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ABSTRACT This paper introduces a novel regularization approach aimed at improving generalization
performance by perturbing deterministic logical expressions. We incorporate logical inference into deep
neural networks using logic gates and propose stochastic sampling to select appropriate logic gates
from a predetermined set at each node, resembling sampling from a categorical distribution. While
the Gumbel softmax relaxation facilitates effective sampling learning, the independence of perturbation
from the maximum index operation (arg max) poses challenges in maintaining consistent sampling and
preserving the original categorical probability order. To address this issue, we introduce scaled noise in
the Gumbel process, followed by normalization to unnormalized probabilities. By leveraging randomness
and introducing stochastic learning into deterministic logical transformations, we demonstrate enhanced
classification accuracy. Extensive evaluations on publicly available datasets, including UCI (adult and breast
cancer), MNIST, and CIFAR-10, establish the superiority of our method over softmax-based logical gate
networks. Our contributions significantly advance the training of logic gate-based networks, inspiring further

developments in deep logic gate network training.

INDEX TERMS Logic gates networks, reparameterization, sampling, stochastic process.

I. INTRODUCTION

The integration of logic and prior knowledge into learning
algorithms, known as inductive bias, plays a crucial role
in enhancing the generalization capabilities of machine
learning models from limited training data to making accurate
predictions on unseen data [1].

Early research in Artificial Intelligence (AI) witnessed
the development of logic networks, such as Logic Theorist
and General Problem Solver, which laid the foundation for
symbolic reasoning and rule-based problem-solving [2], [3],
[4]. Additionally, in 1943, McCulloch and Pitts introduced
the first mathematical model of a neural network, composed
of interconnected binary units, demonstrating its ability to
perform logical operations and inspiring the concept of logic
gates within neural networks [5]. The perceptron introduced
by Rosenblatt in 1957 further advanced artificial neural
networks by allowing learning through weight adjustments
[6], leading to the development of modern deep learning
models.
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The integration of logic gate networks with neural
networks presents a promising opportunity to create Al
systems capable of both pattern recognition and reasoning
based on explicit logical rules [7]. Logic gates, represented
by binary inputs and outputs, were instrumental in early
logic networks, constructing combinational logic circuits that
performed complex logical operations. The incorporation
of logic gate networks within modern neural networks
empowers Al systems to reason based on explicit conditions,
making decisions guided by logical rules, thereby offering
a hybrid problem-solving approach that combines pattern
recognition with logical reasoning. Furthermore, interpreting
and extracting logical rules from trained neural networks are
crucial aspects of this integration, fostering explainable Al
and increasing the transparency and trustworthiness of Al
systems.

However, a fundamental challenge in dealing with logical
statements and logic gates lies in their discrete represen-
tation, requiring efficient techniques to handle categorical
distributions. Sampling techniques play a vital role in various
machine learning applications, enabling the generation of
representative samples from probability distributions [8], [9].
The Gumbel-max trick [10] has emerged as a powerful
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method for drawing exact samples from unnormalized cat-
egorical distributions. By transforming the sampling process
into an optimization problem, the Gumbel-max trick provides
a sample that corresponds to the optimum of a perturbed
energy function. The Gumbel-Softmax (GS) relaxation [11],
[12] further extends this technique, allowing for error back-
propagation during deep neural network training, enabling
efficient gradient-based optimization. This breakthrough
enables the end-to-end training of models involving discrete
variables, making the Gumbel-max trick applicable in diverse
areas, including natural language processing, reinforcement
learning, and generative modeling [13].

In this paper, we propose to apply the Gumbel-Softmax
relaxation to modeling in a way that selects an appropriate
logic gate to build up complex combinational logic circuits
following neural networks (or multilayer perceptron) and
backpropagation machanism. We investigate the effective-
ness of this approach for deterministic transformations,
such as logic-based neural networks [14], which have
not been extensively explored in the related literature.
Furthermore, to facilitate end-to-end differentiable learning
with discrete categorical distributions, we propose a simple
but effective approach to naturally incorporate stochastic
learning strategies into the logic gate networks (shown in
Figure 1). Our proposed method holds promise for enhancing
the performance and interpretability of logic gate networks in
various Al applications.

The key contributions of this paper are as follows:

+ We demonstrate the validity of the stochastic sampling
process for generating maximum value-based weights
from a deterministic categorical distribution. This pro-
cess enables the construction of neural networks with
differentiable training.

o We propose a one-hot encoding parameter to be mul-
tiplied with (or selecting) the logic gate during training.
This ensures synchronization with the inference phase
and promoting better generalization.

o We establish the effectiveness of regularized unnormal-
ized probability through unit-length normalization in the
Gumbel process.

o We empirically validate the viability of the stochas-
tic logical inference process for learning logic gate
networks in classification tasks.

These contributions are significant for understanding the
training process of logic gate-based networks, particularly
in finding effective combinations of discretized rules within
deep neural networks. We have demonstrated that one
effective approach is to employ differentiable categorical
sampling techniques. We believe that our work can serve as
inspiration for further exploration of training methods in deep
logic gate networks.

Il. RELATED WORKS

In this section, we review relevant literature related to
logic gate networks, stochastic processes, normalization
techniques, and their applications in machine learning.
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A. LOGIC CIRCUIT AND SAMPLING

Digital logic circuit design involves creating electronic
circuits to perform logical operations and process digital
information. These circuits consist of interconnected logic
gates, such as AND, OR, and NOT gates, that manipulate
binary signals to perform desired computations or control
functions [15], [16].

Sampling techniques play a vital role in digital logic circuit
design, offering several advantages. They enable efficient
exploration of the vast design space, allowing designers to
evaluate and compare different circuit configurations and
identify promising candidates that meet specific requirements
[17], [18].

Sampling techniques are particularly useful in optimiza-
tion tasks, where they help explore the solution space and
refine circuit designs. Techniques like genetic algorithms and
simulated annealing leverage sampling to converge towards
better-performing designs, optimizing various metrics based
on specific objectives.

Logic design with neural networks offers an alternative
approach to digital logic circuit design, where neural
networks can learn logic functions and automatically generate
circuit structures. Machine learning algorithms, such as mul-
tilayer perceptrons (MLPs), convolutional neural networks
(CNNs), or recurrent neural networks (RNNs), have been
employed for logic design tasks, including logic synthesis,
optimization, and verification [19], [20].

Moreover, combining sampling techniques with machine
learning algorithms has been explored in digital logic circuit
design. Integrating sampling methods, such as Monte Carlo
sampling or Markov Chain Monte Carlo (MCMC), into the
training or optimization process of machine learning models
allows for improved exploration of the design space and more
robust optimization [21].

Generative models, like Variational Autoencoders (VAEs)
or Generative Adversarial Networks (GANs), combined with
sampling techniques, have been used to generate diverse
circuit architectures, offering new possibilities for circuit
synthesis and optimization [22], [23].

B. EXPLORATION AND EXPLOITATION

Balancing exploration and exploitation is crucial when
sampling from a categorical distribution, especially in
applications with exploration-exploitation dilemmas, such as
reinforcement learning [24], [25], [26]. Pure exploitation
may lead to sub-optimal solutions in the long run, while
continuous exploration can also result in sub-optimality and
unstable behavior.

Boltzmann exploration addresses this dilemma by gradu-
ally reducing the temperature of the Boltzmann distribution
during training, shifting from exploration to exploitation [26],
[27]. This approach can be combined with inverse transform
sampling to draw samples from the categorical distribution.

Alternatively, samples from a tempered categorical dis-
tribution can be obtained using the Gumbel-max trick
by changing the Boltzmann temperature explicitly or by

122489



IEEE Access

Y. Kim: Deep Stochastic Logic Gate Networks

Logic gate

n1h, (4, B)

(hq)
A Logic gate
) | T |
My Tty 1974
Logic gate J

— [0.1]

(hk)

Inputs Logic gates Coefficient

Weighted logic Output score

(a) Differentiable Logic Gate Networks [14]

Logic gate

. 0/1

Gumbel noise

(h1)
A Logic gate
(h2) T
B :
Ty T 13
Logic gate

_I_
N

Logic Inputs Logic gates Sampling

Selected logic Output logic

(b) Stochastic Logic Gate Networks

FIGURE 1. (a) Differentiable Logic Gate Networks [14] and (b) our proposed stochastic logic gate networks. Different
form (a), our proposed method contains a sampling process and produces a binary output (0 or 1).

scaling the Gumbel noise during independent sampling. The
relationship between the Boltzmann temperature and Gumbel
noise scaling has been utilized in Boltzmann-Gumbel explo-
ration (BGE), guaranteeing sub-linear regret in stochastic
multi-armed bandit problems [28]. This approach has also
found applications in recommender systems [29].

C. COMBINATIONAL LOGIC CIRCUIT

Logic gates, fundamental building blocks of digital circuits,
have inspired neural networks, where gates can have multiple
inputs and a single or multiple outputs. Combinational
logic [30] involves combining multiple basic logic gates to
perform more intricate logical operations. By incorporating
logic gates into neural networks [14], [19], [31], these models
can process data and perform logical operations efficiently,
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similar to traditional digital circuits. Combinational logic
circuits lack feedback, allowing real-time computations
based on inputs and efficient decision-making.

The versatility of combinational logic circuits extends to
neural networks, enabling the integration of simple logic gate
circuits into complex structures for handling various tasks,
from simple logical operations to complex pattern recognition
and deep learning applications.

D. UNIT-LENGTH NORMALIZATION

Unit-length normalization [32] addresses the imbalance in
probabilities that may arise due to varying logit magnitudes
in classification models. By constraining logits’ magnitudes
to lie on the surface of a unit sphere with an l>-norm of 1,
this normalization ensures balanced exponentiated logits and
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evenly distributed softmax probabilities among classes. Unit-
length normalization offers invariance to magnitude scaling,
acts as a regularization method, and normalizes the effect of
linear transformations on input features [33], [34].

The spherical softmax, or von Mises-Fisher softmax [35],
preserves both magnitude and directional information of
input logits or vectors. It handles large logits more effectively
and is robust to outliers, offering advantages over the standard
softmax.

E. NOISE AND TIKHONOV REGULARIZATION

The reason training with noise is equivalent to Tikhonov
regularization lies in the impact of noise on the learning
process and the similarity in their effects on the model [36].

When noise is added to the training data or model
parameters, it introduces random perturbations in the learning
process. These perturbations prevent the model from focusing
too much on specific data points and instead encourage it to
generalize better. By experiencing different variations of the
data due to noise, the model becomes more robust and less
likely to memorize the training data’s noise.

Tikhonov regularization, also known as ridge regulariza-
tion or I, regularization, adds a penalty term to the loss
function during training. This penalty is proportional to the
square of the model’s parameter values. The regularization
term discourages large parameter values and encourages
the model to distribute its learning across many features
rather than relying heavily on a few. Like noise, Tikhonov
regularization also helps prevent overfitting and improves
generalization.

The key insight from the paper [36] is that both noise
during training and Tikhonov regularization serve to prevent
overfitting and improve model generalization by imposing
constraints on the learning process. By introducing noise or
adding a regularization term, the models are encouraged to
learn more robust and less sensitive representations.

Ill. PRELIMINARIES

In probability and statistics, the categorical distribution
is a fundamental concept used to model discrete random
variables with possible outcomes (categories). Each category
has an associated probability. Categorical distributions are
commonly encountered in various applications, including
text generation, classification problems, and reinforcement
learning [13].

The Gumbel distribution, on the other hand, is a continuous
probability distribution used to model extreme value statis-
tics. It plays a crucial role in the Gumbel-max trick, a pow-
erful technique that allows for efficient and differentiable
sampling from a categorical distribution [10]. By leveraging
Gumbel-distributed random variables, the Gumbel-max trick
provides a way to transform continuous random variables
into discrete categorical outcomes. One particular variant
of the Gumbel-max trick is the Gumbel-Softmax, which is
widely used in machine learning [11], [12]. This is effective
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for training and generating samples in neural networks with
discrete outputs [13].

In this section, we will review the details of categorical
distributions, the Gumbel distribution, the Gumbel-max trick,
and the Gumbel-Softmax. We will explore how they work
together to enable efficient sampling and differentiable
training in neural networks dealing with discrete variables.

A. SAMPLING FROM CATEGORICAL DISTRIBUTIONS

The task of selecting one or more categories from a set
of K mutually exclusive and exhaustive options is known
as sampling from K categories. Each category represents
a distinct class or subset of data instances, and the goal
is to obtain representative samples reflecting the dataset’s
characteristics.

Let C be the set of K distinct categories, and their
class index i € C = {1,2,...,K}. To accomplish this,
we introduce Sampling Probability to represent the likelihood
of selecting each category i during the sampling process.

In practice, we can customize sampling probabilities
(potential function) based on the importance or occurrence
frequencies of each category in the data. This involves
assigning values to random variables, where the likelihood
is determined by potential functions considering interactions
among observed variables [28]. These potential functions
give rise to a ‘“‘ragged” posterior probability landscape,
but using Markov chain Monte Carlo (MCMC) [37] to
sample from the Gibbs distribution in such landscapes can
be excessively resource-intensive [38].

The categorical distribution assigns probabilities to K
distinct classes. Each probability 7; must be greater than
zero, and the sum of all probabilities should equal one
(Zlel 7 =1).

In machine learning problems, a discrete distribution
can be represented using an unconstrained vector ¢ €
RK of ¢;, which consists of arbitrary real values. The
optimization process aims to find an optimum ¢ without
applying constraints to individual ¢ values. This optimization
can be expressed using either the Gibbs or Boltzmann
distribution [13], [28]. Consequently, the representation of
the categorical distribution, denoted by normalized prob-
abilities &, involves two parameterizations: unnormalized
probabilities 6 and unnormalized log-probabilities (logits) ¢.
To introduce temperature scaling, we adopt the parameter
v € R> 0, which corresponds to ¢/t and is equivalent to
log @ [13]. The unnormalized logits ¢;., correspond to the i-
th class and depend on the value of . Hence, the probabilities

m;.r for each class i € C = {1, ..., K} are obtained using a
softmax function with the temperature parameter 7:
exp(¢;:
s = SXPG) 0
2 kec eXp(Pk;7)

where ¢;.; = ¢;/T = logb;..

The temperature 7 in the categorical distribution controls
the entropy of the distribution, influencing how the proba-
bilities are spread across the categories: a lower temperature
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leads to more certainty, while a higher temperature results in
more randomness [28]. In many cases, a common practice
is to set T to one, which simplifies the representation
of the categorical distribution using unnormalized log-
probabilities. Equation 1 describes the softmax function with
the temperature parameter 7, frequently denoted as Cat(¢, 7)
where ¢ is an unnormalized log-probability.

A random variable following the categorical distribution
is denoted as /, and a realization (sample) represented by w
signifies the index of the sampled class. In certain cases, the
sample can be represented as a one-hot embedding, a unit
vector of length C, with a one at index w and zeros elsewhere.
Various algorithms exist for efficiently sampling from the
categorical distribution, making it a widely used tool in
many applications, including machine learning and statistical
modeling [13].

B. GUMBEL DISTRIBUTION
An alternative method for formulating categorical proba-
bility without explicitly using softmax transformation or
Boltzmann distribution is the Gumbel distribution and the
Gumbel-max trick. The Gumbel distribution introduces a
random function to the potential function, enabling the com-
putation of the MAP prediction that maximizes the sampling
probability or potential function [38]. This approach provides
an efficient way to draw samples from the categorical
distribution using the Gumbel-max trick (see Section III-C).
The Gumbel distribution [39] is an instance (type I) of
the generalized extreme value distribution [9], which models
optima and rare events. A Gumbel random variable - which is
often referred to in this work as ‘a Gumbel’ - is parameterized
by location and scale parameters £ € R and B € R,
respectively as Gumbel(i, B) (or G(u, B) in short), and a
random variable following this distribution with G,, g. Both
parameters are frequently omitted when standard settings
are assumed (i.e. G := Gop1). G() is denoted as an
i-th standard Gumbel and Gumbel variables are considered
a set of identically and independently distributed (i.i.d.).
Note that, u© and B are not the mean and variance of a
Gumbel. Those mean and variance are E[G,, g] = u + vB,
E[(Gup — ElG,p))?] = %zﬂz respectively, where where
y ~ 0.577 is the Euler-Mascheroni constant and = =~ 3.14 is
the constant pi.

1) GUMBEL NOISE SAMPLING

Gumbel noise is generated using the inverse cumulative
distribution function (CDF) of the Gumbel distribution. If
U is a random variable from a uniform distribution between
0 and 1, then G = —log(—log(U)). The cumulative
distribution function (CDF)! is given by:

CDF (x) = exp (— exp(—x)) 2

IThe probability density function (PDF) of the Gumbel distribution is

givenby: f(x; i, B) = (1/B)-exp((n —x)/B)-exp(— exp(( — x)/ B)) where
x is the random variable (Gumbel-distributed variable), w is the location
parameter (a real number), B is the scale parameter (a positive real number).
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To generate random variables from a Gumbel distribution
with location parameter p and scale parameter 8, we can
follow these steps:

1) Generate a random variable U from a standard uniform

distribution between 0 and 1.

2) Compute the Gumbel noise (G) using the expression
G = —log(—log(U)). The corresponding code are
shown in Listing 1 of Appendix.

3) Scale and shift the Gumbel noise to obtain the desired
Gumbel-distributed random variable with location
parameter u and scale parameter 8. The transformation
is givenby Gy g =pn+ 8- G.

Hence, the cumulative distribution function (CDF) of the
Gumbel distribution with location parameter p and scale
parameter B is given by integrating the PDF: CDF(x) =
exp(— exp(—(x — 11)/B)).

C. GUMBEL-MAX TRICK

The Gumbel-max trick [39] is a method to sample from a
categorical random variable I ~ Cat(x). It involves adding
independent and identically distributed (i.i.d.) Gumbel noise
samples to the unnormalized log-probabilities and selecting
the index with the maximum value, which follows a Gumbel
distribution:

arg max{¢; + G} ~ Cat(r) 3)
ieC
The Gumbel-max trick can handle normalized probabilities
m by exploiting the translation-invariance of the argmax
function.” In simpler terms, adding standard Gumbel noise
to the unnormalized value ¢ and then taking the maximum
value is equivalent to sampling according to the Boltzmann
distribution in Eq. 1.

In machine learning, the Gumbel-max trick is typically
used with unnormalized probabilities to enable unconstrained
optimization of ¢ (whereas  is a probability vector).

While the Gumbel-max trick traditionally employs stan-
dard Gumbel noise samples, it can also work with i.i.d.
samples from Gumbel(w, 8), with © # 0 and 8 # 1(= 0).
The resulting distributions of the sampled index and
maximum are given by:

arg max{¢;.; + Gg%ﬁ} ~ Cat
ieC '
and

( exp (¢/(zh)) ) @)
2 iec exp (¢i/(TB))

max{gc + G4} ~ Gumbel(u + BlogZ’. p)  (5)
1

Here, Gg) represents the i-th independent Gumbel random
variable with location y and scale 8, and Z" = > ;- ¢i/(7B).

2Scaling (or normalizing) unnormalized probabilities ¢ by any positive
constant Z, results in a subtraction in logarithmic space: log(¢/Z) =
log¢ — logZ, thus Eq. 3 becomes arg max;cc{¢; + G}, This property
is derived from the fact that Gumbel random variables adhere to Luce’s
choice axiom [40], making the Gumbel-max trick applicable even with
unnormalized probabilities §; for a subset B C C: arg max;cp {¢; + GOy ~

l;cpm
Cat (i .
2ieBTi
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D. GUMBEL SOFTMAX

The Gumbel Softmax (GS) [12], also known as the Concrete
distribution [11], provides a way to obtain soft samples from
a categorical distribution, which is useful for gradient estima-
tion. It introduces soft samples S that spread the probability
mass over multiple bins, in contrast to hard/discrete samples
represented by one-hot embeddings.

The GS distribution GS(, \) is an exact relaxation of
one-hot embeddings, and the soft sample Sy € Rgo, with
|Sx| = 1, is defined as [13]: B

¢ _ e+ GV)/N

AT Tec explgr + GP)/N
where the temperature parameter A influences the entropy of
the Gibbs distribution and, consequently, the characteristics
of the generated samples. The value of A\ is a critical
hyperparameter in GS, as it affects the trade-off between
bias and variance in gradient estimation. A high A induces
high bias but low variance, while a low A reduces bias but
increases variance, possibly leading to vanishing gradients
as A — 0+4. Setting A has been a topic of investigation,
with different experiments using constant values or annealing
schemes [11], [12].

The Gumbel Softmax is widely used for gradient-based
optimization in differentiable neural networks. Addition-
ally, it has applications in solving combinatorial problems
and addressing inverse problems with discrete multivariate
random variables [41], [42].

(6)

E. DIFFICULTY WITH UNNORMALIZED LOGITS

Sampling from discrete distributions with unnormalized
probability mass functions can be challenging. Additionally,
incorporating stochasticity in deep learning models presents
difficulties in computing gradients for error backpropagation,
especially through stochastic nodes.

Recently, the Gumbel-max trick [39] has gained attention
in deep learning due to the Gumbel-Softmax gradient
estimator [11], [12], which relaxes the original trick. The
Gumbel-max trick can be viewed as a type of perturb-
and-MAP method that transforms sampling into an opti-
mization problem. In this approach, the sample corresponds
to the optimum of a perturbed energy function, where
energies are represented by unnormalized log-probabilities.
The optimization task involves finding the maximum of
the perturbed log-probabilities, which is straightforward in
unstructured settings with a limited number of classes.
However, it becomes challenging in structured models with
multiple dependent variables and a large sampling domain.

There are a few disadvantages of working with
unnormalized logits or log probabilities:

1) NUMERICAL INSTABILITY

Unnormalized logits are raw, unconstrained values, which
can lead to numerical instability when performing computa-
tions in the Gumbel-Softmax relaxation. Since the Gumbel
noise (G%) is added to the logits before applying the softmax
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function with the temperature parameter (), extreme values
in the logits can cause exponential overflow or underflow
during the exponentiation step. These numerical issues can
result in inaccurate or NaN (Not-a-Number) values, leading
to unstable and unreliable training.

2) LACK OF INTERPRETABILITY

Working with unnormalized logits in Gumbel-Softmax lacks
direct interpretability in terms of probabilities. The logits
represent the raw model outputs before any normalization
is applied. Without the normalization step, it becomes
challenging to understand the relative likelihoods or proba-
bilities assigned to different classes or outcomes. Interpreting
and reasoning about the model’s decision-making process
become more complex without the mapping to meaningful
probabilities.

3) DIFFICULTY IN CONVERGENCE

During model training, the optimization algorithms, such
as gradient-based methods, rely on the gradients to update
model parameters effectively. However, unnormalized logits
may lead to inconsistent or unreliable gradients due to the
lack of normalization. This can make it difficult for the
model to converge to an optimal solution during training.
The absence of convergence hinders the learning process and
adversely affects the model’s performance [13].

IV. PROPOSED METHOD

Perturbed unnormalized probability-based maximum argu-
ment estimation has been extensively studied in prior research
[43], [44] and has been widely adopted in machine learning
due to its effectiveness from various perspectives. This
approach involves introducing perturbations during model
training to promote exploration and introduce stochastic-
ity which is particularly valuable for tasks that require
exploration or sampling-based approaches. By accounting
for the inherent uncertainty in complex classification tasks,
perturbation-based training prevents the model from overly
focusing on specific data points and encourages better
generalization.

In contrast to logical learning with softmax, which
primarily involves deterministic transformations, we propose
a novel stochastic approach to enhance generalization perfor-
mance in logic gate networks. Specifically, we introduce a
learning scaling mechanism to adjust the Gumbel noise term.
The effectiveness of this approach in the context of logic gate
learning has not been extensively explored in the literature.

Before incorporating noise, we address the issue of
empirically inefficient unnormalized probability. To ensure
numerical consistency in computation, we propose unit-
length normalization, which scales the logits to lie on the
surface of a unit sphere with a constant /,-norm.

A. FORMULATION
Formally, a multilayer perceptron (or fully connected layers)
is a function that transforms an n-dimensional real input to
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FIGURE 2. Toy example of distribution of softmax of logits and softmax

of pertubed logits. Unnormalized logits (¢), Unit-length normalized

logits (¢/l1¢11), Perturbed logits (¢ + G). The last one, our proposed scaled perturbed logit can perserve the original order of logits.

a one-dimensional real output using n-dimensional weight
parameters. The transformation is achieved through a lin-

ear combination of the input features xg, xq, ..., x, with
their corresponding weights wg, wi, ..., w,, represented as
follows:

Yy =woxo +wixt + ...+ wpx, (7)

1) DIFFERENTIABLE LOGIC GATE NETWORKS

In the context of logic gate networks [14], the inputs consist
of a two-element set, and the network produces sixteen
outputs based on predefined Boolean functions applied to
these inputs. The inputs are two-dimensional and are selected
from a set of C(n, k)-dimensional inputs.

To calculate the sixteen outputs, the two-dimensional
inputs undergo 16 (:22k) different logic operations, repre-
senting all possible Boolean functions for the given two-
dimensional input. Each of these results is then multiplied
with a corresponding weight from a set of 16 weights.

Mathematically, the computation can be expressed as
follows:

wihi(x1, x2) + waho(x1, x2) + ... + wiehie(x1, x2)
=w-04+wr- X1 AX)+...+wie- 1 ®)

y

where The functions h;(x1, x2), for i from 1 to 16, represent
the different logic operations applied to the inputs, with
hi(x1, x2) being the logical constant 0 and /16(x1, x2) being
the logical constant 1. The specific Boolean functions are
listed in Table 1.

To make binary logic networks differentiable probabilistic
form, weights can be activated with the softmax function [14].
Using this probabilistic weight and each binary logics are

; ; . exp(wi)
computed as a weigthed summation. 7; = ST exprr
[0, 1]. Hence,

16

y= > mi hi(x1.x2) ©)

k=1
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where m; represents probabilities associated with each
hi(x1, x2).

However, there is a critical discrepancy between training
and inference in [14]. In training phase, each weight is used
with soft sample with softmax, but in the inference phase
only one weight is activated using one-hot operation for
efficient sparse operation to reduce inference time.

B. SAMPLING BASED LOGIC GATES NETWORKS
In this paper, both training and inference of logic networks,
we use one-hot code for probability term to select the best
binary logic gate to formulate the logic gates aggregation.
We propose use binary value for input and output through
all logic gate networks. Denote b € {0, 1} binary variable.
Thus, the logic gate aggregation with binary input-output
values can be written as follows:

b= ¢ hi(b1, by) (10)
ieC
where b is the resulting binary value (either 0 or 1).
¢; are unnormalized and the parameter to select logic
gate and a categorical variable with categorical distribution
Cat(my, ..., m,),C ={1,2,...,K},iistheindex that iterates
over all the values of ¢; and hi(b1, b2). ¢; represents some
coefficients or probabilities associated with each h;(b, b>).
hi(b1, by) is afunction that takes b1 and b; as input and returns
a value.
By introducing sampling coefficients, Eq. 10 can be re-
written as:
16
fb1,b2) =" di - hi(by, by) (11)
i=1

d; is the one-hot coding for a specific index i, which is 1 and
0 for all other indices.

Consequently, this operation defined in Eq. 11 can be
recursively applied through layers using the logic gate and
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selection operation f(-, -):
16

F( b1, b2), £ (b3, ba)) =D di-hi(f (b1, ba), f (b3, b)) (12)
i=1
where b1, by, b3, and b4 are binary inputs.

C. LOGIC NETWORKS WITH GUMBEL PROCESS
As described in the preliminary section, the Gumbel softmax
trick provides an effective method for sampling from a
categorical distribution. In this context, we utilize the Gumbel
softmax trick to obtain optimal coefficients, which are used
to select a logic gate.

By applying Eq. 4 to Eq. 6, Gumbel softmax with
location u, scale 8, and temperatures {\, T} can be written:

exp((¢icr + G} )/ N)
ZkeC exp((¢k;r + Gif,)ﬂ)/)‘)

where G, g =+ B - Go,1, ¢pi;r = ¢i/t, A >0and t > 0.

A > 0 is ensuring smoothness in learning and introduces
a tradeoff: low temperature values lead to samples close
to one-hot but with higher gradient variance, while high
temperature values produce smoother samples but with
smaller gradient variance [12]. For simplicity, we set the
temperature value () to 1 in this study. Hence,

exp(¢i;r + G )
ZkeC exp(¢k;r + G(()k/)S)

where GO,ﬁ = B - Go,1, Pi;c = Pirz

The individual unnormalized logits are modified by
Gumbel noise. So, it is crucial to handle perturbed logits
with great care. In practical applications, if the ranges of
the two distributions are not properly aligned, unintended
maximum indices may be returned. This issue arises from the
fact that the argmax of perturbed log-probabilities follows a
categorical distribution, while the maximum itself follows an
independent Gumbel distribution, as discussed in the work
[45]. As shown in Figure 2, a distribution of the perturbed
logic is quite different from the original logit which make
different maximum index estimation.

Si;{u,ﬁ,f,k} =

Si:f0.8,1) = (14

D. REGULARIZATION VIA NORMALIZATION

We address some disadvantages of unnormalized logits,
which include numerical instability and lack of interpretabil-
ity. Numerical instability arises from extreme values in the
logits, leading to exponential overflow or underflow during
the exponentiation step. To mitigate this, we propose unit-
length normalization, which maps the logits onto the surface
of a unit sphere, preserving their directional properties and
preventing domination by extreme values.

Unit length logits are assigned to directions on a unit
sphere, with the constraint that the associated vectors have
a magnitude of 1. This normalization allows for meaningful
interpretation of directionality and facilitates comparison of
logits in terms of their directions rather than magnitudes.
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By defining multiple sphere spaces, each logical aggregation
indicates a different direction of logical boolean function
combination, leading to enhanced interpretability.

To introduce exploration and prevent overfitting of deter-
ministic logic functions, we incorporate perturbation into the
logits using stochastic Gumbel noise. By adding this noise on
the surface of the unit sphere logits, we encourage exploration
and obtain smoother distributions, as shown in Figure 2.

E. LEARNABLE SCALING VALUE FOR GUMBEL
PERTURBATION

The randomness introduced by Gumbel noise is independent
for each category, enabling the ‘“‘argmax” operation to
consistently select the category with the highest perturbed
log-probability, regardless of other categories’ noise.

However, Gumbel perturbation does not maintain the order
of the original log probability distribution. When independent
Gumbel noise is added to the unnormalized log probabilities,
the resulting samples are perturbed versions of the original
probabilities. Consequently, the sampled category index may
differ from the original log probability distribution.

To achieve a more accurate approximation of the true cat-
egorical distribution, we repeatedly apply the Gumbel-max
trick and collect a large number of samples. As the number
of samples increases, the impact of Gumbel noise diminishes,
leading to a sampling process that better aligns with the
probabilities of the original unnormalized log probabilities.
It is important to note that this repeated sampling process is
not commonly applied to individual logic gate aggregations,
as their sampling frequency is relatively low.

In this paper, we propose a simple yet effective method to
reduce the scale of Gumbel noise by introducing a learnable
parameter, 8. To maintain parameter efficiency, we utilize
the same B value for each individual hidden layer in deep
neural networks. The modified Gumbel-Softmax operation,
incorporating the learnable scaling parameter, f, is given by:

__ exp(@i/lll + B -G
X kec exp(@r ol + B - GO)

where ||@|| replaces t in Eq. 14, and G = — log(— log(U)),
with U being a uniform random variable. By employing
one-hot encoding during training and inference, we ensure
that only one logic gate corresponding to the maximum value
is activated at each node.

Si:8 (15)

F. OUTPUT AGGREGATION AND RANKING

Following [14], we employ a straightforward aggregation
and ranking layer to obtain the final class label mapping.
The outputs are computed by aggregating the final scores as
follows:

(i+1)n/k

o
Si=z > by (16)

j=in/k+1

where b; represents binary output values calculated from the
last logic gate layer, and 7 is a normalization term.
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TABLE 1. List of logic operations using two binary input values [14], [47].

hi: —0/1 Operator arithmetic name
hi\ (A,B) (0,0 0,1) (1,0) (1,1)
h1 0 0 0 0 0 0 FALSE
ha 0 0 0 1 ANB AB AND
h3 0 0 1 0 -(A = B) A—AB AAND NOT B
hy 0 0 1 1 A A A
hs 0 1 0 0 -(A < B) B—AB  NOTAANDB
he 0 1 0 1 B B B
h7 0 1 1 0 ADB A+ B—2AB XOR
hg 0 1 1 1 AVB A+B—AB OR
hg 1 0 0 0 -(AVB) 1—(A+B—AB) NOR
hio 1 0 0 1 -(A®B) 1-(A+B—2AB) XNOR
hi1 1 0 1 0 -B 1-B AOR NOTB
hi2 1 0 1 1 A< B 1—-B+AB NOT B
hi3 1 1 0 0 —A 1-A NOT A
hig 1 1 0 1 A=B 1-A+AB NOT AORB
his 1 1 1 0 -(AAB) 1—AB NAND
hig 1 1 1 1 1 1 TRUE

TABLE 2. Experimental results on the UCI adult and breast cancer data
sets. Averaged results over 10 runs are reported [14].

Adult Acc. #Param.  Infer. Time  Space
Decision Tree Learner  79.50% =~ 50 86ns ~ 130B
Logistic Regression 84.80% 234 63ns 936B
Neural Network 84.90% 3810 635ns 15KB
Diff Logic Net [14] 84.87% 1280 5.1ns 640B
Ours 84.99% 1280 5.1ns 640B
Breast Cancer Acc. #Param.  Infer. Time  Space
Decision Tree Learner  71.90% =~ 100 82ns =~ 230B
Logistic Regression 72.90% 104 34ns 416B
Neural Network 75.30% 434 130ns 1.4KB
Diff Logic Net [14] 75.57% 640 2.8ns 320B
Ours 76.00% 640 2.8ns 320B

G. STRAIGHT-THROUGH GUMBEL-SOFTMAX ESTIMATOR
In the context of the categorical distribution of ¢, we adopt
continuous relaxations of one-hot vectors, following the
approach proposed in [12]. During the forward pass, we use
argmax to discretize d(¢) for sampling purposes. In the
backward pass, we apply a continuous approximation by
equating the gradient of d(¢) with that of S(¢), introducing
the Straight-Through (ST) Gumbel Estimator, inspired by the
biased path derivative estimator [46].

V. DISCUSSION

A. UNIT-LENGTH NORMALIZATION, PERTUBATION, AND
TIKHONOV REGULARIZATION

Unit-length normalization is applied to make data comparable
across different features and prevent certain features from
dominating the learning process due to their larger scale.
It scales feature vectors to have the same magnitude,
equalizing feature importance during model training. Addi-
tionally, perturbation is introduced by applying a scale
factor to the normalized logits, which introduces randomness
and encourages exploration during training. The training
process with noise is equivalent to Tikhonov regularization,
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as they share similarities in their effects on the learning
process.

Tikhonov regularization adds a penalty term based on
the square of model parameters to encourage the model
to distribute learning across many features and prevent
overfitting. This regularization imposes constraints on the
model’s parameter values, discouraging large parameter
values and promoting a more balanced learning process.

Both techniques, unit-length normalization and pertur-
bation, contribute to improved generalization by reducing
feature dominance and introducing randomness to the
learning process. The model becomes less sensitive to
individual feature magnitudes and is more robust to noise
and minor input variations. The reduction in variance
among logit components, combined with the regularization
effect, stabilizes the model’s predictions and leads to
more consistent and balanced confidences for different
classes, ultimately enhancing the model’s generalization
performance. The impact of noise on the learning process
and its similarity in effects with Tikhonov regularization
further supports the effectiveness of perturbation-based
training in achieving better generalization in deep learning
frameworks.

VI. EXPERIMENTS

A. EXPERIMENTAL SETUP

1) DATASETS

We conducted evaluations using several datasets for different
tasks: Adult Census [48] and Breast Cancer [49] datasets for
non-visual tasks (using categorical feature), and MNIST [50]
and CIFAR-10 [51] datasets for visual recognition tasks.
Further details about these datasets can be found in Table 5
in the Appendix.

2) COMPARED METHODS
We compared our proposed method against various network
architectures serving as baselines, including:
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TABLE 3. Experimental results using MNIST [50]. Averaged results over 10 runs are reported [14].

MNIST Acc. #Param. Space  T. [CPU] T. [GPU] OPs FLOPs

Linear Regression 91.60% 4010 16KB 3us 2.4ns (4M) 4K

Neural Network (small) 97.92% 118282  462KB 14ps 12.4ns (236M) 236K

Neural Network 98.40% 22609930 86MB 2.2ms 819ns (45G) 45M

Diff Logic Net [14] 98.47% 384000 188KB Tus (50ns) 384K |

Ours 98.61% 384000 188KB Tus (50ns) 384K |

Binary Neural Networks T. [FPGA]

FINN [52] 98.40% (96u8) 641ns 5.28M

BinaryEye [53] 98.40% 50us

ReBNet [54] 98.29% 3us

LowBitNN [55] 99.20% 152us

Sparse Neural Networks Sparsity

Var. Dropout [56] 98.08% 4000 98.50% (8M) 8K

Lo regularization [57] 98.60% 2/3 (200M) 200K

SET-MLP [58] 98.74% 89797 96.80% (180M) 180K

Sparse Function Net [62]  94.20% 3 x 1849 > 2K

TABLE 4. Experimental results on CIFAR-10 [51]. Averaged results over 10 runs are reported [14].

CIFAR-10 Acc. #Param Space T.[CPU] T.[GPU] OPs FLOPs
Neural Network (color-ch. res. =4)  50.79% 12.6M 48MB 1.2ms 370ns (25G) 25M
Diff Logic Net (small) [14] 45.62% 48K 24KB 1.3us 19ns 48K |
Diff Logic Net (medium) [14] 57.37% 512K 250KB 7.3us 29ns 512K |
Diff Logic Net (large) [14] 60.49% 1.28M 625KB (18us) (73ns) 1.28M |
Diff Logic Net (largex2) [14] 61.60% 2.56M  1.22MB (37us) (145ns) 2.56M |
Diff Logic Net (largex4) [14] 61.51% 5.12M  2.44MB (73 us) (290ns) 5.12M |
Ours (small) 47.11% 48K 24KB 1.3us 19ns 48K |
Ours (medium) 57.85% 512K 250KB 7.3us 29ns 512K |
Ours (large) 61.21% 1.28M 625KB (18us) (73ns) 1.28M |
Ours (large x 2) 62.11% 2.56M  1.22MB (37us) (145ns) 2.56M |
Ours (largex4) 61.85% 5.12M  2.44MB (73 us) (290ns) 5.12M |
Best Fully-Connected Baselines (color-ch. res. = 256)
Regularized SReLU NN [58] 68.70% 20.3M 77TMB 1.9ms 565ns (40G) 40M
Student-Teacher NN [63] 65.80% 1M 4MB 112pus 243ns (2G) 2M
Student-Teacher NN [63] 74.30% 31.6M 121MB 2.9ms 960ns (63G) 63M
Sparse Neural Networks Sparsity
PBW (ResNet32) [59] 38.64% 99.9% (140M)  (140K)
MLPrune (ResNet32) [60] 36.09% 99.9% (140M)  (140K)
ProbMask (ResNet32) [61] 76.87% 99.9% (140M)  (140K)
SET-MLP [58] 74.84% 279K 4.7MB 98.6% (558M) 558K

« Binary Neural Networks: FINN [52], BinaryEye [53],
ReBNet [54], LowBitNN [55]

o Sparse Neural Networks for MNIST: Var.Dropout
[56], Lo regularization [57], SET-MLP [58]

o Sparse Neural Networks for CIFAR-10: PBW
(ResNet32) [59], MLPrune (ResNet32) [60], ProbMask
(ResNet32) [61], SET-MLP [58]

« Sparse Function Net [62]

o Fully-Connected Baselines: Regularized SReLU NN
[58], Student-Teacher NN [63]

We gathered the comparison results from the deep
differentiable logic gate paper [14].

3) TRAINING SETTING
During training, we initialized the connections and param-
eters of each neuron randomly (generated according to
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random-seed). Our experiments utilized a consistent number
of neurons in each layer (excluding the input layer) and
comprised 4 to 8 layers, following the approach in [14]. The
Adam optimizer with a learning rate of 0.1 was employed
for model optimization. We did not apply data augmentation
or dropout to our proposed method. For the learnable scale
parameter §, we initialized it empirically, setting it inversely
proportional to the square root of the number of neurons
defined in one hidden layer of the networks.

For classification tasks, we grouped the output into k
groups, each containing n/k elements, as indicated in Eq. 16.
The number of Is in each group corresponded to the
classification score, and we retrieved the predicted class
using the arg max operation on the class scores. Training was
performed using softmax cross-entropy loss with normalized
scores [14].
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TABLE 5. Statistics of benchmark datasets.

Dataset #Classes #Train #Test #Attribute Attribute type
UCI-Adult 2 30162 15060 14 Categorical, Integer
UCI-Breast Cancer 2 207 70 9 categorical
MNIST 10 60,000 10,000 28 x 28 Gray Image
CIFAR-10 10 50,000 10,000 32 x32x3 Color Image

TABLE 6. Logic gate network architectures used in our proposed model following [14].

Dataset Model Layers  Neurons/layer  Total # Param  Temperature (7)
UCI-Adult — 5 256 1,280 20
Breast Cancer — 5 128 640 20
UCI-MNIST — 6 64,000 384,000 30
CIFAR-10 small 4 12,000 48,000 30
medium 4 128,000 512000 100

large 5 256,000 1,280,000 100

large x 2 5 512,000 2,560,000 100

large x4 5 1,024,000 5,120,000 100

TABLE 7. Compared neural networks (MLP ) baseline architectures (including a ReLU activation) [14].

Dataset Layers  Neurons/layer  Total #Param.
Adult 2 32 3,810
Breast Cancer 2 8 434
MNIST 7 2,048 22609930
CIFAR-10 5 1,024 12,597,258
Throughout the experiments, we utilized the full set of 2) MNIST

16 operators, as it was observed to perform better than
reducing the set of operators [14].

We reported computational performance using bina-
rized images for inference times. Inference times (T.) per
image were measured using an NVIDIA A6000 GPU and
single-threaded CPU running at 2.5 GHz.

For model architecture details, please refer to Table 6 in
the Appendix, following the model architecture defined in the
Diff Logic Net paper [14] for both our proposed model and
the baseline models.

B. RESULTS

We evaluated the performance of our proposed method
on the Adult Census and Breast Cancer datasets, con-
sidering model memory footprint, evaluation speed,
and accuracy as evaluation metrics. For visual recog-
nition tasks, we utilized the MNIST and CIFAR-10
datasets.

We conducted evaluations of the Diff Logic Net on
our computer and reported its accuracy performance.
Our proposed method is implemented based on the
open-source code of Diff Logic Net, publicly available at
github.com/Felix-Petersen/difflogic.

1) ADULT AND BREAST CANCER

On the Adult Census and Breast Cancer datasets, our method
outperformed the compared methods, including Diff Logic
Net [14], while maintaining fast inference speed. The results
can be found in Table 2.
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Our proposed method demonstrated superior performance
compared to several state-of-the-art methods, such as Binary
Neural Networks, Sparse Neural Networks, and Sparse
Function Net, in terms of classification accuracy, except for
LowBitNN [55] and SET-MLP [58].

During the inference phase, our proposed method, built
upon Diff Logic Net [14], showed a significant advantage,
with 10% fewer binary operations and 12 times faster GPU
computation time compared to FINN [52] of Binary Neural
Networks.

LowBitNN [55] achieved the best performance among
the compared methods on FPGA-based accelerators, utiliz-
ing convolutional neural networks with a Support Vector
Machine (SVM) classifier. However, their method’s reliance
on an 8-bit activation function and ad-hoc SVM classifier
posed drawbacks, as they deviated from the end-to-end
neural network learning paradigm. Additionally, the use of
convolutional layers in LowBitNN proved effective for image
recognition, highlighting a limitation of the Diff Logic Net
based method, which does not incorporate convolutional
layers.

SET-MLP [58] achieved slightly better accuracy with full
precision computation, but it required more binary operations
to achieve these results.

Var. Dropout [56], which adopted variational dropout
to sparsify fully connected neural networks, showed lower
accuracy and larger computational costs (OPs).

In terms of binary operations (OPs), our Diff Logic Net
based model outperformed all the other compared methods,
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showcasing the lowest number of binary operations. The
numbers in parentheses are either extrapolated or estimated.

3) CIFAR-10

For CIFAR-10 [51], we preprocess the images by applying
a binary embedding. Binarized input values are transformed
into binary images using three thresholds: 0.25, 0.5, and
0.75. For our (small and medium) models in Table 4, the
binary images have 4 channels, whereas the large models in
Table 4 use 32 channels with 31 thresholds [14]. On the other
hand, the other compared methods use the original three color
channels with 256 intensity values.

Our proposed method outperformed the original Diff Logic
Net model [14] throughout all models while preserving all
inference computation time. Some compared methods, with
larger parameters and computing costs in terms of binary or
floating operations, showed better classification accuracy.

Transfer learning-based model, Student-Teacher NN [63],
had 1 million parameters and was 64% larger than our
largest model (largex2), but showed 3.69% better accu-
racy. This model [63] required 2 million floating-point
operations (FLOPs), while our model required 2.56 million
bit-wise logic operations without additional computational
optimization.

Sparse Neural Networks, ProbMask [61], and SET-MLP
[58] showed better accuracy with higher computational cost
(approx. 140K FLOPs per image, meaning 1-2 orders of
magnitude more expensive than Diff Logic Net and our
model) [14]. More detailed analysis can be found in [14], and
more analysis about Binary Neural Networks is found in [64].

Sparse neural networks are neural networks in which only
a selected subset of connections is used. For an overview of
sparse neural networks, refer to [65].

C. COMPUTATIONAL COSTS

The experimental computation costs in our study were
calculated and estimated following the approach described
in [14]. The computational costs in detail computed
by the authors of [14] for efficient neural networks,
including Binary Neural Networks (BNNs) and Sparse
Neural Networks (Sparse NNs) can be seen at that
paper.

To provide a brief explanation of binary and floating
operations on CPUs and GPUs, we refer to [14]. A FLOP
(floating-point operation) generally corresponds to many
binary OPs (bit-wise operations). In practice, a float32
adder/multiplier is much more expensive than performing
a bitwise logical operation on int64 data types. CPUs can
perform around 3-10 int64 bit-wise operations per cycle,
while floating-point operations usually require a full clock
cycle. A conservative estimate for converting a non-sparse
model is 100 OPs per 1 FLOP. Sparse execution usually
brings an overhead of 10-100 times, making 1000 binary OPs
per 1 FLOP a very conservative estimate for sparse float32
models.
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VIi. CONCLUSION

In this paper, we introduced a novel approach to enhance
the performance of deterministic logic gate networks using
relaxed logic gate neural networks based on the Gumbel
reparameterization process. By introducing perturbations to
the normalized logits with a scale factor, we significantly
improved the generalization performance of the logic gate
network. Notably, our proposed method has no impact
on inference time, as it is only applied during training
with a limited number of learnable scale parameters. The
transformation from a deterministic softmax-based coeffi-
cient formulation to a stochastic sampling-based approach
for differentiable logic gate networks led to improved
generalization in deep learning frameworks. Although our
experiments primarily focused on straight shape logic gate
networks, we believe that our approach can be extended to
more flexible architectures with varying numbers of hidden
neurons and deeper layers, making it applicable to a wide
range of neural network models. Our work contributes to
the advancement of logic gate neural network research
and offers valuable insights for future combinational logic
model development and applications. The relaxed logic
gate framework opens up new possibilities for optimizing
and enhancing the performance of various neural network
models, providing promising avenues for further exploration
in the field. Furthermore, we intend to expand our approach
to encompass other applications, notably natural language
processing.

APPENDIX

A. SCALE AND SHIFT OF THE GUMBEL NOISE

We can write codes for scaling and shifting of the Gumbel
noise (mentioned in Section III-B) using a PyTorch library.

I import torch

> def gumbel (logits: Tensor) -> Tensor:

"’'This is modifed based on gumbel_softmax of
PyTorch libaray

4 Examples::

5 >>> logits = torch.randn (20, 32)

6 >>> # Generate a gumbel noise:

>>> gumbel (logits)

rr

gumbels = (

10 —torch.empty_like (logits, memory_format=
torch.legacy_contiguous_format) .exponential_ ()
.log()

1 )

12 return gumbels

LISTING 1. PyToch code for Gumbel noise generation.

B. DATASET STATISTICS
We provide dataset statistics in Table 5.

C. MODEL ARCHITECTURES AND HYPERPARAMETERS
We provide model architecture details in Table 6 for deep
logic gate networks and the compared MLP in Table 7.
We follow the model architectures of Diff Logic Net [14].
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