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ABSTRACT Personal identification (PI) can be verified using multimodal vital sign measurement method-
ologies in human physiology, such as electrocardiography (ECG) and radar signals. However, these processes
are inevitably associated with concerns over privacy during the data collection and analysis stages, as well
as discomfort during the physical measurement stages. To mitigate these issues, we explored the utilization
of federated learning (FL) and noncontact sensors to ensure privacy protection and alleviate contact-related
discomfort, respectively. Our objective was to establish the viability of privacy-secured PI models using
FL. Furthermore, we examined the performance of FL-based PI models that incorporate non-contact radar
signals, comparing the performance levels of five conventional machine learning (ML) models with those
of five FL-based models using ECG and radar signals. Our experimental results indicate that although the
ECG-based models exhibited superior overall accuracy, their radar-based counterparts demonstrated only
slightly lower accuracy. These results confirm the effectiveness of FL-based PI models when compared with
standard ML models. Thus, our study augments the evolution of privacy-guarded PI processes and lays a
robust groundwork for future research in this field.

INDEX TERMS Bidirectional long short-term memory, ensemble model, electrocardiogram, federated
learning, long short-term memory, personal identification, radar signals.

I. INTRODUCTION Within multi-occupant environments, such as homes and

The intersection of the fourth industrial revolution and
changing population demographics has sparked a rapid pro-
liferation of home and healthcare devices using the Internet
of Things (IoT). In healthcare, there has been a notable
shift from merely treating ailments to promoting overall
wellness. Consequently, technologies that enable the contin-
uous monitoring of vital signs within ambient-assisted living
environments have gained significant importance owing to
their capability to detect and predict health-related anoma-
lies. These continuous monitoring processes are integral in
platforms such as the Cognitive Health Advisor Platform [1].
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offices, non-contact sensors (e.g., radar sensors) can be
employed to measure vital signs. However, when a single
radar sensor is used to randomly measure multiple individ-
uals, personal identification (PI) is essential to monitor each
individual distinctly.

Vital signs, such as electrocardiogram (ECG) data and
radar signals, can be measured to verify PI. However, this
approach presents several challenges. Specifically, privacy
concerns are inevitably associated with the collection and
analysis and personal data, and physical contact during mea-
surements may lead to discomfort. Regulations such as the
General Data Protection Regulation (GDPR), as well as feder-
ated learning (FL) techniques, can address and mitigate these
privacy concerns, while the use of non-contact radar sensors
can alleviate the discomfort associated with physical contact.
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Traditional vital sign measurement methods, such as ECG
and photoplethysmography (PPG), require physical contact
with the individual. The placement and adjustment of elec-
trodes for these measurements can be intrusive by limiting
movement and causing discomfort [2]. Conversely, although
non-contact sensors — including radar, remote PPG (r-PPG)
[3], [4], and infrared (IR) sensors — offer enhanced conve-
nience, they may exhibit decreased accuracy owing to various
noise factors. -PPG sensors can measure parameters such
as heart rate [5], respiration rate [6], and blood pressure
[7], [8], whereas radar sensors can measure vital signs such
as heart rate, respiration [9], [10], [11], [12], heart rate
variability (HRV) [13], blood pressure [14], and movement
patterns. Despite the aforementioned challenges, the use of
vital signs for PI is becoming increasingly prevalence across
multiple sectors including healthcare, security, and home
appliances.

Although convolutional neural networks (CNNs) and long
short-term memory (LSTM) networks are exceptionally
effective for analyzing time-series data, such as ECG and
radar signals, they require extensive data for training, which
may further exacerbate privacy concerns in the context of
personal information. FL represents a compelling solution to
this problem, as it facilitates model training across devices
without the need for data sharing, and subsequently sends
model updates from each device to a central server. This
process safeguards personal data from external exposure,
allowing individuals to maintain control over their data while
sharing collective insights to enhance model performance.
Thus, the use of FL in tasks involving personal data, such as
vital signs, simultaneously ensures the protection of privacy
and improves model performance.

In this study, we employed FL-based algorithms to perform
PI tasks on a cognitive health advisory platform. We com-
pared the performance of FL models using radar signals
(chosen for convenience in measurement) with those utilizing
ECG signals. The objective of this study was to ascer-
tain the viability of privacy-preserving FL-based models for
PI. Furthermore, we investigated how the incorporation of
non-contact radar signals impacts the performance of said
models.

To achieve these objectives, we evaluated five machine
learning (ML) models using ECG and radar signal data:
CNN, LSTM, bidirectional LSTM (BLSTM), CNN-LSTM,
and CNN-BLSTM. Furthermore, we implemented FL-based
counterparts for the aforementioned ML models to evaluate
and compare their performance on PI tasks. The performance
evaluation incorporated the metrics of accuracy, precision,
recall, and F1 score to determine the efficiency of con-
ducting PI tasks while ensuring the protection of personal
information [15].

This study makes several contributions to existing litera-
ture. First, we successfully demonstrated that high-accuracy
PI tasks utilizing biometric signals can be performed while
maintaining data privacy using FL-based models. This result
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reflects the potential of FL as a powerful tool for PI tasks,
where data privacy is crucial. Furthermore, we confirmed
the applicability of non-contact biosignals, particularly radar
signal data, for use in PI models. This outcome indicates that
FL can be instrumental in identifying individuals, particu-
larly when contact-based methods are neither feasible nor
preferable. Finally, we evaluated the performance of various
PI models using two distinct types of data. These insights
enrich the field of machine learning and offer practical
value to researchers and practitioners in medicine and related
fields.

The remainder of this paper is structured as follows.
Section II outlines the methodology of the study. Section III
describes the data preprocessing steps employed in this study,
and offers a comparative accuracy analysis of the proposed
models. Section IV presents insights based on a compari-
son with the results of previous studies. Finally, Section V
presents concluding remarks and suggests potential future
directions of research.

Il. RELATED RESEARCH

A. METHODOLOGY

Biometric identification is based on unique physical or
behavioral attributes of individuals, including fingerprints,
irises, veins, and facial features [16]. Its applications span
numerous fields such as access control, financial authentica-
tion, security, forensics, and the public sector. The use of vital
signs in PI encompasses methods that use ECG [17], [18],
[19], [20], [21], [22], [23], [24] and PPG [25].

ECG is a non-invasive method that employs simple
skin-attached electrodes to measure signals. ECG encapsu-
lates various components, such as the P wave, QRS complex,
and T wave [26]. Various mathematical techniques can be
used to analyze ECG signals, including signal process-
ing, filtering, and pattern recognition. The Pan-Tompkins
algorithm — which uses bandpass filtering, differentiation,
squaring, moving-window integration, and thresholding — is
commonly employed in ECG analysis to extract the QRS
complex from signals.

Radar signals can be used to detect unique elements
of human physiology including respiration, heartbeat, and
movement. A raw radar signal is generated by emitting a
wave and detecting the reflected signal using a radar sensor.
The radar transceiver, which comprises a transmitter (Tx) and
receiver (Rx), induces a phase shift in the reflected signal.
This shift is proportional to the subtle movements of the
chest surface stemming from cardiopulmonary activity [27],
[28]. This approach does not require close contact with the
individual and can automatically identify targets near the
sensor, as well as significantly improving privacy compared
to traditional measurement methods. Two methods for mea-
suring vital signs using radar are ultrawideband (UWB) and
frequency-modulated continuous waves (FMCW) [29], [30].
Overall, radar signals can be utilized for PI based on body
shape and movement patterns [30].
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B. PROPOSED MACHINE LEARNING MODEL
ARCHITECTURE

CNN model architecture: The CNN is a machine learning
architecture widely used for PI tasks. One-dimensional time-
series ECG data were used in this study. CNNs are highly
effective for ECG signal processing owing to their ability
to discern complex patterns and unique features within each
signal. Several prior studies have employed CNN models for
PI tasks using ECG signals [31].

LSTM model architecture: The LSTM is a valuable archi-
tecture in the field of recurrent neural networks (RNNs), par-
ticularly for analyzing time-series ECG data [32]. An LSTM
model includes a cell, input gate, output gate, and forget gate,
which help adjust the input loss and prevent the vanishing
gradient problem that often arises during backpropagation
through time (BPTT) in RNNs [33], [34], [35]. The LSTM
model constructed in this study included a filter size of
256 and three consecutive LSTM layers.

BLSTM model architecture: The bidirectional RNN archi-
tecture was developed to address issues encountered by
traditional RNNs. A bidirectional RNN encompasses two
types of recurrent networks—forward and backward—which
are linked to generate output information with uniform
measurements. These networks simultaneously handle both
past and future information without experiencing delays
over sequential timeframes. In the BLSTM architecture, two
LSTM networks are trained for sequential inputs [36], [37],
[38].

C. PROPOSED FEDERATED LEARNING-BASED MODEL
ARCHITECTURE and FLOWER

1) FEDERATED LEARNING

FL represents an advanced form of machine learning
designed to utilize data distributed across a multitude of
clients without requiring direct data transfer between the
clients and server [38]. Within the FL construct, a global
model is retained on the server while each client trains a
local model on individual data. These local model updates
are shared with the global model, thereby enabling multitask
learning, which in turn reduces communication costs [40].
An inherent feature of FL is that clients use local datasets
and models for training, which offers a robust privacy shield
that mitigates data leakage. Nonetheless, the applicability
of FL can be hampered by several limiting factors such as
sensitivity of personal information, unstable network condi-
tions, restricted computational power, limited battery life, and
limited storage [41], [42], [43].

Depending on the scale and nature of client participation,
FL can be classified into two types: cross-device and cross-
silo. Cross-device FL involves clients on a smaller scale,
with each client possessing a minimal amount of local data.
To achieve success in this setting, numerous edge devices
were required throughout the training process. By contrast,
clients in cross-silo FL are typically larger entities, such as
corporations or institutions (e.g., hospitals and banks), while
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FIGURE 1. Example framework of proposed federated learning (FL)
model and workflow of FL with k clients: 1. Download initial model
parameters; 2. Train local models; 3. Upload local model parameters;
4. Secure aggregation of local models.

the participation count is smaller, with each client engaged in
the complete learning process [44].

In this study, a PI model predicated on FL was constructed
with four clients, with FL deployed to distinguish between
home and office environments as single clients. The training
procedure for the proposed FL method, illustrated in Figure 1
[45], commences with the server initializing the global model
G, and disseminating it to all k participating clients. Upon
receiving Gy, each client trains it using its local data and
returns an updated model to the server, with the returned
models amalgamated to update the global model. This pro-
cess is iteratively performed until the model reaches a state of
convergence. The following formula is used for the updated
global model:

Sk k
Giri =Y, <Gk, )
where Sj represents the number of training samples held by
client k, and s denotes the total number of training samples
across all clients.

2) FEDERATED LEARNING IMPLEMERENTATION PLATFORM:
FLOWER

Various platforms and frameworks — including Flower [46],
FedScale [47], FATE [48], PyShift [49], and EasyFL [50] —
have been established to implement FL. Although the
TensorFlow Federated (TFF) framework offers rudimentary
FL capabilities based on TensorFlow [51], it requires the con-
struction of a system for its application to an FL project. Both
FedScale and EasyFL provide straightforward FL simulations
using minimal code. However, these methods cannot easily
be adapted to custom data or models, as they rely heavily on
preexisting module codes and lack support for managing the
lifecycles of FL operations. The latest iteration of the Flower
platform, FLScalize [52], conveniently permits adjustments
to the number of clients interacting with the server without
requiring waiting periods between rounds. Notably, its out-
standing client and server scheduling capabilities allow for
effortless connectivity between servers and multiple clients to
perform FL rounds, distinguishing it from other FL platforms.
Accordingly, the Flower platform was selected to implement
the proposed FL model in this study.
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FIGURE 2. Process of implementing and comparing performance of personal identification models.

IIl. EXPERIMENTAL PRE-PROCESSING

The dataset used in this study included measurements
obtained from 30 healthy participants—I14 men and
16 women [53]—using a 24 GHz continuous-wave radar
sensor. Data were collected using multiple synchronized
reference sensors that simultaneously conducted electrocar-
diography (ECG), impedance cardiography, and non-invasive
continuous blood pressure monitoring according to a pre-
determined protocol. This simultaneous data acquisition
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process helped reduce interference from other external fac-
tors, facilitating meaningful comparisons of the results.

The flowchart in Figure 2 briefly illustrates the experimen-
tal processes, including the separate preprocessing of ECG
and radar data, training of each model, and verification.

A. ECG DATA PREPROCESSING
ECG data are typically vulnerable to various types
of noise including power frequency interference [54],

121559



IEEE Access

T.-H. Hwang et al.: Enhancing Privacy-Preserving Personal Identification Through FL

ECG Data(Before data processing)

: | |
" /ML’\.WMWWAMMM

(a)

ECG Data(After data processing)

.
(b)

FIGURE 3. Comparison of electrocardiogram (ECG) data before (a) and
after (b) noise filtering.

electromyographic interference, and baseline drift [55]. Sev-
eral techniques, including wavelet transform [56], threshold
filtering [57], and Fourier decomposition [58], have been
explored to mitigate this vulnerability to noise. In the present
study, ECG signals were initially sampled at a rate of
2,000 Hz and subsequently downsampled to 200 Hz. After
performing a 9M-order wavelet decomposition of the signals,
the maximum frequency for the D1 level was set to 100 Hz.
The coefficients of the D1 and D2 levels were discarded,
whereas those of the D3-D9 levels were subjected to soft
thresholding processing [59]. Figure 3 depicts results before
and after noise filtering. Following segmentation, the ECG
signal data were organized into 3,795 data segments, each
associated with 30 data labels.

B. RADAR SIGNAL DATA PREPROCESSING
The raw radar signals captured in the database encapsulate
multiple data types, including distance measurements, respi-
ration rates, and heartbeats. The raw signals were segmented
into I/Q (in-phase/quadrature) components and stored for
further analysis. Digitization was performed at a sampling
rate of 2,000 Hz. Owing to their raw nature, the signals were
subjected to processing for PI purposes, specifically to isolate
the required heartbeat signals.

To convert the raw radar signals into RF signals, we applied
I/Q modulation as described in Equations (2)-(4):

Accos(@) =1 @)
Acsin(@) = Q 3)
Accos(2rfet + @) = Icos 2rfet) —Q sin 2xfct) (4)

Following I/Q modulation, we employed FFT to ascertain
the distance to the measured object. Subsequently, the respira-
tory and heartbeat signals were identified using band filtering.

The radar signals were downsampled from 2,000 Hz to
200 Hz to ensure an appropriate sampling interval between
consecutive points within each heartbeat. Subsequently,
each processed radar signal was divided into segments of
1,000 points each, approximately equivalent to 5 s of continu-
ous data containing 6-9 heartbeats. Following segmentation,
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FIGURE 4. lllustration of peak detection in radar (a) and ECG (b) signals.

the radar signal data were divided into 3,795 data segments,
each associated with 30 labels.

For validation, the processed radar signal data were com-
pared with the simultaneously measured ECG reference data
from the same individuals. A comparison was made by calcu-
lating the number of beats per minute (BPM) using the peak
detection method for each signal type. The results shown in
Figure 4 indicate that the separated signals obtained from
the radar data closely correspond to the ECG-determined
heartbeat signals.

Data were partitioned between training and test datasets.
In conventional ML, data are generally split in an 80:20
ratio, with 80% of the data allocated for training and the
remaining 20% reserved for testing. However, we adopted
a different approach owing to the use of FL. Data were
equitably distributed among the four clients, each receiving
20% of the data based on their respective subject matter, with
no data duplication. The remaining 20% were set aside as
test data. Leveraging the unique characteristics of FL ensures
data privacy without requiring direct communication between
clients, as communication is limited to interactions between
servers and clients.

IV. RESULT

We evaluated and compared the performance of five
ML-based and five FL-based PI models. These models were
trained using both contact-based vital sign data, namely ECG
data, and non-contact-based vital sign data derived from radar
signals.

The CNN model comprises four convolutional layers. The
first two of the three pooling layers are used for maximum
pooling, with the last used for average pooling. Following
feature extraction, the flattened layer is input to re-convert
the content extracted by the convolutional layer into a one-
dimensional vector. The final classification is performed
using two fully-connected layers.

The LSTM model consists of three LSTM layers with
256 hidden state dimensions. Following the three LSTM
layers, the dropout layer randomly sets the input elements
to zero during the training process to minimize overfitting.
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TABLE 1. Results of personal identification model training.

Recall cpe .
Dataset Method Model Acf;:)“y F1 (5’/3’“‘ (Sen(soi/ti)vity) Spe(c(,z,ﬁ)“ty Pr‘(’ﬁ/‘:)“’“
CNN 99.2 99.1 99.2 99.9 99.0
Machine LSTM 413 414 413 97.9 484
Learning BLSTM 445 442 445 98.0 46.6
CNN-LSTM Ensemble 96.9 96.7 96.9 99.8 92.2
ECG CNN-BLSTM Ensemble 99.0 99.1 99.0 99.9 99.5
CNN 93.4 933 93.4 99.7 94.7
Federated LSTM 48.4 482 48.4 98.2 49.8
Learning BLSTM 492 48.6 492 98.2 50.0
CNN-LSTM Ensemble 94.4 94.3 94.4 99.8 95.9
CNN-BLSTM Ensemble 96.7 96.6 96.7 99.8 97.5
CNN 632 618 63.2 98.7 64.6
Machine LSTM 25.1 20.4 25.1 97.4 24.9
Learning BLSTM 28.0 24.4 28.0 97.5 29.1
CNN-LSTM Ensemble 81.4 80.5 81.4 99.3 83.2
Radar CNN-BLSTM Ensemble 88.9 88.4 88.9 99.6 89.5
Signals CNN 459 440 45.9 98.1 457
Federated LSTM 235 18.4 235 97.3 24.9
Learning BLSTM 293 25.4 293 97.5 28.1
CNN-LSTM Ensemble 75.5 74.6 75.5 99.1 744
CNN-BLSTM Ensemble 81.9 80.6 81.9 993 82.1

A drop rate of 0.2 was set to ensure that approximately 20%
of the input elements were set to zero. The flattening layer
is then used to flatten the multidimensional tensor into one
dimension, followed by two fully-connected layers, and the
final output represents prediction results for 30 categories.

Unlike the conventional LSTM architecture, a BLSTM
model can process forward and backward sequence informa-
tion simultaneously, thereby extracting more feature infor-
mation. Otherwise, the two architectures are identical, except
that the input and output sizes change between the second and
third LSTM layers, enabling progressive feature extraction.

The CNN-LSTM/CNN-BLSTM model combines the
strengths of the CNN and LSTM models. The CNN architec-
ture is effective in extracting spatial features when processing
input data, whereas the LSTM architecture is effective in
extracting time-dependent features when processing sequen-
tial data. Consequently, the combined CNN-LSTM model can
simultaneously capture spatiotemporal features in input data,
which is desirable when processing radar signals.

As shown in Figures 5-8, the training curves of the LSTM
and BLSTM models failed to converge, whereas those of
the CNN model demonstrated successful convergence and
yielded satisfactory results. This variation in performance
may be attributed to the different processing capabilities of
the aforementioned models. CNNss are effective in processing
spatial features in images and 2D data. Therefore, if the
data exhibit different local spatial patterns and characteristics,
a CNN model can capture these properties more effectively,
resulting in excellent convergence. In contrast, the LSTM
and BLSTM models are better at handling time-series data
and long-term dependencies. Because radar heartbeat signals
encompass both temporal and spatial information, the CNN
and LSTM models yield suboptimal results when used indi-
vidually, and must instead be used in combination.
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Based on these observations, we subsequently tested the
combined CNN-LSTM and CNN-BLSTM models. The CNN
layers were responsible for front-end feature extraction,
whereas the LSTM/BLSTM layers further processed these
features to harness the correlations inherent to time-series
data. This integrated approach was better adapted to the data
characteristics, thereby yielding enhanced performance.

The experimental results listed in Table 1 indicate that the
CNN model achieved a high accuracy of 99.2% with the
ECG dataset. Similarly, the CNN-LSTM and CNN-BLSTM
models demonstrated acceptable accuracies of 96.9% and
99.0%, respectively. In terms of the FL-based models, the
FL-CNN model achieved an accuracy of 93.4%, whereas the
FL-CNN-LSTM and FL-CNN-BLSTM models exhibited
high accuracies of 94.4% and 96.7%, respectively.

The aforementioned models exhibited different patterns
when trained with radar signal data. The CNN model
achieved an accuracy of 63.2%. However, performance sig-
nificantly improved with the CNN-LSTM model, which
achieved a higher accuracy of 81.4%, and the CNN-BLSTM
model exhibited further improvement with an accuracy of
88.9%. In contrast, the FL-CNN model achieved a modest
accuracy of 45.9%, whereas the FL-LSTM and FL-BLSTM
models underperformed with accuracies of only 23.5% and
29.3%, respectively.

Despite these poor results, the FL-CNN-LSTM model
yielded an accuracy of 75.5%, and the FL-CNN-BLSTM
model exhibited an accuracy of 81.9%, demonstrating sub-
stantial improvements in performance.

Thus, the high accuracy attained by the FL-CNN-BLSTM
model with ECG data marginally decreased when the model
was applied to non-contact radar data. Receiver operating
characteristic (ROC) curves corresponding to the eight mod-
els are presented in Appendix.
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FIGURE 6. Results of FL-based personal identification model training using ECG data; accuracy and loss, as plotted with increasing epochs: (a) FL
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FIGURE 7. Results of the ML-based personal identification model training using radar signal data: accuracy and loss with increasing epochs.
(a) CNN-LSTM ensemble model accuracy; (b) CNN-LSTM ensemble model loss; (c) BLTM ensemble model accuracy; (d) CNN-BLSTM ensemble model
loss.

Overall, these results indicate that although contact-based
ECG data yield more reliable individual recognition results
when using the FL-CNN-BLSTM model, a reasonable level
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of accuracy is maintained when using non-contact radar data.
This signifies the potential applicability of radar signals in sit-
uations where contact-based measurements are impractical,
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TABLE 2. Personal recognition model training time.

Dataset Method Model Time Dataset Method Model Time

CNN 2min 13.0sec CNN 2min 14.0sec
Machine LSTM 2min 6.0sec Machine LSTM 2min 12.5sec
L . BLSTM 2min 25.7sec . BLSTM 2min 28.4sec

earning . Learning .
CNN-LSTM Ensemble 6min 25.9sec CNN-LSTM Ensemble 6min 31.0sec
ECG CNN-BLSTM Ensemble 6min 27.0sec  Radar CNN-BLSTM Ensemble 6min 28.2sec
CNN 4min 18.0sec  Signals CNN 4min 29.0sec
LSTM Smin 9.8sec LSTM Smin 22.0sec
ieder"‘.ted BLSTM 6min 58 2sec Federated - oryp 7min 14.5sec

earning Learning

CNN-LSTM Ensemble
CNN-BLSTM Ensemble

12min 40.5sec
12min 47.5sec

CNN-LSTM Ensemble
CNN-BLSTM Ensemble

12min 49.0sec
12min 57.6sec

TABLE 3. Comparison of proposed method with recent state-of-the-art methods in terms of classification accuracy of four classes.

Recall

Dataset Method Model Accuracy F1Score  (Sensitivity) Specificity
(%) (%) (%) (%)
Lynn ctal. [22] BLSTM 99.5 99.2 99.2 98.8
Zhang et al. [60] 1D-CNN 98.6 92.2 95.2 97.3
Mostayed et al. [61] LSTM 99.4 96.8 95.8 99.7
MIT-BIH Zabir Al et al. [62] LSTM 80.1 83.59 82.8 89.1
ECG Fan Liu et al. [63] LSTM-CNN 80.1 83.59 82.8 89.1
Machine Learning CNN-LSTM Ensemble 97.6 97.5 97.6 99.9
Proposed CNN-BLSTM Ensemble 98.2 98.2 98.2 99.9
Federated Learning CNN-LSTM Ensemble 96.8 96.8 96.8 99.9
CNN-BLSTM Ensemble 97.3 97.3 97.3 99.9
Machine Learning CNN-LSTM Ensemble 96.9 96.7 96.9 99.8
ECG Proposed CNN-BLSTM Ensemble 99.0 99.1 99.0 99.9
Signals Federated Learning CNN-LSTM Ensemble 94.4 943 94.4 99.8
CNN-BLSTM Ensemble 96.7 96.6 96.7 99.8
Machine L . CNN-LSTM Ensemble 81.4 80.5 81.4 99.3
Radar broposed actiie eatlii CNN-BLSTM Ensemble $8.9 $8.4 88.9 99.6
Signals Federated Learnin CNN-LSTM Ensemble 75.5 74.6 75.5 99.1
ederated Leaming  -\N_BLSTM Ensemble 81.9 80.6 81.9 99.3

such as office environments. These findings also underscore
the potential of FL as a tool for individual recognition using
biometric signals, thereby offering a privacy-preserving solu-
tion suitable for practical applications

In terms of training efficiency, the average training time
of the CNN/LSTM/BLSTM models in the GPU 3090 envi-
ronment was 2 min 10sec, whereas that of the CNN-LSTM/
CNN-BLSTM models was 6 min. Furthermore, the
FL-CNN/FL-LSTM/FL-BLSTM models in this environment
required an average training time of 4 min 10sec, whereas
the FL-CNN-LSTM/FL-CNN-BLSTM models required an
average training time of 12 min. The increases in training
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time may be attributed to the increased efficiency of commu-
nication between the client and server.

V. DISCUSSION
As listed in Table 3, the findings of this study are comparable

to or surpass those of previous studies in terms of accuracy.
For instance, earlier studies utilizing ECG (MIT-BIH) data
reported accuracies ranging from 80.1% to 99.5% [23], [60],
[61], [62], [63]. In contrast, our study achieved an impres-
sive accuracy of 98.2% using the CNN-BLSTM model for
ECG data. Similarly, we achieved a notable accuracy of
88.9% for radar signal data with the CNN-BLSTM model,
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TABLE 4. Performance evaluation of radar-signal-based personal recognition model under different motion states.

Recall
Dataset Method Model State Accuracy F1 Score (Sensitivity) Specificity
(%) (%) (%) (%)
Resting 75.5 74.6 75.55 99.1
CNN-LSTM Valsalva 69.4 68.8 69.4 98.9
Ensemble Apnea 42.6 41.8 42.6 98.5
Radar Federated Random Mix 81.3 81.2 81.3 99.3
Signals Learning Resting 81.9 80.6 81.9 99.3
CNN-BLSTM Valsalva 74.6 74.3 74.6 99.1
Ensemble Apnea 45.7 43.6 45.7 98.5
Random Mix 82.1 81.9 82.1 99.3

surpassing the 80.1% accuracy reported in a previous study on
ECG-based personal identification by Zabir et al. Addition-
ally, the FL-CNN-BLSTM model demonstrated an accuracy
of 81.9%, which was consistent with the results of a previous
study. Overall, the models developed in this study demon-
strated effectiveness in performing PI tasks using vital sign
data.

Radar signal data inherently contain noise owing to motion
during measurement, and noisy spatial features may remain
even after filtering, potentially influencing classification
accuracy. To examine the impact of respiratory motion on
model performance, we defined four measurement states —
resting, Valsalva, apnea, and random mix — and compared
individual recognition capabilities of the for each state.
According to the results presented in Table 4, classification
accuracy was higher for the resting and random mixed states,
and lower for the Valsalva and apnea states.

VI. CONCLUSION
In this study, we compared PI performance using con-

tact and non-contact biometric signals, namely ECG and
radar data, respectively. Five ML and five FL. models were
evaluated in terms of accuracy and F1 score. Our find-
ings indicate that contact signals are more effective for
PI tasks than non-contact signals. Nevertheless, the results
highlight the potential of FL-based models that utilize
non-contact vital signs, such as radar signal data, as a prac-
tical and privacy-preserving solution for PI considering user
convenience.

Although this study demonstrated promising potential for
non-contact biometric-based PI, several aspects require fur-
ther investigation. First, the sample size of the non-contact
dataset was relatively small compared with that of the contact
dataset, which impacted the accuracy and generalizability
of the results. Future research should explore methods to
enhance accuracy by employing multiple non-contact bio-
metric signals and larger sample sizes. In addition, although
FL has the potential to enhance PI protection, it can be further
refined and optimized. Future studies should therefore focus
on developing more sophisticated FL algorithms to effec-
tively handle distributed data and computational challenges
while addressing the personalization aspects of FL.
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The results of this study provide strong support for the
applicability of contactless biometric signals across mul-
tiple fields to improve data protection and enhance user
convenience.

To strengthen the protection of personal information, the
integration of contactless biometric signals and federated
learning provides a more convenient and privacy-protecting
method for personal identification. Contactless identification
methods can be expected to increase user comfort while
ensuring a sufficient degree of privacy.

Overall, we expect future studies to drive innovation and
progress in this field. We will also continue to conduct
research with the objectives of expanding the sample size
of contactless data to enhance model accuracy, and improv-
ing the handling of distributed data to protect personalized
information.

APPENDIX
Appendix A: ROC evaluation of the two ensemble models

using ECG and radar data in general machine learning meth-
ods (ML) and federated learning methods (FL).
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