posts (replies to other posts) serve as the link con-
tents. We choose a single day as a time snapshot. The dataset
is divided into 11 snapshots.
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TABLE 2. Summary of datasets with ground-truth.

TABLE 3. Experimental results comparison on Reddit and DBLP.

The DBLP dataset represents a network of co-authors in
academic publications [36]. For our analysis, we focus on
three specific research fields: Image processing, Data mining,
and Machine learning, spanning from the year 2011 to 2023,
with each year constituting a time snap. In this dataset, indi-
vidual authors are regarded as nodes, and links are established
among authors who collaboratively publish papers.

B. BASELINES
Five state-of-the-art baselines are chosen to evaluate our
model’s accuracy. Some of them model user attributes to
detect community structure. They are described as follows:

1) Louvain [19]. Louvain is a classical community detec-
tion method on static social networks.

2) Topic Correlations-Based Community Detection
(TCCD) [34]. TCCD is proposed by considering the
correlations of different topics in the community detec-
tion model.

3) Dynamic MultiObjective Genetic Algorithms
(DYNMOGA) [23]. Community evolution is modeled
by a multiple objects optimization problem.

4) A Framework for Analyzing Communities and
Evolutions in dynamic NETworks (FacetNet) [20].
This model uses historical community structure infor-
mation on each network snapshot to analyze commu-
nity evolution through a unified process.

5) Community Detection Considering Group
Homophily and Individual Personality of Topics
(GHIPT) [35]. It investigates individual personality
with regard to topics for community detection.

C. METRICS
We use GNMI (Generalized Normalized Mutual Informa-
tion), F-score and Jaccard index to evaluate community
detection accuracy including overlapping community struc-
ture. GNMI is a measure used to quantify the amount of
information shared between two sets of data while taking into
account the size and distribution of these sets. It is commonly
used in clustering and information retrieval tasks to evaluate
the quality of clustering algorithms or the performance of

FIGURE 3. Word clouds for topics: Movie, Politics, Science, and Olympics.

feature selection methods. F-score is calculated by: F1 =

2 ·
precision · recall
precision+ recall

. The Jaccard index is calculated by:

J (A,B) =
|A ∩ B|

|A ∪ B|
(i.e., measuring the similarity of samples

A and B).

D. COMPARISON WITH BASELINES
All methods are implemented 10 times. The average value of
each metric is recorded. Table 3 shows the result comparisons
between the baselines and DCEITS on the two datasets with
regard to an average score of all snapshots. The best scores
are in bold font.

According to Table 3, we obtain the following observa-
tions: (1) Our model achieves 26.19% GNMI improvement,
8.1% F-score improvement and 16.39% Jaccard improve-
ment over the second-best baseline on Reddit. For the DBLP
dataset, Table 3 shows that ourmodel achieves 19.44%GNMI
improvement, 13.04% F-score improvement and 5.08% Jac-
card improvement over the second-best baseline on DBLP.
DCEITS outperforms all baselines for all metrics. The main
reason is that DCEITS processes topics at the individual
level that are integrated together to form the topics at the
community level. Moreover, individual topics might change
over time, which leads to changes of community structure
and community semantics. DCEITS is more capable of pro-
cessing the above situations. (2) GHIPT is better than other
baselines. Because it considers users’ characteristics (i.e.,
whether sharing similarities with others within the same
community or not) that leads to diverse homophily rates in
social networks. (3) The Louvain method considering only
network topology obtains the worst score, which proves
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FIGURE 4. Word clouds for topics: Image processing, Data mining, and Machine learning.

FIGURE 5. Word clouds for topics: Covid and SARS.

FIGURE 6. Topic distributions of communities.

FIGURE 7. Comparison of the running time.

that integrating network topology and network content is
significant for community detection.

E. CASE STUDY
In this section, we analyze the word distributions of topics,
and the topic distributions of communities. (i.e., {φ, θ}).

1) WORD DISTRIBUTIONS OF TOPICS
We choose the top 20 words in each topic, excluding words
with a probability less than 0.001, to generate word cloud
illustrating the quality of the topics detected by DCEITS.
In these visualizations, word size corresponds to probability,
with larger fonts indicating higher probabilities.

In Fig. 3, the word distributions for Movie, Politics,
Science, and Olympics topics in the Reddit dataset are dis-
played. The Movie topic prominently features terms such
as ‘‘movie,’’ ‘‘film,’’ ‘‘watch,’’ and ‘‘release.’’ The Poli-
tics topic includes words such as ‘‘politic,’’ ‘‘election,’’
‘‘republican,’’ ‘‘Obama,’’ and ‘‘president.’’ The Science topic
focuses on words such as ‘‘science,’’ ‘‘time,’’ ‘‘universe,’’
and ‘‘study,’’ while the Olympics topic highlights terms such
as ‘‘Olympics,’’ ‘‘athlete,’’ ‘‘London,’’ and ‘‘win’’, as the
Olympic Games were held in London in 2012.

Fig. 4 shows the word distributions for Image Pro-
cessing, Data Mining, and Machine Learning topics in
the DBLP dataset. In the Image Processing topic, key
research terms include ‘‘image,’’ ‘‘recognition,’’ ‘‘model,’’
and ‘‘learn.’’ Data Mining topic is characterized by words
like ‘‘database,’’ ‘‘query,’’ ‘‘data,’’ ‘‘stream,’’ and ‘‘mine.’’ In
theMachine Learning topic, important research keywords are
‘‘clustering,’’ ‘‘classify,’’ ‘‘learn,’’ and ‘‘model.’’

The CORD-19 dataset (COVID-19 Open Research
Dataset) consists of research papers about COVID-19. A cita-
tion network is constructed based on this dataset. The topics
detected by DCEITS are demonstrated by word cloud,
as shown in Fig. 5. It shows that keywords ‘‘COVID,’’
‘‘transmissible,’’ ‘‘diseases,’’ and ‘‘infectious’’ are the most
important keywords relating to the Covid topic. For the
SARS topic, the keywords ‘‘coronaviruses,’’ ‘‘viruses,’’
‘‘immunized,’’ and ‘‘transmissible’’ receive the greatest
attention.

Through the above analysis, we conclude that each topic
detected by our model is meaningful.

2) TOPIC DISTRIBUTIONS OF EACH COMMUNITY
In Fig. 6(a), four doughnut charts represent four commu-
nities (i.e., Movie, Politics, Science, and Olympics). Each
color on the doughnuts denotes one topic. As it shows, the
topics of Movie, Politics, and Olympics are dominant in
theMovie, Politics, and Olympics communities, respectively.
However, for the Science community, although the Science
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topic is dominant, 22 percent of posts talk about Politics and
12 percent of posts talk about Olympics.

In Fig. 6(b), three doughnut charts represent three
communities (i.e., Data mining, Image processing, and
Machine learning). As shown, the topics for Data mining
and Machine learning are dominant in the Data mining and
Machine learning communities, respectively. However, for
the Image processing community, although the Image pro-
cessing topic is dominant, 30 percent of papers concern
Machine learning topic and 19 percent of papers concernData
mining topic due to their interdisciplinary connections.

F. COMPARISON OF THE RUNNING TIME
To compare the execution time between our model and base-
lines, all methods are implemented 10 times. The average
running time is recorded, as shown in Fig. 7. Because the
Louvain, FacetNet, and DYNMOGA methods only use net-
work topology, they obtain a low run time. TCCD, GHIPT,
and DCEITS all use network topology and network content.
TCCD considers topic correlations and isolated posts that
are not replied by others. Therefore, TCCD obtains a high
running time. Since GHIPT considers invidual characteristics
and DCEITS considers individual level topics and both use
Gibbs sampling, their running times are comparable.

G. PARAMETER SETTINGS
The sets C and K are of real values. η is randomly initi-
ated. For the Dirichlet hyper-parameters, we run DCEITS
under different values. The results show that DCEITS is
not sensitive to Dirichlet hyper-parameters, therefore, we set
them to predefined values. For the threshold for determining
overlapping communities, we test its values from 1/|C| to
0.5 with a step of 0.1. The experiments show that 1/|C| is
the best value. For each user, we choose those communi-
ties with probabilities higher than the threshold as its real
communities.

VI. CONCLUSION
First, we investigated and assessed the influence and impor-
tance of considering individual changing topics for dynamic
community detection. Individual changing topics reflect
users’ habits and make significant contributions to the inter-
actions among the users (i.e., the topology structure and
contents of a network). Second, we propose a novel method
(DCEITS) by combining user changing topics, network
topology and network contents uniformly in a generative
model. It investigates the formation of a network with com-
plex contents to infer community structure and community
topics. Third, we evaluate DCEITS on two real datasets and
compare themwith five state-of-the-art methods. Experimen-
tal results indicate that DCEITS improves the accuracy of
community detection. In addition to the accurate identifi-
cation of community structures, DCEITS can also identify
major topics in each community. In the future, we intend to
investigate how community topics evolve as a result of the
changing of users’ interests.
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