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ABSTRACT The successful production of metallic workpieces through selective laser melting requires
a quality assurance process that can effectively and nondestructively assess internal defects. Ultrasound
testing is a nondestructive testing modality that can be used to identify defects and characterize the
microstructure and properties of a material. Moreover, developments in computer vision techniques have
led to the increased use of neural networks (NNs) in quality assurance processes. Therefore, a novel
multiscale convolutional fuzzy NN (MCFNN) that uses ultrasound images as input data was developed
in this study to automatically evaluate Inconel 718 workpieces fabricated through selective laser melting
under various combinations of process parameters. The average accuracy, precision, recall, F1 score, and
number of required parameters for the developed MCFNN were comparable to those of state-of-the-art
models. Moreover, several concatenation methods, multiscale fusion strategies, and fuzzy inference systems
were implemented in the developed MCFNN for performance comparison. Subsequently, the workpieces
were examined through microcomputed tomography to verify the results obtained using ultrasound images.
The experimental results indicated that among the compared models, the MCFNN achieved the highest
average accuracy (91.44% ± 4.73%), precision (92.74% ± 3.79%), recall (91.44% ± 4.73%), and F1 score
(91.35% ± 4.82%) and required the fewest parameters (107,138). The experimental results demonstrate that
the developedMCFNNhas high potential for implementation in the embedded devices of portable ultrasound
scanning systems.

INDEX TERMS Automated quality assessment, fuzzy neural network, multiscale convolutional neural
network, metal additive manufacturing, ultrasound testing.

I. INTRODUCTION
Metal additive manufacturing (AM) technologies have been
widely applied in the aerospace, automotive, and medical
fields, as well as other fields, because they enable rapid pro-
duction and provide design freedom [1]. In particular, powder
bed fusion (PBF) is a metal AM process that offers numer-
ous benefits and is currently receiving increasing attention
as an emerging polymer and metal AM technology [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wuliang Yin .

Selective laser melting (SLM) is the most widely used PBF
process [3] and can produce near-net-shaped parts with suit-
able mechanical properties, an appropriate surface finish
appearance, and complex geometries. Because of the suit-
able mechanical properties and lightweight characteristics of
materials fabricated through SLM, the demand for SLM has
swiftly increased in recent years [4]; however, complex phys-
ical phenomena—such as heat transfer, molten metal flow,
and phase transformation—strongly affect the final product
quality in SLM [5]. To maintain a high-quality fabricated
workpiece, properties of powder, process parameters, and
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FIGURE 1. Advantages of each NDT modality.

finite-element (FE) software construction must be considered
before manufacturing [6]. Moreover, the effects of various
process parameters on the manufacturing process should be
understood so that these parameters can be optimized to
improve the manufactured product. Liu et al. explored the
tensile behavior andmicrohardness of SS 316L stainless-steel
workpieces fabricated through SLM under various scanning
speeds; their experimental results indicated that the scanning
speed strongly influenced the melting pool boundaries, resid-
ual pores, solidification cells, nano-inclusions, grain size,
and grain distributions of the workpieces [7]. The authors
of [8] found that the quality of SLM workpieces such as the
variations of structural anisotropy and heterogeneity texture
depended on the process parameters adopted for manufac-
turing. In [9], the uniformity of the material properties and
mechanical properties of workpieces could not be satisfac-
torily maintained under cyclic thermal loading. Therefore,
quality assurance—including the assessment of voids, poros-
ity, and undesirable grain characteristics—must be performed
for metallic workpiecesmanufactured through SLM to ensure
the success of their application [10].

Many nondestructive testing (NDT) techniques—such as
eddy current testing, penetrant testing, X-ray computed
tomography (CT), infrared thermographic testing, acoustic
emission testing, and ultrasound testing (UT)—are feasible
and practical for assessing metallic workpieces manufactured
through SLM [11]. The advantages of each NDT modality
are listed in Fig. 1. Specifically, UT is a highly flexible,
rapid, and cost-effective method for detecting and evaluating
surface, subsurface, and internal defects of objects [12]. The
pulse-echo technique is frequently applied in UT to mea-
sure internal voids, cracks, and microstructures of metallic
workpieces fabricated through SLM [13]. The components
of the echo signals received from the ultrasound system can
be analyzed to determine several properties, including the
average grain diameter, microstructure orientation, and mor-
phology of an object [14]. Kim et al. evaluated the defects
and microstructural differences of AM SS316L stainless-
steel workpieces fabricated under various parameters of the
hatch spacing process by using ultrasound phase velocity
measurements. Their results confirmed that phase velocity
is sensitive to pore geometry and crystallographic texture
[15]. Yuan and Yu measured the attenuation and velocity

of ultrasonic elastic waves under various laser strengths
by using the ultrasonic immersion technique. The veloc-
ity and attenuation results revealed that the laser power
influenced workpiece microstructures oriented in different
directions and the capability of inspecting internal defects
[16]. Huang et al. investigated the attenuation of ultrasound
waves and the relationship between their phase velocity and
porosity in relation to multiple workpiece depths; they found
that this attenuation and relationship were sensitive to grain
size and porosity. In addition, the feasibility of using UT to
detect variances in microstructural and mechanical properties
was revealed in [17]. Nevertheless, using UT for the thorough
quantitative analysis of the internal defects, microstructural
orientation, and morphology of metallic workpieces manu-
factured through AM is a challenging task.

Fortunately, artificial intelligence methods, such as
machine learning (ML) and deep learning (DL) [18], are
useful for extracting implicit knowledge from a dataset; thus,
thesemethods can be used to characterize in detail the internal
properties of objects manufactured through SLM. Further-
more, these methods can be used to determine relationships
among process parameters and the quality of products
produced through SLM; yet some models require many
training parameters. To reduce the computational costs of
CNNs without drastically reducing their accuracy, numerous
CNN compression techniques—including network pruning,
parameter quantization, and low-rank decomposition—have
been developed. Another method for reducing computational
cost involves decreasing the number of parameters required
in the fully connected layer of an CNN. In particular, fuzzy
NNs (FNNs), which combine the strengths of NNs and fuzzy
logic, have been applied to solve industrial classification,
prediction, and control problems for more than 40 years
[19]. The advantages of FNNs are their abilities to design
fuzzy rules automatically and integrate numerical data with
expert knowledge. Moreover, they search the parameters of a
fuzzy system by exploiting the approximation techniques of
NNs, which require relatively few training parameters. Some
relevant studies on FNNs are described as follows. Campos
Souza et al. designed an extreme learning machine–based
algorithm for an FNN to solve binary pattern classification
problems [20]. Khodabandelou and Ebadzadeh proposed a
Takagi–Sugeno–Kang (TSK) FNN combined with a support
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FIGURE 2. Workflow of the present study.

vector machine (SVM) model to leverage the relationship
between an SVM kernel and an FNN. Their results indicated
that this combined model outperformed conventional SVM
and FNN models in classification tasks [21]. Overall, FNNs
have low computational complexity, high interpretability, and
high accuracy and can manage imprecise data when applied
alongside ML algorithms.

Accordingly, in the present study, to maintain the image
extraction ability of CNNs and the characteristics of FNNs,
a multiscale convolutional FNN (MCFNN) was developed
to automatically and accurately assess the quality of work-
pieces manufactured through AM. First, metallic workpieces
were fabricated through SLM under various combinations of
process parameters (e.g., laser power, scanning speed, and
layer thickness) by using a commercial SLM machine. The
combinations of process parameters were selected according
to simulation results. The quality of the fabricated work-
pieces was measured using an analytical balance to divide
the workpieces into two quality groups. Subsequently, ultra-
sound B-mode signals and images were acquired using a
high-frequency ultrasound system. The proposed MCFNN
model and state-of-the-art DL architectures were then used
to classify the workpiece quality by using the acquired ultra-
sound images as input. Moreover, multiple multiscale fusion
strategies and fuzzy inference systems were implemented in
the designed MCFNN for performance comparison. Finally,
the average accuracy, precision, recall, F1 score, and number
of required parameters of the MCFNN were compared with
those of the other models. To verify the workpiece quality,
the fabricated workpieces were sent to the Metal Industries
Research & Development Centre, Kaohsiung, Taiwan, for
micro-CT scanning.

The contributions of this study are described as follows:
(1) A suitable UT scanning system was developed to char-

acterize the internal defects and microstructural changes
of metallic workpieces of varying quality that had been
fabricated through SLM.

(2) The proposed MCFNN model can accurately classify
the quality of metallic workpieces manufactured through
SLM from ultrasound B-mode images.

(3) The proposed MCFNN exhibited higher average accu-
racy (91.44%), precision (92.74%), and recall (91.44%)
and a higher F1 score (91.35%) as well as lower standard
deviations compared with the other models. Moreover,
the proposed model required fewer training parameters
(107,138) in the quality classification task than did the
other models.

The remainder of this paper is organized as follows:
Section II provides a detailed description of the materials
and methods used in this study, including the experimen-
tal arrangements for the fabrication of metallic workpieces
through SLM, ultrasound signal and image acquisition, and
the proposed MCFNN. Sections III and VI present the exper-
imental results and a discussion related to these results,
respectively. Finally, the conclusions of this study and rec-
ommendations for future research are provided in Section V.

II. MATERIALS AND METHODS
The developed MCFNN has the ability to extract image
features and requires few training parameters. This net-
work combines the advantages of CNNs and FNNs for the
automatic and accurate assessment of the quality of metal-
lic workpieces produced through SLM. The three parts of
this study, namely 1) the fabrication of metallic workpieces
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through SLM, 2) the acquisition of ultrasound signals and
images, and 3) the construction of the proposed MCFNN
model, are summarized in Fig. 2 and described in detail in
this section.

A. PREPARATION OF METALLIC WORKPIECES
THROUGH SLM
The heat input to the material powder directly affects thermal
behaviors during SLM. The laser energy used in SLM can
be expressed as laser energy density (LED), which is defined
as the amount of laser energy delivered to a unit volume of
powder material [22]. LED is expressed as follows:

Laser energy density (LED) =
P

v ∗ s ∗ t
(1)

where P, v, s, and t denote laser power (W), scanning speed
(mm/s), hatch space (mm), and layer thickness (mm), respec-
tively. Different materials require different optimal process
parameters, in this study, Inconel 718 metallic powder was
selected for fabrication and the process parameter combina-
tions were selected according to the simulations of Tran et al.
[23]. Considering the properties of the adopted SLMmachine
(AMP-250, Tongtai, Kaohsiung City, Taiwan), 24 Inconel
718 workpieces with dimensions of 10 × 10 × 5 mm3

each were fabricated under laser power, scanning speed, and
layer thickness ranges of 200–300 W, 850–1000 mm/s, and
20–40 µm, respectively.

B. WORKPIECE POROSITY MEASUREMENT
After the manufacturing of the workpieces, their quality
was measured using an analytical balance (AB54-S, Mettler
Toledo, Greifensee, Switzerland) according to Archimedes’
principle [24]. The fluid used in the present study was 95%
ethanol. The porosity of the workpieces was calculated after
determining their density. To classify workpiece quality, the
workpieces were divided into two classes based on porosity.
These classes served as the output labels for the proposed
classification model: those with porosity of ≤1.5% and those
with porosity of >1.5%.

C. ULTRASOUND SIGNAL AND IMAGE ACQUISITION
UT can reveal internal defects and microstructural varia-
tions within workpieces. Thus, ultrasound images constitute
appropriate input data for DL models designed to detect
workpiece quality. To acquire ultrasound images, a high-
frequency ultrasound imaging system was developed in the
present study, as depicted in Fig. 2 Part B. The actual photo
of the experiment is presented in Fig. 3.
To achieve a suitable trade-off between penetration depth

and image spatial resolution, an ultrasound transducer
with a frequency of 20 MHz was used. The developed
high-frequency ultrasound imaging systemmainly comprised
a 20-MHz, single-element ultrasound transducer (NIH Ultra-
sonic Transducer Resource Center, University of Southern
California, Los Angeles, CA, USA), a pulser (AVB2-TB-
C-EA-EF, AVTECH Electrosystems Ltd., Ottawa, Ontario,

FIGURE 3. Actual photo of the experiment.

Canada), X–Y–Z motor stages (Model SGSP26-200, Sigma
Koki, Tokyo, Japan), a motor controller (Model CSG-
602R, Sigma Koki), and an 8-bit analog-to-digital con-
verter (PXI-5152, National Instruments, Austin, TX, USA).
A data acquisition system was synchronized with the X–Y–Z
motor stages and controlled with a program developed
using LabVIEW software (National Instruments, USA). The
pulse-echo response of the transducer is displayed in Fig. 4,
and the characteristics of the transducer are presented in
Table 1.

FIGURE 4. Workflow of the present study.

TABLE 1. Characteristics of the adopted transducer.

The transducer was driven by bipolar signals generated
and amplified by a trigger generator (AFG3252, Tektronix,
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Beaverton, OR, USA). Ultrasound signals were acquired and
digitized at a sampling frequency of 500 MHz. In practice,
sampling rates between 3 and 10 times the center frequency
are typically required. However, based on expert experience,
500 MHz is considered appropriate for use in self-built
ultrasound systems [25], [26]. To convert each RF signal
into ultrasound B-mode images while reducing spurious fre-
quencies, a bandpass filter is installed before the signal is
transmitted back to the A/D converter. Additionally, a series
of processes including bandpass filtering, Hilbert transfor-
mation, logarithmic compression, and grayscale mapping
were performed, with the dynamic range set to 42 dB. The
developed imaging system achieved axial and lateral image
resolutions of 140 and 190 µm, respectively, as measured
with a 10-µm tungsten wire. Furthermore, each ultrasound
image used as input to the proposed model corresponds to
the class of workpiece porosity as the model output.

D. PROPOSED MCFNN FOR CLASSIFYING THE QUALITY
OF METALLIC WORKPIECES FABRICATED VIA SLM
The proposed MCFNN model integrates the capability of
CNNs to extract implicit knowledge from two-dimensional
imageswith the advantage of FNNs; thus, the proposedmodel
has high interpretability because of its human-like fuzzy
inferencing ability. Furthermore, to improve the training effi-
ciency, image classification performance, and interpretability
of the proposed model, a multiscale mechanism inspired by
CSPNet was included in it [27]. This mechanism enables
the feature maps produced by the proposed model to pre-
serve high-level information and these feature maps to be
effectively reused across multiple scales of the network. The
proposed MCFNN model comprises two parts: a feature
extraction part with the image convolution operation (similar
to the classical CNN) and a classification part with an FNN.
The following text provides a detailed description of the
multiscale mechanism and classification part.

1) CONCATENATION LAYER
In the concatenation layer of the proposed model, the pre-
viously used feature maps are concatenated to preserve the
diversity and enrich their patterns. To concatenate them
together, it is necessary for the feature map sizes to be the
same. Therefore, two mechanisms were employed, such as
zero padding and upsampling. The equation of this layer is
expressed as follows:

yn (x) = [f1 (x) , . . . , fn−1 (x) , fn (x)] (2)

where [,] represents the concatenation operation and where
fn(x) denotes the feature map calculated by the nth convolu-
tional layer and pooling layer.

2) FUSION LAYER
Before inputting features into the FNN of the proposed
model, a fusion layer is used as a transition layer to transform
the features into one-dimensional information. Commonly

used fusion strategies, as displayed in Fig. 5, include global
average pooling (GAP) and channel average pooling (CAP).
GAP was considered a suitable strategy for the proposed
MCFNN due to its invariance to spatial variability and low
sensitivity to noise in input images. The equation of this layer
is expressed as follows:

GAP(i) =
1

h× w

∑h

h=1

∑w

w=1
feature_map(h,w, i) (3)

whereGAP(i) is the output values for the ith channel after the
GAP operations, and h and w are the spatial dimensions of
the feature map.

FIGURE 5. Fusion strategy of GAP and CAP.

3) LINGUISTIC TERM LAYER
In the linguistic term layer of the proposed model, each node
implements a membership function, which is converted into
a fuzzy value from a crisp input value through fuzzification.
The Gaussian membership function is used in the proposed
model; this function is expressed as follows:

oLij = exp(−

(
oFi − mij

)2(
σij

)2 ) (4)

where oLij is the output of the linguistic term layer and also
represents the degree of Gaussian membership of the input
value oFi , which is outputted from fusion layer. Additionally,
mij and σij denote the mean and standard deviation of the
Gaussian function, respectively.

4) RULE LAYER
The rule layer of the proposed model establishes the con-
nections between the term nodes and rule nodes used by the
product operator; the equation of this layer is expressed as
follows:

oRj =

∏n

i
oLij (5)

where oRj is the output of the rule layer.

5) DEFUZZIFICATION LAYER
The defuzzification layer of the proposed model mainly
obtains the numerical outputs (yj) of the defuzzification
process. The weight wij represents the consequent fuzzy sin-
gleton between the jth rule node and the ith output node. The
output of the aforementioned layer is obtained as follows:

oDj =

∑m

j=1
wjoRj (6)
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yj =
oDj∑m
j−1 o

R
j

(7)

E. WORKPIECE QUALITY VERIFICATION
In subsection II-B, the measurement of porosity using
Archimedes’ principle is presented, and the classification task
in this study is also based on the porosity of the workpieces.
Yet, to verify the quality of the workpieces, third-party quality
verification is necessary; therefore, the additional examina-
tion was performed using micro-CT scanning to measure the
internal defect distributions of the metallic workpieces man-
ufactured through SLM. Micro-CT scanning was conducted
at the Metal Industries Research & Development Centre,
Kaohsiung, Taiwan, by using an industrial scanner (Phoenix
V|tome|x S240, Waygate Technologies, Hürth Germany).

III. EXPERIMENTAL RESULTS
This section describes in detail the experimental results,
including the combinations of process parameters used in
workpiece fabrication, the produced ultrasound B-mode
images, the adopted concatenation methods, the adopted fea-
ture fusion strategies, the classification performance of the
proposed MCFNN model and relevant state-of-the-art mod-
els, and micro-CT-based workpiece quality verification.

A. FABRICATION OF METALLIC WORKPIECES
THROUGH SLM
A total of 24 metallic workpieces were manufactured through
SLM under process parameter combinations selected accord-
ing to the simulation results of a previous study. The energy
density was set as approximately 165 or 82 J/mm3; the laser
power was set as 300 W; and the scanning speed was set
as 850, 900, 950, or 1000 mm/s. The energy density ranged
between 55.6 and 196.1 J/mm3, and the layer thickness was
20 or 40 µm (Table 2). In general, the surface roughness
of the workpieces with a layer thickness of 20 µm was

TABLE 2. Process parameter combinations used in workpiece fabrication.

lower than that of the workpieces with a layer thickness of
40 µm, possibly because the laser beam used to achieve a
layer thickness of 20 µm had higher energy density than that
used to achieve a layer thickness of 40 µm, which led to the
Inconel powder being melted to a greater extent when the
layer thickness was 20 µm. This phenomenon is illustrated
in photographs of the workpieces captured using an optical
camera (Fig. 6). Surface pores were observed on workpieces
17, 20, and 24.

FIGURE 6. Photographs of some fabricated metallic workpieces.

B. ULTRASOUND IMAGE ACQUISITION
From subsection III-A, it can be deduced that workpieces
with a layer thickness of 20 µm exhibit better quality due
to the higher energy density. Consequently, to visualize the
internal microstructure, ultrasound images of each work-
piece were obtained using the high-frequency ultrasound
system introduced in subsection II-C. In this regard, ultra-
sound images from six workpieces (#1, #2, #7, #17, #20,
#24) with varying porosity levels, ranging from low to high,
have been selected for presentation in Fig. 7. During UT,
the workpieces were scanned for 15 mm in both the width
and length directions by using a raster scanning strategy,
and the x–y axial intervals were set as 40 µm. The water
area in each ultrasound image was removed automatically
using an algorithm designed to maintain the workpiece area.
The workpieces with lower porosity (higher quality) exhib-
ited a more homogeneous texture in the ultrasound B-mode
images, indicating that more complex workpiece microstruc-
tures were associated with more lack-of-fusion defects and a
lower energy density of the employed laser beam. Moreover,
workpieces with higher porosity exhibited higher local signal
intensity variation, which corresponded to a higher intensity
of backscatterers in the ultrasound B-mode images. Further-
more, because of the propagation properties of ultrasound,
linear patterns were exhibited by the workpieces, possibly
resulting from the layer wise SLM manufacturing process,
which introduced the horizontal variations observed in the
ultrasound B-mode images.

C. WORKPIECE QUALITY CLASSIFICATION
WITH THE MCFNN MODEL
This subsection provides details regarding the training, test-
ing, and performance evaluations of the proposed MCFNN
model. It also provides a comparison between the proposed
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FIGURE 7. Ultrasound B-mode images obtained under various energy density and workpiece porosity values.

model and relevant state-of-the-art models. A total of
2700 ultrasound images were used for model training, and
900 ultrasound images were used for model testing. All
the ultrasound images adopted for training and testing were
resized to 128 × 128 pixels. A total of 20% of the training
data was used as validation data. Specifically, to avoid mis-
judgments by the proposed model, the ultrasound B-mode
images of one workpiece were assigned to only the training
set or testing set and not to both of them. In the experimental
environment, TensorFlow and Keras were used as the DL
environment and development tool, respectively. The models
examined in this study were trained on a 6-GB graphics
processing unit (GeForce GTX 1060, NVIDIA, Santa Clara,
California, USA) by using the Adagrad optimizer under a
batch size of 8 for 20 epochs. Moreover, all the models
were evaluated five times. The parameter settings of the
MCFNN are presented in Table 3. To evaluate the perfor-
mance of the examined models, the present study utilized
five criteria: average accuracy, precision, recall, F1 score,
and the number of training parameters. Specifically, the train-
able parameters were acquired using the Python ‘‘summary’’’
method.

TABLE 3. Parameter settings of the proposed MCFNN model.

1) CONCATENATION MECHANISM AND FUSION
STRATEGIES COMPARISON
In the concatenation layer of the proposed model, each
feature map should be expanded to a standard size. Two
methods can be used to achieve this goal: zero padding
and upsampling. Zero padding involves adding additional
pixels around an image, and upsampling involves increas-
ing the size of an image by using interpolation techniques.
Tables 4 and 5 list the average accuracy, precision, recall,
and F1 score of the MCFNN model when the zero-padding
and upsampling concatenation methods were used with the
GAP and CAP fusion strategies. Moreover, another type
of fuzzy inference system, namely a TSK system (TSK-
MCFNN) [28], was also considered in the present study.
The experimental results obtained for the MCFNN, which
included amultiscale fusionmechanism, were comparedwith
those obtained for a convolutional FNN (CFNN) and a TSK-
CFNN, both of which were designed without a multiscale
fusion mechanism. The experimental results indicated that
the MCFNN(GAP), MCFNN(CAP), TSK-MCFNN(GAP),
and TSK-MCFNN(CAP) models, which used the upsam-
pling method, exhibited the highest improvements in average
accuracy, precision, recall, and F1 score (7.69 %, 8.15%,
7.69%, and 7.77%, respectively), compared to the mod-
els which used zero padding method. In general, GAP
outperformed CAP in all the models on all the evalua-
tion indices. Moreover, the multiscale mechanism enhanced
model accuracy. For instance, the MCFNN(GAP) model had
3.31% higher accuracy than did the CFNN(GAP) model,
and the TSK-MCFNN(GAP) model had 6.31% higher accu-
racy than did the TSK-CFNN(GAP) model that used the
zero-padding method. Furthermore, the model with an FNN
exhibited higher accuracy than did the TSK-based FNN
model, possibly because the TSK-based FNN is less robust
in the presence of noisy input data [29]. Overall, the pro-
posed MCFNN(GAP) model exhibited the highest average
accuracy, precision, recall, and F1 score when using the
zero-padding and upsampling methods (90.02% and 91.44%,
91.24% and 92.74%, 90.02% and 91.44%, and 89.91% and
91.35%, respectively). In addition, the standard deviation of
the proposed MCFNN was smaller than those of the other
models.
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TABLE 4. Performance of the MCFNN, CFNN, TSK-CFNN, and TSK-MCFNN models when using the zero-padding concatenation method with the GAP and
CAP fusion strategies.

TABLE 5. Performance of the MCFNN, CFNN, TSK-CFNN, and TSK-MCFNN models when using the upsampling concatenation method with the GAP and
CAP fusion strategies.

TABLE 6. Performance of the MCFNN model and the state-of-the-art models examined for comparison.

2) COMPARISON OF THE CLASSIFICATION PERFORMANCE
OF THE PROPOSED MODEL AND RELEVANT
STATE-OF-THE-ART MODELS
Since 2012, several major breakthroughs have been achieved
in the performance and accuracy of deep NNs. Scholars

have proposed models with deep or wide architectures to
improve classification accuracy and those models have been
used extensively as benchmarks in previous studies [30],
[31], [32], [33], [34], [35], [36]. Therefore, in the present
study, the classification performance of the MCFNN was
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FIGURE 8. Variations in the porosity (a) calculated using Archimedes’ principle and (b) measured through micro-CT scanning
with the energy density.

compared with those of the aforementioned state-of-the-art
models.

Table 6 presents the performance results of the proposed
MCFNNmodel and the state-of-the-art models. The [32] and
[33] models exhibited a higher accuracy and F1 score than
did the other state-of-the-art models, possibly because those
models utilize inception modules, which allow the network
to choose from multiple convolutional filter sizes in each
block. This concept is similar to the design concept of the
proposed MCFNN. Overall, among all the compared models,
the proposed MCFNN model exhibited the highest average
accuracy, precision, recall, and F1 score (more than 90%) as
well as the lowest standard deviations.

The proposed MCFNN model not only retained crucial
features but also required fewer trainable parameters than
did the other models. The proposed MCFNN required only
107,138 parameters, which was fewer than 5% of the number
of trainable parameters required by [36].

D. MICRO-CT SCANNING VERIFICATION
The ground-truth data for the classification task were the
porosity measurements conducted according to Archimedes’
principle; therefore, the workpiece quality had to be veri-
fied through micro-CT scanning. The porosity measurement
results are illustrated in Fig. 8. The porosity values calcu-
lated using Archimedes’ principle and determined through
micro-CT scanning exhibited similar variations in energy
density, with the correlation coefficients being 0.79 in both
cases. Specifically, the porosity of all the workpieces tended
to decrease and then increase nonlinearly with an increase
in the energy density, possibly because of the lack of fusion
and keyhole pores caused by the utilized low and high
LED [37].

IV. DISCUSSION
This section provides some valuable insights related to
the results of this study regarding the selection of process
parameters and the performance of the proposed MCFNN
model.

A. FINDINGS REGARDING THE SELECTION
OF PROCESS PARAMETERS
On the basis of a previous simulation study, the process map
of Inconel 718 was divided into five parts to identify suitable
process parameters for achieving optimal workpiece quality:
areas with suitable substrate adhesion, extreme evaporation,
keyhole melting, poor substrate adhesion, and an unstable
single scan track. However, the suitable process parameters
for only three areas (those with suitable substrate adhesion,
extreme evaporation, and an unstable single scan track) were
used in this study because workpieces constructed in the areas
with keyhole melting and poor substrate adhesion had crucial
defects that could have resulted in collisions between coat-
ing blade and workpieces [38]. Moreover, the experimental
results indicated that the optimal process parameter combi-
nation was a laser power of 260 to 280 W and a scanning
speed of 900 to 960 mm/s.

B. OBSERVATIONS RELATED TO THE PROPOSED
MCFNN MODEL
The experimental results indicated that the models that used
the upsampling concatenation method achieved higher accu-
racy than did those that used the zero-padding concatenation
method. Both of these methods are applied to increase the
spatial dimensions of feature maps; however, the upsampling
method can enhance the extracted features to a greater extent
than can the zero-padding method. Moreover, higher accu-
racy was achieved with the GAP fusion method than with the
CAP fusionmethod, possibly because the channel-wise infor-
mation of feature maps calculated from ultrasound B-mode
images is less sensitive to image features. By contrast, GAP
preserves the crucial characteristics of input images and thus
improves model performance.

The defects caused discontinuous ultrasound signals due
to the high surface roughness they induced. The state-of-the-
art models couldn’t correctly predict these images, possibly
because ultrasound images have unique features and charac-
teristics that differ from those of other medical images, such
as magnetic resonance images or CT images. Consequently,

121322 VOLUME 11, 2023



C.-H. Lin et al.: Quality Assessment of Metal Additive Manufactured Parts by a MCFNN

DL models might not be optimal for representing the fea-
tures of ultrasound images. Overall, the results of this study
indicate that the proposedMCFNNmodel is feasible for clas-
sifying the quality of metallic workpieces fabricated through
SLM and that this model can learn robust representations
from ultrasound images. Thus, improving the performance of
this model through NDT appears worthwhile.

V. CONCLUSION
Quality assurance is an essential task for the production of
high-quality metallic workpieces manufactured through AM,
and this task requires the assessment of internal defects by
using NDT techniques. In this study, an MCFNN model was
designed to automatically evaluate the quality of workpieces
fabricated through SLM from ultrasound B-mode images.
Two concatenation methods (zero padding and upsampling),
two feature fusion strategies (GAP and CAP), and the
TSK fuzzy inference system were evaluated in this study.
Moreover, the performance of state-of-the-art models was
compared with that of the proposed MCFNN model. The
proposed MCFNN model combines the multiscale feature
extraction ability with the strengths of an FNN; thus, this
model exhibits high accuracy in the classification of work-
piece quality. The experimental results revealed that among
the compared models, the MCFNN model that used the
upsampling concatenation method and GAP feature fusion
strategy achieved the highest average accuracy (91.44% ±

4.73%), precision (92.74% ± 3.79%), recall (91.44% ±

4.73%), and F1 score (91.35% ± 4.82%) for workpiece qual-
ity classification.

Overall, the proposed MCFNN demonstrated high accu-
racy with fewer trainable parameters, while UT has been
proven as an effective and portable technique for detecting
and evaluating surface, subsurface, and internal defects in
tested objects. Therefore, integrating an automatic quality
assessment system into a conventional UT system appears to
be worthwhile and can yield economic benefits in the NDT
field. Furthermore, the results of this study indicated that the
developedMCFNNmodel has high potential for implementa-
tion in a UT system for industrial applications. However, it’s
worth noting that the input data of the proposed model only
contains ultrasound images. Additional ultrasound parame-
ters such as speed of sound, attenuation, and elasticity are
valuable indicators that have not been considered in this
study. To improve accuracy, future research will explore the
deep investigation of extracting these features and combining
them with images.

ACKNOWLEDGMENT
This work was financially supported by the ‘‘Intelligent
Manufacturing Research Center’’ (iMRC) from The Featured
Areas Research Center Program within the framework of the
Higher Education Sprout Project by the Ministry of Educa-
tion (MOE) in Taiwan.

REFERENCES
[1] A. Vafadar, F. Guzzomi, A. Rassau, and K. Hayward, ‘‘Advances in metal

additivemanufacturing: A review of common processes, industrial applica-
tions, and current challenges,’’ Appl. Sci., vol. 11, no. 3, p. 1213, Jan. 2021.

[2] C. Liu, L. L. Roux, Z. Ji, P. Kerfriden, F. Lacan, and S. Bigot, ‘‘Machine
learning-enabled feedback loops for metal powder bed fusion additive
manufacturing,’’ Proc. Comput. Sci., vol. 176, pp. 2586–2595, Jan. 2020.

[3] S. Hocine, H. Van Swygenhoven, and S. Van Petegem, ‘‘Verification of
selective laser melting heat source models with operandoX-ray diffraction
data,’’ Additive Manuf., vol. 37, Jan. 2021, Art. no. 101747.

[4] W. Chen and Z. Li, ‘‘Additive manufacturing of titanium aluminides,’’ in
Additive Manufacturing for the Aerospace Industry, F. Froes and R. Boyer,
Eds. Amsterdam, The Netherlands: Elsevier, 2019, pp. 235–263.

[5] P. Ninpetch, P. Kowitwarangkul, S. Mahathanabodee, P. Chalermkarnnon,
and P. Rattanadecho, ‘‘Computational investigation of thermal behav-
ior and molten metal flow with moving laser heat source for selective
laser melting process,’’ Case Stud. Thermal Eng., vol. 24, Apr. 2021,
Art. no. 100860.

[6] M. F. Sadali, M. Z. Hassan, F. Ahmad, H. Yahaya, and Z. A. Rasid,
‘‘Influence of selective laser melting scanning speed parameter on the
surface morphology, surface roughness, and micropores for manufactured
Ti6Al4V parts,’’ J. Mater. Res., vol. 35, no. 15, pp. 2025–2035, Aug. 2020.

[7] J. Liu, Y. Song, C. Chen, X. Wang, H. Li, C. Zhou, J. Wang, K. Guo, and
J. Sun, ‘‘Effect of scanning speed on the microstructure and mechanical
behavior of 316L stainless steel fabricated by selective laser melting,’’
Mater. Des., vol. 186, Jan. 2020, Art. no. 108355.

[8] Y. Kok, X. P. Tan, P. Wang, M. L. S. Nai, N. H. Loh, E. Liu, and S. B. Tor,
‘‘Anisotropy and heterogeneity of microstructure and mechanical prop-
erties in metal additive manufacturing: A critical review,’’ Mater. Des.,
vol. 139, pp. 565–586, Feb. 2018.

[9] M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz,
and J. J. Lewandowski, ‘‘Progress towards metal additive manufacturing
standardization to support qualification and certification,’’ JOM, vol. 69,
no. 3, pp. 439–455, Mar. 2017.

[10] B. M. Colosimo, Q. Huang, T. Dasgupta, and F. Tsung, ‘‘Opportunities and
challenges of quality engineering for additive manufacturing,’’ J. Quality
Technol., vol. 50, no. 3, pp. 233–252, Jul. 2018.

[11] I. S. Ramírez, F. P. G. Márquez, and M. Papaelias, ‘‘Review on addi-
tive manufacturing and non-destructive testing,’’ J. Manuf. Syst., vol. 66,
pp. 260–286, Feb. 2023.

[12] D. Cerniglia, M. Scafidi, A. Pantano, and J. Rudlin, ‘‘Inspection
of additive-manufactured layered components,’’ Ultrasonics, vol. 62,
pp. 292–298, Jan. 2015.

[13] L. W. Koester, H. Taheri, T. A. Bigelow, P. C. Collins, and L. J. Bonds,
‘‘Nondestructive testing for metal parts fabricated using powder-based
additive manufacturing,’’Mater. Eval., vol. 76, no. 4, pp. 514–524, 2018.

[14] R. J. Smith, W. Li, J. Coulson, M. Clark, M. G. Somekh, and
S. D. Sharples, ‘‘Spatially resolved acoustic spectroscopy for rapid imag-
ing of material microstructure and grain orientation,’’Meas. Sci. Technol.,
vol. 25, no. 5, May 2014, Art. no. 055902.

[15] C. Kim, H. Yin, A. Shmatok, B. C. Prorok, X. Lou, and K. H. Matlack,
‘‘Ultrasonic nondestructive evaluation of laser powder bed fusion 316L
stainless steel,’’ Additive Manuf., vol. 38, Feb. 2021, Art. no. 101800.

[16] S. Yuan and X. Yu, ‘‘Ultrasonic non-destructive evaluation of selectively
laser-sintered polymeric nanocomposites,’’Polym. Test., vol. 90, Oct. 2020,
Art. no. 106705.

[17] N. Huang, O. J. Cook, R. L. W. Smithson, C. M. Kube, A. P. Argüelles,
and A. M. Beese, ‘‘Use of ultrasound to identify microstructure-property
relationships in 316 stainless steel fabricated with binder jet additive
manufacturing,’’ Additive Manuf., vol. 51, Mar. 2022, Art. no. 102591.

[18] Z. Xing, S. Zhao, W. Guo, F. Meng, X. Guo, S. Wang, and H. He, ‘‘Coal
resources under carbon peak: Segmentation of massive laser point clouds
for coal mining in underground dusty environments using integrated graph
deep learning model,’’ Energy, vol. 285, Dec. 2023, Art. no. 128771.

[19] P. V. de Campos Souza, ‘‘Fuzzy neural networks and neuro-fuzzy net-
works: A review the main techniques and applications used in the
literature,’’ Appl. Soft Comput., vol. 92, Jul. 2020, Art. no. 106275.

[20] P. C. Souza, ‘‘Regularized fuzzy neural networks for pattern classification
problems,’’ Int. J. Appl. Eng. Res., vol. 13, no. 5, pp. 2985–2991, 2018.

[21] G. Khodabandelou and M. M. Ebadzadeh, ‘‘Fuzzy neural network with
support vector-based learning for classification and regression,’’ Soft Com-
put., vol. 23, no. 23, pp. 12153–12168, Dec. 2019.

VOLUME 11, 2023 121323



C.-H. Lin et al.: Quality Assessment of Metal Additive Manufactured Parts by a MCFNN

[22] Z. Liu, X.Wang, H. Kim, Y. Zhou,W. Cong, and H. Zhang, ‘‘Investigations
of energy density effects on forming accuracy and mechanical properties
of Inconel 718 fabricated by LENS process,’’ Proc. Manuf., vol. 26,
pp. 731–739, Jan. 2018.

[23] H.-C. Tran, Y.-L. Lo, T.-N. Le, A. K.-T. Lau, and H.-Y. Lin, ‘‘Multi-scale
simulation approach for identifying optimal parameters for fabrication
of high-density Inconel 718 parts using selective laser melting,’’ Rapid
Prototyping J., vol. 28, no. 1, pp. 109–125, Jan. 2022.

[24] A. B. Spierings, M. Schneider, and R. Eggenberger, ‘‘Comparison of
densitymeasurement techniques for additivemanufacturedmetallic parts,’’
Rapid Prototyping J., vol. 17, no. 5, pp. 380–386, Aug. 2011.

[25] M. M. Pasternak, A. Sadeghi-Naini, S. M. Ranieri, A. Giles, M. L. Oelze,
M. C. Kolios, and G. J. Czarnota, ‘‘High-frequency ultrasound detection of
cell death: Spectral differentiation of different forms of cell death in vitro,’’
Oncoscience, vol. 3, nos. 9–10, pp. 275–287, Sep. 2016.

[26] C.-C. Huang and S.-H. Wang, ‘‘Blood coagulation and clot formation
studies using high frequency ultrasounds,’’ in Proc. IEEE Ultrason. Symp.,
Montreal, QC, Canada, Mar. 2004, pp. 1757–1760.

[27] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and
I.-H. Yeh, ‘‘CSPNet: A new backbone that can enhance learning capability
of CNN,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Work-
shops (CVPRW), Jun. 2020, pp. 1571–1580.

[28] T. Takagi and M. Sugeno, ‘‘Fuzzy identification of systems and its
applications to modeling and control,’’ IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, no. 1, pp. 116–132, Jan. 1985.

[29] Y. Wang and Y. Chen, ‘‘A comparison of Mamdani and Sugeno fuzzy
inference systems for traffic flow prediction,’’ Anbar J. Eng. Sci., vol. 9,
no. 1, pp. 296–306, Jan. 2014.

[30] Y. Hu, Y. Lian, Y. Liu, Y. Jin, X. Hu, Z. Liu, Z. Lin, L. Li, G. He,
and Y. Chu, ‘‘Ultrasound image preprocessing method for deep-learning-
based fatty liver diagnosis,’’ in Advances in Graphic Communication,
Printing and Packaging Technology and Materials. Singapore: Springer,
2021, pp. 204–212.

[31] S. Kumaresan, K. S. J. Aultrin, S. S. Kumar, and M. D. Anand, ‘‘Deep
learning-based weld defect classification using VGG16 transfer learning
adaptive fine-tuning,’’ Int. J. Interact. Des. Manuf., vol. 2023, pp. 1–12,
May 2023.

[32] C. Hua, S. Chen, G. Xu, Y. Lu, and B. Du, ‘‘Defect identification method
of carbon fiber sucker rod based on GoogLeNet-based deep learning
model and transfer learning,’’Mater. Today Commun., vol. 33, Dec. 2022,
Art. no. 104228.

[33] Y. Gong, J. Luo, H. Shao, K. He, and W. Zeng, ‘‘Automatic defect detec-
tion for small metal cylindrical shell using transfer learning and logistic
regression,’’ J. Nondestruct. Eval., vol. 39, no. 1, p. 24, Mar. 2020.

[34] A. Arbaoui, A. Ouahabi, S. Jacques, and M. Hamiane, ‘‘Concrete cracks
detection and monitoring using deep learning-based multiresolution anal-
ysis,’’ Electronics, vol. 10, no. 15, p. 1772, Jul. 2021.

[35] D. Medak, L. Posilović, M. Subašić, M. Budimir, and S. Lončariĉ,
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