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ABSTRACT Interconnection network is a network that connects processors and is an important factor
in determining the performance of a parallel processing system. One measure of interconnection network
evaluation is network cost, defined as degree ∗ diameter. The interconnection networks proposed so far can
be classified into mesh, hypercube, and star graph types based on the number of nodes. The interconnection
network Tree − baseGraph(TGn) proposed in this study is a graph based on a full binary tree with a fixed
degree of three, and the node address is expressed using n binary numbers. In this study, routing algorithms,
Hamiltonian cycle, node disjoint parallel path, etc. are analyzed for Tree− baseGraph(TGn). TGn graph has
network cost O(6n) with a fixed degree of three and diameter 2n − 2. From the network cost viewpoint,
TGn has around 50% improvement results compared to existing fixed degree graphs such as mesh, torus,
honeycomb mesh and shuffle-exchange permutation.

INDEX TERMS Fixed degree, full binary tree, interconnection network, network cost, parallel paths.

I. INTRODUCTION
With the recent information technology development, data
has explosively increased, and the COVID-19 pandemic has
led to the development of artificial intelligence (AI) tech-
nologies for big data analysis and inference and prediction.
The demand for high-performance computers with powerful
computing capabilities is increasing in the AI, autonomous
driving, and robotics industries and high-performance com-
puters are constantly evolving in response to new demands
and requirements as these application areas diversify [1].
Related research includes ‘‘Simulation-based modeling of
coronavirus disease spread,’’ ‘‘Proposal of an efficient fed-
erated learning-based deep learning optimization model in a
distributed environment,’’ and ‘‘Development of data anal-
ysis, modeling, and deep learning recognition algorithms
for the electromagnetic field generation surrounding a living
body’’ [2], [3], [4].

High-performance parallel processing refers to a technique
in whichmultiple processors simultaneously processmultiple
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programs or partitioned parts of a single program by divid-
ing the workload [5], [6], [7]. Parallel processing computers
can be broadly categorized into multiprocessor systems with
unique memory and multicomputer systems with distributed
memory. Each processor in a multicomputer system has its
own local memory device, and the processors are connected
by a static interconnection network. The communication
between these processors is processed through message pass-
ing over the interconnection network, and the computation is
data-driven [8], [9]. Supercomputers generally refer to com-
puters that can produce, process, and utilize large amounts of
data at extremely high speeds. The Top500 list, which ranks
high-performance computers worldwide based on supercom-
puter performance criteria, is published biannually (in June
and November). The Frontier supercomputer at the Oak
Ridge National Laboratory (ORNL) in the United States has
been ranked No. 1 for the second consecutive year in the
Top500 list of the world’s fastest supercomputers, released
in May 2023. The 2nd and 3rd ranks are achieved by Japan’s
‘‘Fugaku’’ and Finland’s ‘‘Large Unified Modern Infrastruc-
ture (LUMI),’’ respectively. South Korea’s supercomputers
are ranked 8th in terms of performance [10].
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The interconnection network is a structure that connects
processors in a high-performance parallel processing com-
puter and is one of the determining factors of the performance
of a parallel processing system [11]. This means that research
on interconnection networks is needed to improve the perfor-
mance of parallel processing computers. There are various
metrics for evaluating interconnection networks, such as
degree, diameter, symmetry, cycle, fault diameter, broadcast-
ing, and embedding.

In this study, Tree−baseGraph(TGn) with a fixed degree of
three is proposed using a full binary tree. A routing algorithm
was designed for TGn and implemented the algorithm consid-
ering the degree, diameter, network cost, Hamiltonian cycle,
and node-disjoint parallel path among the network metrics.

II. INTERCONNECTION NETWORK AND FIXED DEGREE
GRAPH
In a multiprocessor system, the connection network that
supports communication between processors is called a mul-
tiprocessor connection network [12]. The interconnection
network of parallel computers is represented as an undirected
graph G = (V (G) ,E(G)). V (G) refers to the set of nodes
that constitute the graph G, and E(G) refers to the set of edges
[13]. The network evaluation metrics for the interconnection
network include the degree, diameter, network cost, connec-
tivity, symmetry, and Hamiltonian cycle.

The degree is the maximum value of edges adjacent to
any node in the interconnection network G. The diameter is
the maximum value of the shortest path between any two
nodes. The degree refers to the hardware cost of building
a system using Graph G, and the diameter refers to the
software processing cost for data transmission in the system.
The degree and diameter of a graph are inversely related.
In general, as the degree increases, the diameter decreases,
and vice versa. The network cost is the value derived by mul-
tiplying the degree by the diameter. The connectivity is the
minimum number of nodes (or edges) that need to be removed
to separate the remaining nodes into two or more disjoint
subgraphs. In terms of symmetry, it is deemed symmetric
when auto morphism that corresponds to any two nodes or
edges in the graph exists [14], [15]. In a connected graph
G, a Hamiltonian cycle is a cycle that includes all vertices.
If an interconnection network has a Hamiltonian path or a
Hamiltonian cycle, it can be easily implemented as a ring or
linear array, which can be used as a pipeline that is useful for
parallel processing [16].

The proposed interconnection networks thus far can be
categorized based on the number of nodes as follows: Mesh
category with k×n nodes, hypercube category with 2n nodes,
star graph category with n! nodes, etc. [17]. Hypercube and
star graph categories have the characteristic that the number
of edges increases as the number of nodes increases.

The node addresses in an n-dimensional hypercube are
represented by n-bit binary numbers, and any two nodes
with addresses that differ by exactly one bit are connected.
The hypercube graph is node and edge symmetric and has a

bipartite graph structure. While it has the advantage of being
able to efficiently embed interconnection network structures
such as rings, trees, and meshes, it has the disadvantage that
the node degree increases proportionally as the dimension
increases [18]. To improve this disadvantage, graphs such
as folded hyper cubes, multiply-twisted-cube, gray cubes,
and recursive circulants have been proposed by changing the
relationship between nodes and edges.

The star graph is node and edge symmetric and has
excellent scalability through a recursive structure. It has
the advantage of having a smaller number of degrees and
diameters compared to the hypercube. However, its disad-
vantages include the difficulty with being embedded with
other interconnection network structures and the number of
nodes increasing rapidly with the increase in dimensions [26],
[27], [28], [29], [30]. To address the disadvantage of the
star graph, several alternatives have been proposed, such as
an alternating group [31], star-connected cycles graph [29],
(n, k)-star graph [29], bubble-sort star graph [27], transposi-
tion graph [15], [32], and macro-star graph [33].

For the increase in the number of nodes in intercon-
nection networks, various graphs with a fixed degree have
been proposed, such as mesh, torus, shuffle exchange [19],
de Bruijn [20], butterfly [21], cube-connected-cycle [22],
diagonal mesh, honeycomb mesh, Shuffle-Exchange Permu-
tation (SEP) [31], new SEP (NSEP) [37], and others [15],
[23], [24], [25], [26].

A mesh structure is a planar graph with a grid structure and
has been widely utilized and commercialized in the form of
various systems [34], [35]. Improved structures for mesh with
reduced diameter include torus, diagonal mesh, honeycomb
mesh, etc. [35], [36]. The SEP graph has the advantage of
being able to easily simulate algorithms of graphs based on
permutation groups, similar to Cayley graphs. In recent years,
NESP with a degree of four has been proposed to improve the
network cost of the SEP graph [37].
The m-dimensional mesh Mm(N ) consists of Nm nodes

and mNm
− mNm−1 edges. Low-dimensional meshes are

easy to design and very useful from an algorithmic perspec-
tive, so they are often used as the interconnection network
of parallel processing computers [34]. As the dimension of
the mesh increases, the diameter becomes smaller, and the
bipartite width becomes larger, allowing for faster execution
of various parallel algorithms. However, this comes at the cost
of increased expenses [17], [21]. The torus graph is a network
that adds wraparound edges to the mesh structure, with a
degree of four and a diameter of

√
N [38]. The honeycomb

mesh can be made in three ways using hexagons [35], [36].
Honeycomb hexagonal mesh (HHM), honeycomb rhombic
mesh (HRoM), and honeycomb rectangular mesh (HReM)
can be made by connecting hexagons in different ways. Each
of these meshes has a degree of three, and adding wraparound
edges to them creates a honeycomb torus. HHM is simply
called honeycomb mesh (HM). HM HM t has 6t2 nodes,
9t2 − 3t edges, and a degree of three [37]. The nodes of the
SEPn graph are regular graphs represented by permutations
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TABLE 1. Comparison of fixed degree graphs.

of the set {1, 2, · · · ,n} and having a degree of three. The
SEPn graph can be easily simulated in graphs, which are
based on permutation groups such as Cayley graphs and
algorithms can be efficiently executed on the new graph with
minimal changes [31]. Interconnection network NSEPn has
n! nodes, a degree of four, a diameter of 2

3n
2

−
3
2n + 1, and

network cost Q(n2). While the degree increased by one in the
interconnection networkNSEPn compared to that of SEPn, its
improvement outcome includes more than 40% for diameter
and more than 20% for network cost [39].

III. TREE-BASED GRAPH DEFINITION AND PROPERTIES
Tree − baseGraph(TGn) refers to a graph with a degree of
three using a full binary tree. The node address for TGn is
represented by n binary numbers. In this study, the node S’s
address in TGn will be represented as an integer correspond-
ing to the binary number (0 ≤ S ≤2n − 1).
Definition 1: The n-dimensional TGn graph is represented

by n binary numbers (n ≥ 2). The node addresses of TGn are
conveniently represented as integers, ranging from {0, 1, 2,
· · · , · · · , 2n−2, 2n−1}, and the total number of nodes is 2n.
Definition 2: The nodes that make up the node sets TR, TI,

and TT in TGn are defined as follows:
Note set TR: At index I = 0, the node addresses {0}
Note set TI: At index 1 ≤ I ≤ n − 1, the node addresses

{1, 2, 3, . . . , 2n−1
− 2, 2n−1

− 1 }
Note set TT: At index I = n, the node addresses {2n−1,

2n−1
+ 1, 2n−1

+ 2, . . . , 2n − 2, 2n − 1}
Definition 3: The edges constituting the TGn graph are

defined as ER, EI , and ET according to the node addresses:
{0} for ER, {1 – 2n−1

− 1 } for EI, and {2n−1–2n − 1},
respectively.

When the node address is denoted as S(0 ≤ S ≤ 2n − 1),
the adjacent nodes to node S are as follows:
Edge ER: Connecting the node TR ={0} and the node {1,

2n−1, 2n − 1}

FIGURE 1. TG4 graph.

Edge EI : Connecting the node TI ={1, 2, 3, . . . , 2n−1
− 2,

2n−1
− 1 } and the node {2S, 2S +1,

⌊ S
2

⌋
}

Edge ET : Connecting the node TT = {2n−1, 2n−1
+ 1,

2n−1
+ 2, . . . , 2n − 2, 2n − 1} and the node {S − 1, S + 1,⌊ S

2

⌋
}

Note that node addresses 2n−1 and 2n − 1 of the node set
TT have only one adjacent node, which is connected through
index I . Thus, the node addresses adjacent to the node address
2n−1 are {0, S + 1,

⌊ S
2

⌋
}, and the node addresses adjacent to

the node address 2n − 1 are {S − 1, 0,
⌊ S
2

⌋
}.

Definition 4: The index I , which represents the location of
the node in the TGn graph, means the distance between any
node connected by the edge EI from the node TR (0 ≤I≤n).
Index I can be divided into three cases (I = 0, 1 ≤ I ≤

n − 1, I = n) and represented by node sets TR, TI, and TT
depending on each case.

Figure 1 shows the node addresses and index I in the TG4
graph (0 ≤I≤ 4). The node addresses are represented by {0,
1, 2, · · · , 15} according to Definition 1 and the number of
nodes is 16. According to Definition 2, TR =0, TI = {1,
2, 3, 4, 5, 6, 7}, and TT = {8, 9, 10, 11, 12, 13, 14, 15}.
In Figure 1, edgesER,EI , andET are represented by the bold,
solid, and dotted lines, respectively. At index I= 4 in TG4, the
connected node set of node addresses 8 and 15 in node set TT
is as follows by Definition 3. The node addresses adjacent to
node 8 are {0, 4, 9} and the node addresses adjacent to node
15 are {0, 7, 14}.
Corollary 1: Graph TGn has a full binary tree with level

n-1 as a subgraph.
Proof: Removing the edges ER that connect the node set

{1, 2n−1, 2n − 1} adjacent to node set TR (node address 0) in
the TGn and the 2n−1

− 1 edges ET that connect the node at
index n results in a full binary tree structure with level n-1. □
Property 1: Graph TGn is a connected graph.
Proof) According to Corollary 1, TGn has a full binary

tree as a subgraph. The added node is the root node TR
whose node address is 0, which increases the number of
nodes by 1 compared to that in the full binary tree structure.
TR is connected to node {1, 2n−1, 2n − 1} through edge ER
according to Definition 3. Edge EI is the same as the edge
of the full binary tree and edge ET is an edge that connects
nodes at index n. Thus, graph TGn is a connected graph. □

Since TGn is a graph that represents nodes with n bits based
on the full binary tree, it has 2n nodes.
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FIGURE 2. Direct and successor relationships of nodes S, D, D1, and D2
in TG4.

Property 2: The number of nodes in TGn is 2n.
Proof: Since TGn has a full binary tree as a subgraph, its

number of nodes is 2n−1. Node TR={0 }was added to index
0 in the full binary tree of TGn. Thus, the number of nodes in
TGn is 2n, which is one more than the number of nodes in the
full binary tree. □
Property 3: In the node address S in TGn, if S = 0, index

I is 0 and if S ≥ 1, index I is
⌊
log2S + 1

⌋
(0 ≤ S ≤ 2n − 1).

Routing is a path to transmit messages between two nodes
in the network [37]. Assuming that the start node is S and
the destination node is D, symbols used in the algorithm and
routing algorithms of TGn are presented.
The routing algorithm of TGn is performed by examining

the direct or successor relationship between any two nodes.
Definition 5: The direct and successor nodes in TGn are

represented as follows: Let us assume any node S and let
D1,D2 be any two of its three adjacent nodes whose index
value is larger than S’s. Similarly, there is a node whose index
value is greater than that ofD1,D2 among the adjacent nodes
of nodes D1,D2. Let the set of these nodes be the successor
nodes of S. As shown in Figure 2, if any node D belongs to
the successor node set of S, S is called the direct node of D,
and D is called the successor node of S.

When n = 4, node 2 is a direct node of 11. The nodes
whose index value is greater than that of 2 among three nodes
adjacent to node 2 are {4, 5}. The nodes whose index value
is greater among nodes adjacent to node {4, 5} are {8, 9, 10,
11}. Thus, the successor node set of node 2 is {4, 5, 8, 9, 10,
11}. As a result, node 11 is a successor node of node 2 and
node 2 is a direct node of node 11.
Theorem 1: When node S in TGn is a direct node of D,

it satisfies the following equation. Node S’s index is a and
node D’s index is b (b > a).

S × 2b−a ≤ D ≤ S × 2b−a + 2b−a − 1

Proof:Graph TGn satisfies the following case according to
Corollary 1.
Case 1: S × 2b−a ≤ D
b − a refers to the difference in the indexes of two nodes

and S × 2b−a is the smallest value of the nodes in the index

to which the successor node D of S belongs. Thus, it satisfies
S × 2b−a ≤ D.
Case 2: D ≤ S × 2b−a + 2b−a − 1
2b−a represents the number of nodes in the index where

D belongs among the successor nodes of S. We verified in
Case 1 that D’s minimum value was S×2b−a. The number of
node addresses of D is S×2b−a to 2b−a. Thus, the maximum
value of D is S × 2b−a + 2b−a − 1. Thus, it satisfies D ≤

S × 2b−a + 2b−a − 1.
Accordingly, it satisfies S×2b−a ≤ D ≤ S×2b−a+2b−a−

1. □
Definition 6: Simple routing (U, V) is defined as follows:
Simple routing (U, V) is a path from a starting node U to

a destination node V. First, verify whether U and V have a
direct or successor relationship using the index values of the
nodes. Then, by applying the equation in Theorem 1, decrease
the index or select and move to the successor node where the
destination node belongs to.

Case 1. When node V is a direct node of U: Decrease the
index and move to the destination node.

Case 2. When node V is a successor node of U: Select a
node where the successor node belongs to and move to the
destination node.

Case 3. In the case where it is not a direct or successor
relationship: Decrease the index until U becomes a direct
node of V and select the node by applying the equation.

Simple Routing(S, D)

a =
⌊
log2S + 1

⌋
, b =

⌊
log2D+ 1

⌋
if(S = 0)

S = 1;

while(!(S × 2b−a ≤ D ≤ S × 2b−a + 2b−a − 1))

S =
⌊ S
2

⌋
;

while(S ̸= D ){

if(S × 2b−a ≤ D ≤ S × 2b−a + 2b−a − 1)

S = S × 2;

else

S = S × 2 + 1;

}

According to the algorithm, examine whether or not the
starting node is a direct node of the destination node. Examine
the case in the graph TG4 where the starting node is a direct
node of the destination node. Let us assume that starting node
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FIGURE 3. Two subgraphs G1, G2 except for nodes 0 and 1 in TG4.

is 2 and the destination node is 10 and ‘→’ represents the
routing edge. The indexes of nodes 2 and 10 are 2 and 4, and
the path is as follows:

Path : 2 → 5 → 10

Examine when the starting node is not a direct node of the
destination node. Assuming that starting node is 4 and the
destination node is 7, the path is as follows:

Route : 4 → 2 → 1 → 3 → 7

Theorem 2: TGn’s diameter is 2n− 2.
Proof: The simple routing algorithm of TGn uses edge EM

only except when the starting node is 0. In short, it uses edges
like a tree. Let G1,G2 be two subgraphs consisting of all
nodes except nodes 0 and 1, as shown in Figure 3. The worst
case is when the starting and destination nodes belong to the
TTs of G1,G2, respectively. To move from G1 to G2 using
only edge EI , we need to move up to index 1. Since the index
of the node set TT is n, the distance to index 1 is n − 1.
Similarly, the distance to the destination node of the node set
TT is n− 1, so the diameter of TGn is 2n− 2. □
In a connected graph G, a Hamiltonian cycle is a cycle

that includes all vertices of G. If an interconnection network
contains a Hamiltonian path or a Hamiltonian cycle, it can
be easily implemented as a ring or linear array, which can be
used as a pipeline that is useful for parallel processing [19].
If G contains a Hamiltonian cycle, even if a node or edge
fails, it has a subgraph with a linear array that includes all
the remaining nodes [41].
Definition 7: The starting node of the Hamiltonian cycle

algorithm H (n) in TGn is 2n−1. The starting node of H (n) is
the node with indexI = n, which according to Definition 2,
is the smallest 2n−1 in the node set TT, consisting of nodes
{2n−1, 2n−1

+ 1, 2n−1
+ 2, . . . , 2n − 2, 2n − 1}.

Definition 8: The Hamiltonian cycle algorithm H (n) in
TGn uses the function B(m), and the algorithm is as follows
(m >0). Let us assume that the starting node is S and the
destination node is V. B(m) The function moves from S to
the node with the lesser value of index I, which is connected

FIGURE 4. Hamiltonian cycle’s functions B
(
1
)
, B(2).

FIGURE 5. Subgraphs of the Hamiltonian cycles H
(
3
)
, H(4) when

n = 3, 4.

to the edge EI, m times. Then, it moves m times to the node
with the greater value of index I. The paths of the functions
B (1) ,B(2) are shown in Figure 4. B(1) is a path that moves
once to the node with the lesser value of index I and then
moves once to the node with the greater value of index I. B(2)
is a path that moves twice each time. In other words, V =

S+1.
Corollary 2: The Hamiltonian cycle of TG2 and TG3 is

defined as follows:
The algorithm of TG2 and TG3 is fixed. According to

Definition 7, the starting node of TG2 is 2. That is, the
Hamiltonian cycle of TG2 is as follows:

Hamiltoniancycle : 2 → 1 → 3 → 0 → 2

The starting node of TG3 is 4, and the Hamiltonian cycle is
as follows:

4 → 5 → 2 → 1 → 3 → 6 → 7 → 0 → 4

Figure 5 shows a partial graph of the Hamiltonian cycle of
TG3 and TG4, with node TR, i.e., node 0, removed.
Corollary 3: When n = 4, the Hamiltonian cycle is

defined as follows:
TG3 and TG4 are special cases that are recursively called

when n ≥ 5. Thus, TG3 and TG4 are defined as corollaries.
Assuming that the starting node of TG4 is S, S = 8 according
to Definition 7. That is, the Hamiltonian cycle of TG4 is as
follows, which is indicated within the parenthesis: According
to Definition 8, the first B(1) is (8 → 4 → 9) and B(3) is
(5 → 2 → 1 → 3 → 6 → 12), and the second B(1) is
(14 → 7 → 15).

S → B (1) → S + 2 → S + 3 → B (3)

→ S + 5 → B (1) → 0 → S :

(8 → 4 → 9) → 10 → 11 → (5 → 2 → 1 → 3

→ 6 → 12) → 13 → (14 → 7 → 15) → 0 → 8

120820 VOLUME 11, 2023



B. O. Seong et al.: Full Binary Tree-Based Fixed Degree Graph Design and Parallel Algorithm

FIGURE 6. Hamiltonian cycle H (n) of TGn.

Theorem 3: TheHamiltonian cycleH (n) of TGn is defined
as follows:
H (3) ,H (4) were defined in Corollary 3.
When n ≥ 5, H (n) calls H (n − 2) to H (3) in sequence

and passes through node 1 through the B(n − 1) function.
After calling the functions fromH (3) toH (n−2) in sequence,
it arrives at the starting node through node TR.
Corollary 4: The Hamiltonian cycle algorithm H (n) of

TGn is recursive when n≥ 5.
The starting node ofH (n) is the node address 2n−1 accord-

ing to Definition 7. As shown in Figure 6,H (n) can be largely
divided into four parts as follows:

First, call the function recursively from H (n− 2) to H (3).
Second, call B(n− 1) that passes through index 1.
Third, call the function from H (3) to H (n−2) (Symmetric

to the first part).
Fourth, move to the starting node through node TR.
Property 4: The subgraph of the Hamiltonian cycle H (n)

of TGn, excluding node 0, is symmetric.
TGn is symmetric, as it recursively calls the functions

around B(n − 1) function in accordance with Corollary 4,
as can be seen in Figure 6. Thus, the subgraph of the Hamil-
tonian cycle H (n) of TGn, excluding node 0, is symmetric.

Hamiltonian cycle algorithm
B(n){
for(i = 1; i ≤ n ≤ i+ +)
S =

S
2 ;

for(i = 1; i ≤ n ≤ i+ +){
if (i = 1)
S = S × 2 + 1;

else
S = S × 2;

}}
H (n){
if (n = 2)
B (1) ;

elseif (n = 3){
S = S + 1;
B(2);

S = S + 1;
}
else {
for(i = n− 2; i ≥ 3; i− −){

H (i) ;

S = S + 1;
}
B(1);
for(i = 1; i ≤ 2; i+ +){

S = S + 1;
}
B(n− 1);
for(i = 1; i ≤ 2; i+ +){

S = S + 1;
}
B(1);
for(i = 3; i ≤ n− 2; i+ +){

S = S + 1;
H (i);

} }
S = 0;
S = 2n−1

;

}

n of the Hamiltonian cycle H (n) can be divided into odd and
even numbers.

When n ≥ 5 and n is even number n = 6, the Hamiltonian
cycle H (6) is as follows:
H (n) is recursive when n ≥ 5 and is symmetric

around B(5) according to Property 4. The called functions
are H (4) ,H (3), which range from n − 2 to n ≥ 3.
If we only look at the recursively called functions, we can
see that H (4) ,H (3) are called in sequence, followed by
B (1) ,B (5) ,B (1),H (3) ,H (4), which are symmetrical. The
moving path is shown below and the Hamiltonian cycle is
completed by passing through node TR and returning to the
starting node. The moving path of H (6) can be found in
Figure 7. For convenience, after performing H(i), the TT
nodes are represented as S ′, S ′′, S ′′′ in sequence.

S → H (4) → S ′
→ H (3) → S

′′

→ B (1) → S
′′

+ 2 → S
′′

+ 3 → B (5) →

S
′′

+ 5 → S
′′

+ 6 → B (1) → S
′′

+ 8 → H (3) → S
′′′

→ H (4) → 0 → S

When n ≥ 5 and n is odd number n = 7, the Hamiltonian
cycle H (7) is as follows:
H (n) is recursive when n ≥ 5 and is symmetric around

B(6) according to Property 4. The called functions are
H (5) ,H (4) ,H (3) , which range from n − 2 to n ≥ 3.
If we only look at the recursively called functions, we can
see that H (5) ,H (4) ,H (3) are called in sequence, fol-
lowed by B (1) ,B (6) ,B (1), H (3) ,H (4) ,H (5), which are
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FIGURE 7. Subgraphs of the Hamiltonian cycles H(6) when n = 6.

symmetrical. The travel path is shown below and finally
completes the Hamiltonian cycle by passing through node TR
and returning to the starting node.

S → H (5) → S ′
→ H (4) → S

′′

→ H (3) → S
′′′

→

B (1) → S
′′′

+ 2 → S
′′′

+ 3 → B (6) →

S
′′′

+ 5 → S
′′′

+ 6 → B (1) → S
′′′

+ 8 → H (3) → S
′′′′

→

H (4) → S
′′′′′

→ H (5) → 0 → S

When there are multiple node-disjoint paths between any
two nodes, it has the advantage of increasing speed when
transferring large amounts of data between two nodes, as well
as allowing different paths to be selected in the event of a
failure [19], [21]. Assuming that the starting node of TGn is
A and the destination node is B, three node-disjoint parallel
path algorithms, Tree(), Inside(), and Outside(), are proposed
in the routing path as follows:

Parallel path algorithm
Starting node A, Destination node B
a = log2 (A) + 1
b = log2 (B) + 1
Check(A, a)
{
while(a ̸= b){
A = A ∗ 2;
a = log2 (A) + 1;

}
if (A < B) return true;
else return false;

}
Simple Routing(A, a)

Inside(A, a)
{
if (A = 0){
A = 2n−1;
for(i = A; i < B ∗ 2n−b; i+ +)A = A+ 1;
for(i = N ; i > b; i− −)A =

⌊A
2

⌋
;

}else{
if (!

(
A ∗ 2b−a ≤ B ≤ A ∗ 2b−a + 2b−a − 1

)
){

if (Check(A, a)) {

for(i = a; i < n; i+ +)A = A ∗ 2 + 1;
for(i = A; i < B ∗ 2n−b; i+ +)A = A+ 1;
for(i = n; i > b; i− −)A =

⌊A
2

⌋
;

}else{
for(i = a; i < n; i+ +)A = A ∗ 2;
for(i = A; i > B∗2n−b+2n−b−1; i−−)A = A−1;
for(i = n; i > b; i− −)A =

⌊A
2

⌋
;

}
}else{
if (A ∗ 2b−a ≤ B ≤ A ∗ 2b−a + 2b−a−1

− 1){
A = A ∗ 2 + 1;
for(i = a; i < n; i+ +)A = A ∗ 2;
for(i = A; i > B ∗ 2n−b + 2n−b − 1; i− −)A =

A− 1;
for(i = n; i > b; i− −)A =

⌊A
2

⌋
;

}else{
A = A ∗ 2;
for(i = a; i < n; i+ +)A = A ∗ 2 + 1;

for(i = A; i < B ∗ 2n−b; i+ +)A = A+ 1;
for(i = n; i > b; i− −)A =

⌊A
2

⌋
;

} } } }

Outside(A, a)
{
if (A = 0){
A = 2n − 1;
for(i = A; i < B∗2n−b+2n−b−1; i−−)A = A−1;
for(i = n; i > b; i− −)A =

⌊A
2

⌋
;

}else{
if (!

(
A ∗ 2b−a ≤ B ≤ A ∗ 2b−a + 2b−a − 1

)
){

if (Check(A, a)) {
for(i = a; i < n; i+ +)A = A ∗ 2;
for(i = A; i > 2n−1

; i+ +)A = A− 1;
A = 0;
A = 2n − 1;
for(i = A; i > B ∗ 2n−b + 2n−b − 1; i − −)A =

A− 1;
for(i = n; i > b; i− −)A =

⌊A
2

⌋
;

}else{
for(i = a; i < n; i+ +)A = A ∗ 2 + 1;

for(i = A; i < 2n − 1; i+ +)A = A+ 1;
A = 0;

A = 2n−1;
for(i = A; i < B ∗ 2n−b; i+ +)A = A+ 1;

for(i = n; i > b; i− −)A =
⌊A
2

⌋
; }

}else{
if (A ∗ 2b−a ≤ B ≤ A ∗ 2b−a + 2b−a−1

− 1){
for(i = a; i > 0; i− −)A =

⌊A
2

⌋
;

A = 2n−1
;

for(i = A; i > B ∗ 2n−b; i+ +)A = A+ 1;
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for(i = n; i > b; i− −)A =
⌊A
2

⌋
;

}else{
for(i = a; i > 0; i− −)A =

⌊A
2

⌋
;

A = 2n − 1;
for(i = A; i > B∗2n−b+2n−b−1; i−−)A = A−1;
for(i = n; i > b; i− −)A =

⌊A
2

⌋
;

} } } }

Lemma 1: The Inside () algorithm is as follows:
Let A be an arbitrary starting node and B an arbitrary

destination node. The Inside() algorithm can be broadly cat-
egorized into two cases: when A = 0 and when A ̸= 0.
Case 1:When A = 0,
1-1 A = 2n−1

1-2 There exists a successor of B TT i,TT j(2n−1
≤

TT i,TT j ≤ 2n − 1, i < j). Iterate the following until it
satisfies A = TT i.

A = A+ 1

1-3 Iterate the following until reaching B.

A =

⌊
A
2

⌋
Case 2:When A ̸= 0,

2-1 Iterate the following according to the condition until it
satisfies A ∈ TT .

A =

⌊
A
2

⌋
orA =

⌊
A
2

⌋
+ 1

2-2 When A < TT i, iterate the following until it satisfies A =

TT i.

A = A+ 1

2-3 When A > TT j, iterate the following until it satisfies A =

TT j.

A = A− 1

2-4 When A = TT i, iterate the following according to the
condition until reaching B.

A =

⌊
A
2

⌋
orA =

⌊
A
2

⌋
+ 1

Lemma 2: The Outside () algorithm is as follows:
The Outside () algorithm is categorized into three cases.

First, when the starting node A = 0. Second, when A is
neither a direct nor a successor node of B. Third, when A
is a direct or successor node of B.
Case 1:When A = 0,
1-1 A = 2n − 1
1-2 There exists a successor of B TT i,TT j(2n−1

≤

TT i,TT j ≤ 2n − 1, i < j). Iterate the following until it
satisfies A = TT j.

A = A− 1

1-3 Iterate the following until reaching B.

A =

⌊
A
2

⌋
Case 2: A ̸= B’s direct node

The index of A is a and the index of B is b.
2-1 Compare the size of A and B using the Check ()

function.
2-2 Iterate the following according to the condition until it

satisfies A ∈ TT .

A < B : A = A ∗ 2, A > B : A = A ∗ 2 + 1

2-3 Iterate the following until it satisfies A ∈ {2n−1, 2n − 1}.

A < B : A = A− 1, A > B : A = A+ 1

2-4 A = 0
2-5 A = 2n − 1
2-6 Iterate the following according to the condition until it

satisfies A = TT j.

A < B : A = A− 1, A > B : A = A+ 1

2-7 Iterate the following until reaching B.

A =

⌊
A
2

⌋
Case 3: A = B’s direct node
3-1 Iterate the following until it satisfies A ∈ TT .

A =

⌊
A
2

⌋
3-2 Move closer to B according to the condition.

A = 2n−1orA = 2n − 1

3-3 Iterate the following according to the condition.

A = A+ 1orA = A− 1

3-4 Iterate the following until reaching B.

A =

⌊
A
2

⌋
Theorem 4: The routing paths of algorithms Tree (),

Inside (), and Outside () are node-disjoint parallel paths.
Proof) That they are parallel algorithms is demonstrated

by the fact that the paths in all three algorithms have disjoint
nodes. Assuming that starting node is A and the destination
node is B, let us assume that arbitrary nodes of TT are TT i,
TT j, TT k , TT l (2n−1

≤ i, j, k, l ≤ 2n − 1, i̸=j̸=k̸=l)
Case 1:When A =0,
Inside() and Outside() algorithms start from node TR and

each pass through nodes 2n−1 and 2n − 1, then go through
the successor nodes of B, TT i and TT j, and finally reach B
through the direct node. The path can be found in Figure 8.
Case 2:When node A is the direct node of B,
Inside() bypasses the direction in which B is located and

reaches the node TT j, and then reaches B through the node
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FIGURE 8. Case 1 of TGn’s parallel path.

FIGURE 9. Case 2 of TGn’s parallel path.

FIGURE 10. Case 3 of TGn’s parallel path.

TT i. Outside() moves from node A to TR, then searches for
the node closest to B among 2n−1 and 2n − 1, and reaches B
through node TT k . The path can be found in Figure 9.
Case 3:When the above two conditions are not satisfied

TABLE 2. Fixed degree graphs and TGn.

TABLE 3. Comparison of network cost when the number of nodes is the.

FIGURE 11. Comparison of the network costs of fixed degree graphs
when the number of nodes is the same.

Inside() searches the nodes close to B and moves to node
TT i. Then, it reaches B through TT j, the closest successor
node of B. Outside(), on the other hand, moves in the direction
away from B and reaches node TT l . Then, it arrives at either
2n−1 or 2n − 1. After that, it passes through TR and moves
towards 2n−1 or 2n − 1. Then, it reaches B through TT k , the
closest to B. The path can be found in Figure 10. □
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Table 2 summarizes the number of nodes and degrees,
diameter, and networost of fixed degree graphs and TGn.
Table 3 compares the network costs of TGn and fixed degree
graphs when the number of nodes is the same. Figure 11
verifies that TGn has the lowest increase rate in network cost
compared to other interconnection networks. This indicates
that the network cost of TGn improves more than that of
other fixed degree graphs. In particular, when the network
cost of other interconnection networks is more than 300,
TGn has 150, which improves the network cost by more than
50% compared to the existing mesh, honeycomb mesh, torus,
and SEP.

IV. CONCLUSION
In this study, a new graph TGn, which has a fixed degree of
three based on a full binary tree, was proposed, and its prop-
erties, algorithms, and Hamiltonian cycles were analyzed.
TGn has an index that represents its depth, similar to a tree.
However, it differs from a tree in that it has additional edges
between the root node and the leaf nodes, as well as between
the leaf nodes themselves. In particular, by connecting the
root node and the leaf nodes with edges, the length of the
path with a length of N is reduced to 1, thereby improving
the diameter and network cost.

In this study, the diameter of TGn was 2n− 2 and the net-
work cost was around O(6n) through the routing algorithm.
The most improved network cost can be achieved by com-
paring it with existing fixed degree graphs when the number
of nodes is the same. The network cost of TGn is about
50% better than the existing fixed degree graphs, showing
excellent results. It was verified TGn had the Hamiltonian
cycle and three node-disjoint parallel paths. As a follow-up
study on this study, a study that proves efficiency through
symmetry, failure tolerance, and embedding will be needed.
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