
Received 20 September 2023, accepted 19 October 2023, date of publication 30 October 2023, date of current version 6 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3328769

Parallel FPGA Routers With Lagrange Relaxation
ROHIT AGRAWAL1,∗ , KAPIL AHUJA 2,∗ , DHAARNA MAHESHWARI3, MOHD UBAID SHAIKH 4,
MOHAMED BOUAZIZ 5, (Graduate Student Member, IEEE),
AND AKASH KUMAR 6, (Senior Member, IEEE)
1Department of Computer Science and Engineering, Madhav Institute of Technology and Science, Gwalior, Madhya Pradesh 474005, India
2Math of Data Science & Simulation (MODSS) Lab, Computer Science & Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552,
India
3Department of Computer Science, Columbia University, New York, NY 10027, USA
4GSI Technology Inc., Elko Drive Sunnyvale, CA 94089, USA
5Tunisia Polytechnic School, La Marsa 1053, Tunisia
6Center for Advancing Electronics, Technische Universität Dresden, 01062 Dresden, Germany

Corresponding author: Akash Kumar (akash.kumar@tu-dresden.de)

The work of Kapil Ahuja and Akash Kumar was supported in part by the German Academic Exchange Service (DAAD), Germany,
through the Bilateral Exchange of Academics Program, under Grant 91651117.

∗Rohit Agrawal and Kapil Ahuja are co-first authors.

ABSTRACT Routing of the nets in Field Programmable Gate Array (FPGA) design flow is one of the most
time consuming steps. Although Versatile Place and Route (VPR), which is a commonly used algorithm
for this purpose, routes effectively, it is slow in execution. One way to accelerate this design flow is to
use parallelization. Since VPR is intrinsically sequential, a set of parallel algorithms have been recently
proposed for this purpose (ParaLaR and ParaLarPD). These algorithms formulate the routing process as
a Linear Program (LP) and solve it using the Lagrange relaxation, an adapted sub-gradient method, and
a Steiner tree algorithm. When tested on the MCNC benchmark circuits, using underlying VPR 7.0 for
packing and placement, ParaLaR and ParaLarPD both outperformed VPR 7.0 for routing, with ParaLarPD
being better. We have three main contributions here. Recently, in 2020, a new variant of VPR, i.e. VPR 8.0,
has been proposed. Hence, first, we make ParaLarPD compatible for testing on MCNC benchmark circuits
using VPR 8.0. Second, we adapt ParaLarPD for the larger benchmark circuits than MCNC, i.e., VTR, using
both VPR 7.0 and VPR 8.0, and perform thorough evaluation. Finally, and third, we improve ParaLarPD
further. We design a family of Lagrange heuristics that better the Lagrange relaxation process of ParaLarPD.
We term our new algorithm ParaLarH and test it on both the benchmark circuits (MCNC and VTR) and
using both the VPRs (VPR 7.0 and VPR 8.0). When tested on MCNC and VTR benchmark circuits, VPR
(VPR 7.0 and VPR 8.0) is outperformed by both ParaLarH and ParaLarPD, with average gains given
below. The minimum channel width improvements are 22% and 12%, respectively. The total wire length
improvements for both are 45%. Finally, the average critical path delay improvements for both are almost
the same (37% and 35%, respectively).

INDEX TERMS FPGA, lagrangian heuristics, LP, optimization, subgradient methods.

I. INTRODUCTION
The Electronic Design Automation (EDA) process has
been the single biggest factor behind the thriving of the
semiconductor industry in the last fifty years. However, it is
very time consuming with routing taking a big percentage
of this time. In this paper, we focus on a large subset of
this problem, i.e. the expensive Field Programmable Gate
Array (FPGA) [1], [2] routing process. FPGA routing is

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

computationally expensive because the common standard
algorithm to perform routing, i.e., Versatile Place and Route
(VPR [3]) is intrinsically slow. One way to accelerate routing
is to exploit parallelization capabilities of the modern High
Performance Computing (HPC) machines. Since VPR is
fundamentally sequential, new parallel routing algorithms
need to be developed.

One of the first attempts in parallelizing this routing
process was done in [4]. Here, the authors formulated
the problem as a Binary Integer Linear Program (BILP),
applied the Lagrange relaxation to eliminate constraints,

121786

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9640-4437
https://orcid.org/0009-0000-2849-4266
https://orcid.org/0000-0003-3100-3231
https://orcid.org/0000-0001-7125-1737
https://orcid.org/0000-0002-2532-1674

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

and then solved the resulting optimization problem using
the sub-gradient method and a Steiner tree algorithm. The
final algorithm was termed as ParaLaR. When tested on
the MCNC [5] benchmark circuits using underlying VPR,∗

ParaLaR substantially outperformed VPR.
In one of our recent works [6], we substantially improved

the constraints violation drawback of ParaLaR. We achieved
this by developing a more problem specific version of the
sub-gradient method and fine tuning the size of its iterative
step. The final algorithm was termed as ParaLarPD. When
again tested on the MCNC [5] benchmark circuits using
underlying VPR, ParaLarPD gave bigger gains over VPR as
compared to the gain given by ParaLaR over VPR.

We have three fold contribution in this work.
1) Recently (in 2020), a new variant of VPR has been

proposed. That is, VPR 8.0. Since earlier, we have
tested ParaLarPD on MCNC benchmark circuits using
only VPR 7.0. We now take a step further and make
ParaLarPD compatible for testing on same circuits but
while using VPR 8.0. As mentioned earlier, VPR is used
to pack and place before routing as well as is compared
against.

2) Earlier, we have experimented with ParaLarPD only on
the MCNC benchmark circuits, which are considered
small. Hence, we adapt ParaLarPD for larger benchmark
circuits of VTR as well. We give thorough results for
both VPR 7.0 and 8.0.

3) Although ParaLarPD reduced the constraints violation
of ParaLaR, it did not completely eliminate it. Hence,
we also design a family of Lagrange heuristics to
improve the Lagrange relation process in-turn reducing
the constraints violation in ParaLarPD further. We term
our new algorithm as ParaLarH. We evaluate ParaLarH
on both the benchmark circuits (MCNC and VTR) when
using both the VPRs (VPR 7.0 and VPR 8.0).

When experimented on MCNC and VTR benchmarks,
the average gains over VPR 7.0 and VPR 8.0 are as
follows.
• The minimum channel width: ParaLarH and Par-
aLarPD achieve 21.72% and 12.24% improvements,
respectively.

• The total wire length: ParaLarH and ParaLarPD achieve
44.89% and 44.67% improvements, respectively.

• The average critical path delay: ParaLarH and Par-
aLarPD achieve 37.37% and 35.18% improvements,
respectively.

As evident above, ParaLarH and ParaLarPD both perform
well with ParaLarH being better. Extra work done in
designing the Lagrange heuristics in ParaLarH leads to slight
increase in total running time as compared to ParaLarPD.
This can be offsetted by running code in parallel. A parallel
code would lead to faster ParaLarPD as well but ParaLarPD
would not be able to improve other routing metrics as above.

∗Besides being a routing algorithm, VPR is also used to pack and place
before other routing algorithms are applied

The rest of this paper has four more sections. In Section II,
we present the ParaLarPD algorithm from [6]. Our Lagrange
heuristic, its variants, and the resulting algorithm of ParaLarH
are discussed in Section III. In Section IV, we present the
experimental results. Finally, conclusions and future work are
given in Section V.

II. BACKGROUND
The routing problem in FPGA or a electronic circuit is
formulated as a weighted grid graph G(V ,E), where V and
E are the sets of certain vertices and edges, respectively, and
there is a cost associated with each edge [4], [6]. In this
grid graph, we have three types of vertices; the net vertices,
a Steiner vertices, and the other vertices. A net is represented
as a set N ⊆ V consisting of net vertices with other types of
vertices playing a supporting role.

Here, the goal is to find a route for each net such that the
union of all the routes will minimize the total path cost of the
graphG, which is directly proportional to the total wire length
of FPGA. To achieve this objective, the problem of routing of
nets is formulated as an LP problem given by [4] (ParaLaR
paper).

min
xe,i

Nnets∑
i=1

∑
e∈E

wexe,i, (1)

Subject to Aixi = bi, i = 1, 2, . . . ,Nnets, (2a)

xe,i = 0 or 1, and (2b)
Nnets∑
i=1

xe,i ≤ W , ∀e ∈ E (2c)

with meaning of each variable is given in Table 1. The
equality constraints guarantee that a valid route is formed
for each net (these are implicitly satisfied by our solution).
The inequality constraints are the channel width constraints
that restrict the number of nets utilizing an edge to W.
These constraints also relate to our other complementary
requirement, that is, the minimization of the channel width of
each edge (achieved by an iterative reduction in the solution
process).

TABLE 1. Summary of the symbols with their meanings as used
in LP (1)-(2c).

VOLUME 11, 2023 121787

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

The inequality constraints need to be relaxed or eliminated.
This is because they introduce dependencies between the
routing of different nets leading to the difficulty in solving
the LP in a parallel manner. The Lagrange relaxation [7]
is a technique where the constraints can be eliminated by
integrating them into the objective function. This introduces
Lagrange multipliers λe for each constraint, with relaxation
carried out by adding λe times the corresponding constraint
to the objective function. That is, instead of the LP given
in (1)-(2c), we have the following [4] (again ParaLaR paper):

min
xe,i, λe

(Nnets∑
i=1

∑
e∈E

(we + λe) xe,i −W
∑
e∈E

λe

)
, (3)

Subject to Aixi = bi, i = 1, 2, . . . ,Nnets, (4a)

xe,i = 0 or 1 and (4b)

λe ≥ 0. (4c)

In the above LP, (we + λe) is the new cost associated with the
edge e. As earlier, this LP can be easily solved in a parallel
manner.

In (3)–(4c), we have two sets of variables xe,i and λe.
Since the decision variables xe,i can have values either 0
or 1, and λe ∈ R (or real line), this LP is a Binary Integer
Linear Program (BILP) that is non-differentiable [8], [9],
[10], [11]. Hence, the traditional methods such as the Simplex
method [12], the interior point method [13], etc. fail here. The
sub-gradient based methods [14], [15] are iterative methods
for solving optimization problems [16], [17], [18] without
stringent differentiability requirements. In these methods, the
variable (say x) is updated as xk+1 = xk − αkgk , where αk

is the step size, gk is a sub-gradient of the objective function,
and the superscript (k or k + 1) denotes the iteration number.
Since a sub-gradient based algorithm will not give binary
solutions, which we need (recall xe,i can be 0 or 1), we use
it to compute the Lagrange multipliers λe only. For solving
xe,i, we use a minimum Steiner tree algorithm.

There are many variants of the sub-gradient based methods
available such as the projected method [14], the primal–dual
method [19], the conditional method [20], the deflected
method [20], etc. In our ParaLarPD algorithm [6], which as
earlier improved the ParaLaR algorithm [4], we demonstrated
the superiority of using the primal–dual method with
computation of the Lagrange multipliers done as below.

λk+1e = λke + αk max

(
0,

Nnets∑
i=1

xe,i −W

)
, (5)

where
∑N

i=1 xe,i − W is a sub-gradient of the objective
function at the k th iteration–the partial derivative of the
objective function in (3). Also λ0e is taken as zero for all edges.

In our ParaLarPD paper [6], we also proposed a new
step size updation strategy that works better than the
corresponding technique proposed in the ParaLaR paper [4].
That is,

αk = (1/k) /

∥∥∥T k∥∥∥
2
, (6)

where k is the iteration number, T k is the Karush–Kuhn–
Tucker (KKT) operator of the objective function (3), and∥∥T k∥∥2 is the 2-norm of T k .
Next, a minimum Steiner tree algorithm [21] is used to

compute xe,i. Here, the input is a set S that contains the
net vertices. The intermediate goal is to compute the set of
Steiner vertices for S, which is initially empty (say U). The
algorithm begins by forming a triple of vertices from S. Next,
a possible candidate Steiner vertex is found such that the total
path cost from the vertices in the triple to the candidate vertex
is minimized. This process is repeated for all the sets of triples
to find the possible Steiner vertices, out of whichU is formed.
Finally, the union of S and U is obtained using the minimum
spanning tree algorithm leading to a minimum Steiner tree.
The edges that are used in this tree have xe,i = 1 and all other
edges have xe,i = 0.

After one complete iteration of the primal–dual sub-
gradient algorithm as well as a Steiner tree algorithm, the
value ofW is reduced and these steps are repeated. This helps
us obtain a better local minima both for the total wire length
and the channel width. For easy reference the pseudo code of
ParaLarPD, as published in [6], is given in Algorithm 1.

Algorithm 1 ParaLarPD [6]
Input: Architecture description file and benchmark file.
Output: Route edges.
1: Run VPR with the input architecture and benchmark circuit.
2: steiner_points← ∅
3: grid_graph← InitGridGraph()
4: λe = 0,∀e ∈ E
5: for iter = 1 to max_iter do
6: Calculate the step size α using (6).
7: route_edges← ∅
8: parallel_for i = 1 to Nnets do
9: points←

{
p : p ∈ {source and sinks of ith net}

}
10: if iter == 1 then
11: steiner_points[ith net]←

Min_Span_Tree(grid_graph, points)
12: end if
13: route_edges[ith net]←

Min_Span_Tree(grid_graph, steiner_points[
ith net] ∪ points)

14: end parallel_for
15: while e ∈ E do
16: Update Lagrangian relaxation multipliers λe using the

Equation (5).
17: Update the edge weight of the grid_graph on

route_edge. New edge weights are we + λe.
18: end while
19: end for

III. PROPOSED APPROACH
As mentioned earlier, in our proposed work we first
perform FPGA routing using our ParaLarPD. Since some
constraints are often violated by the obtained solution,
second, we develop a heuristic that converts the infeasible
solution to a feasible one (i.e. tackle the issue of the
constraints violation), which is discussed next.

121788 VOLUME 11, 2023

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

FIGURE 1. A sub-graph to demonstrate working of our heuristic strategy.

This technique has been applied successfully in many
domains [22], [23], [24], [25], [26], [27]. For example, [22]
solves a multi-plant lot-sizing problem. Here, the authors
formulate an LP to minimize the production costs with the
demand and the capacity constraints. The constraints are
relaxed by introducing the Lagrangian multipliers. A novel
Lagrangian heuristic (in the form of two feasibility stages)
is applied to every solution obtained while solving for the
multipliers. The first feasibility stage consists of a local
search in which the production lots are transferred amongst
the time periods to ensure feasible solutions. The second
feasibility stage is also a local search based strategy, however,
in this, viable solutions are explored by transferring the
production batches to not only the different time periods but
to the different plants as well.

Another example is [23] where assignment of the students
to the classes (based upon their preferences) is formulated as
a graph partitioning problem with the capacity constraints.
This problem is further modeled as a Quadratic Program
(QP), and similar to [22], the constraints are relaxed by
introducing Lagrange multipliers, which are solved by the
sub-gradient method. As expected, the obtained solutions are
not necessarily feasible, and hence, a Lagrange heuristic is
built. In this, the constraints violation are assigned probabil-
ities based upon certain characteristics of the solution. The
algorithm is again iterated with the new probability based
information.

Our basic Lagrangian heuristic to remove the constraints
violation in ParaLarPD consists of the five steps as below.
Here, we initially explain these steps using the example
shown in Figure 1, and then in the form of an algorithm. In this
example, the channel widths as computed by ParaLarPD are
written next to the corresponding edge in the figure. SinceW
is taken as forty, we have three edges where the constraints
violation occur. That is AE, BF, and DH that are highlighted
in bold in Figure 1.

1) Pick an edge with the constraints violation, and find
a new alternate path between the nodes of this edge
using any path finding algorithm. There may be many
alternative paths possible so pick any one. If the new
path contains an edge that already has the constraints

violation, then drop it and move to the next alternative
path.
For example here, without loss of generality, the edge
picked is BF and the first alternate path chosen is BA→
AE → EF . Since this path contains the edge AE, which
violates the constraints, and hence, we drop it and pick
the next possible path (BC → CG → GF) where no
such violation occurs.

2) Next, compute the available capacity of each edge in
the new path to route more nets without the constraints
violation. Minimum of these capacities is termed as
Threshold, and used further. Mathematically,

Threshold = min(W −
Nnets∑
i=1

xek ,i)

∀k ∈ {edges in the new path}.

For our example, the value of Threshold is 8.
3) Calculate the amount of violation d =

∑Nnets
i=1 xe,i − W

for the edge under consideration e. Further, calculate
the number of nets where the constraints violating edge
needs to be replaced by the selected new path. This is
computed as

q = min(Threshold, d) (7)

so that no edge in the added new path has the constraints
violation.
For the edge under consideration (BF), d = 43−40 = 3,
and hence, q = min(8, 3) = 3.

4) Finally, replace this edge under consideration with the
selected path in q number of nets.
In this example, this corresponds to replacing BF with
BC → CG→ CF in 3 nets.

5) If in (7) above, Threshold < d , then we would have
not completely eliminated the constraints violation in
the edge under-consideration. In this case, the search for
the alternate path needs to resumed from the start until
the violation is completely eliminated or no such path
exists.

We repeat the above steps for all the edges that are violating
the constraints. This violation is directly related to the
minimum channel width (discussed earlier), i.e. we improve
this requirement as well.Algorithm 2 describes our heuristic
design in an algorithmic form. The points above map to the
respective line numbers in the algorithm, which is termed as
ParaLarH. For enhanced clarity, we describe ParaLarH via a
data flow diagram as well (in Figure 2).

A. OTHER VARIATIONS OF OUR HEURISTIC
Next, we discuss some variants of ParaLarH. As mentioned
earlier, these variations are designed to help reduce the
constraints violation further, however, they do negligibly
increase the computational cost of the overall algorithm.
(i) The first variant is based upon the fact that there may

exist multiple paths between any two end points, and

VOLUME 11, 2023 121789

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

Algorithm 2 Heuristic Design
Input: Set of nets and edges that are being used; and the decision
variables determined by ParaLarPD algorithm.
Output: Updated set of nets and edges that are being used.
for (each edge e ∈ E) do

while (d =
∑Nnets

i=1 xe,i−W ≥ 0) do
1) Find a path using any path finding algorithm p :

e1e2 · · · er−1er between the end points of the edge e
such that

e1.start = e.start,

ej.end = ej+1.start ∀j ∈ {1, 2, . . . , r − 1},

er .end = e.end,

Nnets∑
i=1

xej,i ≤ W ∀j ∈ {1, 2, . . . , r},

If there is no such alternative path available for the
current constraint violating edge, then break.

2) Compute

Threshold = min(W −
Nnets∑
i=1

xek ,i) ∀k ∈ {1, 2, . . . , r}.

3) Calculate q = min(Threshold, d).
4) If Nete = {N 1

nets,N
2
nets, . . . ,N

t
nets} denotes the t nets

where edge e is used. Replace e with path e1e2 · · · er in
q such nets. Usually t > q.

// The Point 5 as discussed in text maps to the while
statement above.

end while
end for

in Step 1 above we should pick the one that gives
the best results. Hence, instead of picking just one
path randomly, we pick β number of paths. Further,
we perform Steps 1, 2 and 3 for all these β paths.

(ii) In the second variant, in Step 4 above we begin by
sorting the t nets where the edge under consideration e is
used. This sorting is done in the increasing order of the
number of new edges that get added to each net while
eliminating e. Then, we replace e with the new path
in the first q nets ensuring minimization of the overall
constraints violation.

The results obtained by our basic heuristic and the above
variants are approximately the same. Therefore, in the next
section, without the loss of generality, we present the results
for the second variant.

IV. EXPERIMENTAL RESULTS
We perform experiments on a machine with single Intel(R)
Xeon(R) CPU E5-1620 v3 CPU running at 3.50 GHz
and 64 GB of RAM. We use the Ubuntu 20.04.1 LTS
operating system with kernel version 5.13.0-40. Our code is
written in C++11 and compiled using GCC version 9.4.0
with O3 optimization flag. The resulting compiled code is run
using a different number of threads.

FIGURE 2. Data flow diagram of our ParaLarH.

TABLE 2. FPGA design architecture parameters used in our experiments.

The architecture parameters used for our experiments are
given in Table 2, which are most commonly used [28],
[29], [30]. In Table 2, the values of N and K specify that
the CLBs in the architecture contains ten fracturable logic

121790 VOLUME 11, 2023

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

elements (FLEs) and each FLE has six inputs, respectively.
The values of Fcin and Fcout specify that every input and
output pin is driven by 15% and 10%, of the tracks in
a channel, respectively. In FPGA terminology, the value
of Fs specifies the number of wire segments that can be
connected to each wire segment where horizontal and vertical
channels intersect. This value can only be a multiple of 3.
Here, we perform experiments with Fs = 3. The value
of length specifies the number of logic blocks spanned by
each segment. We took this as 4, although our proposed
method can be used for architectures with varying lengths,
e.g., length = 1 or a mix of length = 1 and length = 4.
For parallelization, we use Intel threading building blocks

(TBB) libraries. Also, in our proposed model, routing of
individual nets is independent and we update the cost of
utilizing the edges at the end of each routing iteration.
Thus, there is no race condition leading to no randomness.
Hence, our executions are deterministic. To have a less biased
timing data, we perform 100 independent runs of each of the
algorithms and report aggregate results.

There is no general rule of choosing the initial value
of the channel width for experimental purposes. However,
a value of 20% to 40%more than the minimum channel width
obtained from VPR is commonly used. For our experiments,
all algorithms are initialized with initial channel width (W) as
1.2Wmin, whereWmin is the minimum channel width obtained
fromVPR.We also do experiments with initialW as 1.4Wmin,
which does not change the results. We use an upper limit
of 50 for the number of iterations for all the methods. The
best results out of all these iterations are reported.

We perform four sets of experiments:

• First, on the MCNC benchmarks when VPR 7.0 is used
to pack and place.

• Second, again on the MCNC benchmarks when
VPR 8.0 is used.

• Third, on the VTR benchmarks when VPR 7.0 is used.
• Fourth and finally, again on the VTR benchmarks when
VPR 8.0 is used.

A. EXPERIMENTS ON MCNC BENCHMARKS
The experiments on MCNC benchmark circuits using
VPR 7.0 and VPR 8.0 are given in the two subsections below.

1) USING VPR 7.0
We compare ParaLarH with two earlier algorithms of the
same family (ParaLarPD [6] and ParaLaR [4]), two other
standard algorithms (RVPack [30] and GGAPack2 [30]),
and VPR 7.0. Initially circuits are packed and placed using
VPR 7.0, and then routing is performed by the respective
method.

The algorithms are compared wing the metrics of absolute
constraints violation, minimum channel width, the total wire
length, average critical path delay, and speed-ups.

In Table 3, we compare the constraints violation of
ParaLarH, ParaLarPD and ParaLaR. Note that there is no

TABLE 3. Comparison of the constraints violation between our proposed
ParaLarH, ParaLarPD [6] and ParaLaR [4] when experimenting on MCNC
benchmarks using VPR 7.0.

violation in RVPack, GGAPack2, and VPR 7.0. As evident
from this table, ParaLarH has the least constraints violation,
and hence, performs the best.

In Table 4, we compare the minimum channel width of
all the six algorithms stated earlier (ParaLarH, ParaLarPD,
ParaLaR, RVPack, GGAPack2, and VPR 7.0). As evident
from the table, ParaLarH performs the best with 32.68%
improvement over VPR 7.0.

In Table 5, we compare the total wire length, again of
all the six algorithms. As evident from the table, ParaLarH
performs a close third best here with ParaLarPD performing
best. All three: ParaLarH, ParaLarPD, and ParaLaR achieve
approximately 46% improvement over VPR 7.0.

Finally, in Table 6, we compare the average critical path
delay, again of all the six algorithms. As evident from the
table, here as well ParaLarH performs the best with 10.01%
improvement over VPR 7.0.

Next, we calculate the relative speed-ups by the formula
given below [6].

Speedup =
Execution time with 1 thread
Execution time with n threads

.

The speed-ups obtained in executing the benchmarks via
ParaLarH in a parallel setting are given as a bar graph in
Figure 3. In this figure, on the x-axis we have the benchmark
circuits arranged in the increasing order of their execution
time when running themwith one thread. This time is directly
proportional to the benchmark size. On the y-axis, we have
the speed-ups in execution of these benchmark circuits when
using 2 threads, 4 threads, and 8 threads in ParaLarH. From
this bar graph, we observe that on an average, 2, 4, and
8 threads give speed-ups of 1.70, 2.28, and 2.89, respectively.

Since in ParaLarPD paper [6], the experiments were
performed on a machine having different operating system,
GCC version, and kernel, hence, for a fair comparison,

VOLUME 11, 2023 121791

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

TABLE 4. Comparison of the minimum channel width between our proposed ParaLarH, ParaLarPD [6], ParaLaR [4], RVPack [30], GGAPack2 [30],
and VPR 7.0 [3] when experimenting on MCNC benchmarks using VPR 7.0.

TABLE 5. Comparison of the total wire length (in nanometers) between our proposed ParaLarH, ParaLarPD [6], ParaLaR [4], RVPack [30], GGAPack2 [30],
and VPR 7.0 [3] when experimenting on MCNC benchmarks using VPR 7.0.

we also perform ParaLarPD’s and ParaLaR’s experiment
on the same machine and report the speed-ups obtained
by a bar graph in Figure 4 and Figure 5, respectively.
From this bar graph, we observe that on an average, 2,
4, and 8 threads give speed-ups of 1.84, 2.60, and 3.27,
respectively for ParaLarPD and speed-ups of 1.86, 2.62,

and 3.30, respectively for ParaLaR. If we compare the
speed-ups obtained from ParaLarH with ParaLarPD and
ParaLaR, we observe that there is a slight deterioration in the
case of ParaLarH.

ParaLarH’s drop in speedups can be fixed by using more
number of threads.More threads would improve the speedups

121792 VOLUME 11, 2023

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

TABLE 6. Comparison of the critical path delay (in nanoseconds) between our proposed ParaLarH, ParaLarPD [6], ParaLaR [4], RVPack [30],
GGAPack2 [30], and VPR 7.0 [3] when experimenting on MCNC benchmarks using VPR 7.0.

TABLE 7. Comparison of the constraints violation between ParaLarH and
ParaLarPD when experimenting on MCNC benchmarks using VPR 8.0.

of other algorithms as well but these algorithms would not be
able to improve the minimum channel width and critical path
delay, which ParaLarH does.

2) USING VPR 8.0
Here, we compare ParaLarH, ParaLarPD and VPR 8.0. Since
ParaLaR, RVPack and GGAPack2 have been designed to
work only with VPR 7.0, here we do not compare them.

TABLE 8. Comparison of the minimum channel width between ParaLarH,
ParaLarPD, and VPR 8.0 when experimenting on MCNC benchmarks
using VPR 8.0.

Initially circuits are packed and placed using VPR 8.0 and
then routing is performed with the respective method.

We compare these algorithms using the metrics of con-
straints violation, the minimum channel width, the total wire
length, and the critical path delay. The speed-ups obtained
here are nearly the same as those using VPR 7.0. Hence,
to avoid repetition, we not discuss them here.

VOLUME 11, 2023 121793

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

FIGURE 3. Speedups of each benchmark using ParaLarH when running it with 2, 4 and 8 threads.

FIGURE 4. Speedups of each benchmark using ParaLarPD when running it with 2, 4 and 8 threads.

In Table 7, we compare the constraints violation in
ParaLarH and ParaLarPD. As earlier, in VPR 8.0, there is no
concept of constraints violation because it does not formulate
the routing problem as an optimization problem. As evident
from this table, ParaLarH has the least constraints violation,
and perform the best.

The minimum channel width comparisons are done in
Table 8. On an average, ParaLarH and ParaLarPD give
31.98% and 22.62% improvement over VPR 8.0, respec-
tively.

The total wire length is compared in Table 9. On an
average, ParaLarH and ParaLarPD give 53.36% and 53.43%
improvement over VPR 8.0, respectively.

The average critical path delay comparison are done in
Table 10. On an average, ParaLarH and ParaLarPD give
13.89% and 9.61% improvement over VPR 8.0, respectively.

Overall, ParaLarH and ParaLarPD both perform substan-
tially better that VPR 8.0, with ParaLarH being the best.

B. EXPERIMENTS ON VTR BENCHMARKS
While experimenting on the VTR benchmarks, here, we per-
form comparisons between ParaLarH, ParaLarPD, and VPR
(VPR 7.0 & VPR 8.0 both) in two respective subsections
below. Since the experimental data of ParaLaR, RVPack,
and GGAPack2 for VTR benchmarks is not available, we do
not compare against them. Initially, circuits are packed and

121794 VOLUME 11, 2023

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

FIGURE 5. Speedups of each benchmark using ParaLaR when running it with 2, 4 and 8 threads.

TABLE 9. Comparison of the total wire length (in nanometers) between
ParaLarH, ParaLarPD, and VPR 8.0 when experimenting on MCNC
benchmarks using VPR 8.0.

placed with VPR (VPR 7.0 and VPR 8.0 as the context
may be) and then routing is performed with the respective
method.

We compare these algorithms using the metrics of con-
straints violation, the minimum channel width, the total wire
length, and the critical path delay. The speed-ups obtained
here are nearly the same as those on the MCNC benchmarks.
Hence, to avoid repetition, we not discuss them here. The rest
of this section has two parts; first, where we use VPR 7.0 and
second, where we use VPR 8.0.

TABLE 10. Comparison of the critical path delay (in nanoseconds)
between ParaLarH, ParaLarPD, and VPR 8.0 when experimenting on
MCNC benchmarks using VPR 8.0.

1) USING VPR 7.0
In Table 11, we compare the constraints violation in ParaLarH
and ParaLarPD. As earlier, in VPR 7.0, there is no concept of
constraints violation, and hence, we cannot compare with it.
As evident from this table, ParaLarH has the least constraints
violation, and hence, performs the best.

The rest of the comparisons are as follows:

• Theminimum channel width: From Table 12, we can see
that ParaLarH and ParaLarPD give 19.08% and 4.15%
improvement over VPR 7.0, respectively.

VOLUME 11, 2023 121795

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

TABLE 11. Comparison of the constraints violation between ParaLarH
and ParaLarPD when experimenting on VTR benchmarks using VPR 7.0.

TABLE 12. Comparison of the minimum channel width between
ParaLarH, ParaLarPD, and VPR 7.0 when experimenting on VTR
benchmarks using VPR 7.0.

• The total wire length: From Table 13, we can see that
ParaLarH and ParaLarPD give 38.09% and 38.24%
improvement over VPR 7.0, respectively.

• The average critical path delay: From Table 14, we can
see that ParaLarH and ParaLarPD give 64.58% and
67.74% improvement over VPR 7.0, respectively.

Overall ParaLarH and ParaLarPD both perform substantially
better than VPR 7.0, with ParaLarH being better for the
minimum channel width and ParaLarPD being better for the
critical path delay.

TABLE 13. Comparison of the total wire length (in nanometers) between
ParaLarH, ParaLarPD, and VPR 7.0 when experimenting on VTR
benchmarks using VPR 7.0.

TABLE 14. Comparison of the critical path delay (in nanoseconds)
between ParaLarH, ParaLarPD, and VPR 7.0 when experimenting
on VTR benchmarks using VPR 7.0.

2) USING VPR 8.0
In Table 15, we compare the constraints violation in
ParaLarH and ParaLarPD. As earlier, in VPR 8.0, there is
no concept of constraints violation, and hence, we cannot
compared with it. As evident from this table, ParaLarH
has the least constraints violation, and hence, performs the
best.

121796 VOLUME 11, 2023

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

TABLE 15. Comparison of the constraints violation between ParaLarH
and ParaLarPD when experimenting on VTR benchmarks using VPR 8.0.

TABLE 16. Comparison of the minimum channel width between
ParaLarH, ParaLarPD, and VPR 8.0 when experimenting on VTR
benchmarks using VPR 8.0.

The rest of the comparisons are as follows:

• Theminimum channel width: From Table 16, we can see
that ParaLarH and ParaLarPD give 3.12% improvement
and 3.34% deterioration over VPR 8.0, respectively.
Here, negative sign indicate a deterioration.

• The total wire length: From Table 17, we can see that
ParaLarH and ParaLarPD give 41.74% and 40.36%
improvement over VPR 8.0, respectively.

TABLE 17. Comparison of the total wire length (in nanometers) between
ParaLarH, ParaLarPD, and VPR 8.0 when experimenting on VTR
benchmarks using VPR 8.0.

TABLE 18. Comparison of the critical path delay (in nanoseconds)
between ParaLarH, ParaLarPD, and VPR 8.0 when experimenting
on VTR benchmarks using VPR 8.0.

• The average critical path delay: From Table 18, we can
see that ParaLarH and ParaLarPD give 61.02% and
60.71% improvement over VPR 8.0, respectively.

Overall ParaLarH and ParaLarPD both perform substantially
better than VPR 8.0, with ParaLarH being the best.

V. CONCLUSION AND FUTURE WORK
In this work, we have threemain contributions. First, wemake
our earlier proposed ParaLarPD compatible for testing on

VOLUME 11, 2023 121797

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

MCNC benchmark circuits using recently proposed VPR 8.0
(earlier we had experimented with VPR 7.0 only). Second,
we adapt ParaLarPD for larger benchmark circuits of
VTR (earlier we had experimented with MCNC benchmark
circuits) using both VPR 7.0 and VPR 8.0, and perform
thorough evaluation.

Third, we improve the Lagrange relaxations process of Par-
aLarPD via new Lagrange heuristics. We term new algorithm
ParaLarH. We test ParaLarH on both the benchmark circuits
(MCNC and VTR) and using both the VPRs (VPR 7.0 and
VPR 8.0).

With experiments on both the benchmarks circuits (MCNC
and VTR), we observe that ParaLarH and ParaLarPD both
outperformVPR (VPR 7.0 and VPR 8.0) with gains as below.

• Theminimum channel width improvements in ParaLarH
and ParaLarPD are 22% and 12%, respectively.

• The total wire length improvements in both ParaLarH
and ParaLarPD are 45%.

• The average critical path delay improvements in Par-
aLarH and ParaLarPD are also almost same (37% and
35%, respectively).

We also observe that ParaLarH performs the best.
Next, we discuss the future work. First, in both the routing

algorithms (the above discussed ParaLarH and our earlier
published ParaLarPD), we use sub-gradient based methods
for the solution of BILP. Here, future direction involves
finding other more efficient algorithms for solving this BILP.
Second, we plan to work towards designing algorithms
that would completely remove the constraints violation.
Third, we plan to experiment on TITAN benchmarks as
well [31]. TITAN benchmarks are larger than MCNC and
VTR benchmarks and are also used to evaluate FPGA
architectures. These benchmarks make use of heterogeneous
resources (RAM blocks and DSP), which is less common in
other benchmarks.

REFERENCES
[1] Y. Jiang, H. Chen, X. Yang, Z. Sun, and W. Quan, ‘‘Design and

implementation of CPU & FPGA co-design tester for SDN switches,’’
Electronics, vol. 8, no. 9, p. 950, Aug. 2019.

[2] H. Yu, H. Lee, S. Lee, Y. Kim, and H.-M. Lee, ‘‘Recent advances in FPGA
reverse engineering,’’ Electronics, vol. 7, no. 10, p. 246, Oct. 2018.

[3] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz, ‘‘VTR 7.0: Next generation architecture and CAD system
for FPGAs,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 2,
pp. 1–30, Jun. 2014.

[4] C. Hau Hoo, A. Kumar, and Y. Ha, ‘‘ParaLaR: A parallel FPGA router
based on Lagrangian relaxation,’’ in Proc. 25th Int. Conf. Field Program.
Log. Appl. (FPL), London, U.K., Sep. 2015, pp. 1–6.

[5] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide:
Version 3.0. Research Triangle Park, NC, USA: Microelectron. Center
North Carolina (MCNC), 1991.

[6] R. Agrawal, K. Ahuja, C. H. Hoo, T. D. A. Nguyen, and A. Kumar,
‘‘ParaLarPD: Parallel FPGA router using primal-dual sub-gradient
method,’’ Electronics, vol. 8, no. 12, p. 1439, Dec. 2019.

[7] M. L. Fisher, ‘‘The Lagrangian relaxation method for solving inte-
ger programming problems,’’ Manage. Sci., vol. 27, no. 1, pp. 1–8,
1981.

[8] Y. Cao, Z. Zhang, F. Cheng, and S. Su, ‘‘Trajectory optimization for
high-speed trains via a mixed integer linear programming approach,’’
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 17666–17676,
Oct. 2022.

[9] D. Applegate, O. Hinder, H. Lu, and M. Lubin, ‘‘Faster first-order primal-
dual methods for linear programming using restarts and sharpness,’’Math.
Program., vol. 201, pp. 1–52, Oct. 2022.

[10] H. A. U. Muqeet and A. Ahmad, ‘‘Optimal scheduling for campus
prosumer microgrid considering price based demand response,’’ IEEE
Access, vol. 8, pp. 71378–71394, 2020.

[11] A. O. Hamadameen and N. Hassan, ‘‘A compromise solution for the fully
fuzzy multiobjective linear programming problems,’’ IEEE Access, vol. 6,
pp. 43696–43711, 2018.

[12] L. Polo-López, J. Córcoles, and J. Ruiz-Cruz, ‘‘Antenna design by means
of the fruit fly optimization algorithm,’’ Electronics, vol. 7, no. 1, p. 3,
Jan. 2018.

[13] I. J. Lustig, R. E. Marsten, and D. F. Shanno, ‘‘Interior point methods for
linear programming: Computational state of the art,’’ ORSA J. Comput.,
vol. 6, no. 1, pp. 1–14, 1994.

[14] P. D. Tao and E. B. Souad, ‘‘Duality in D.C. (difference of convex
functions) optimization. Subgradient methods,’’ in Trends in Mathematical
Optimization. Cham, Switzerland: Springer, 1988, pp. 277–293.

[15] Q. Yang and G. Chen, ‘‘Primal-dual subgradient algorithm for distributed
constraint optimization over unbalanced digraphs,’’ IEEE Access, vol. 7,
pp. 85190–85202, 2019.

[16] R. Agrawal and K. Ahuja, ‘‘CSIS: Compressed sensing-based enhanced-
embedding capacity image steganography scheme,’’ IET Image Process.,
vol. 15, no. 9, pp. 1909–1925, Jul. 2021.

[17] R. Agrawal, A. A. Shastri, K. Ahuja, A. Perreard, and J. Gujral,
‘‘An Apache Giraph implementation of distributed ADMM for solving
LASSO problems,’’ in Soft Computing for Problem Solving, vol. 2. Cham,
Switzerland: Springer, 2021, pp. 547–556.

[18] R. Agrawal, K. Ahuja, M. C. Steinbach, and T. Wick, ‘‘SABMIS: Sparse
approximation based blind multi-image steganography scheme,’’ PeerJ
Comput. Sci., vol. 8, p. e1080, Nov. 2022.

[19] Y. Nesterov, ‘‘Primal-dual subgradient methods for convex problems,’’
Math. Program., vol. 120, no. 1, pp. 221–259, Aug. 2009.

[20] B. Guta, ‘‘Subgradient optimization methods in integer programming
with an application to a radiation therapy problem,’’ Ph.D. thesis, Dept.
Math., Technische Universität Kaiserslautern, Kaiserlautern, Germany,
2003.

[21] A. Z. Zelikovsky, ‘‘An 11/6-approximation algorithm for the network
Steiner problem,’’ Algorithmica, vol. 9, no. 5, pp. 463–470, May 1993.

[22] D. M. Carvalho and M. C. V. Nascimento, ‘‘Lagrangian heuristics for
the capacitated multi-plant lot sizing problem with multiple periods and
items,’’ Comput. Oper. Res., vol. 71, pp. 137–148, Jul. 2016.

[23] O. G. Czibula, H. Gu, and Y. Zinder, ‘‘A Lagrangian relaxation-
based heuristic to solve large extended graph partitioning problems,’’ in
WALCOM: Algorithms and Computation (Lecture Notes in Computer
Science), vol. 9627, M. Kaykobad and R. Petreschi, Eds. Cham,
Switzerland: Springer, 2016, pp. 327–338.

[24] A.Diabat, O. Battaïa, andD.Nazzal, ‘‘An improved Lagrangian relaxation-
based heuristic for a joint location-inventory problem,’’ Comput. Oper.
Res., vol. 61, pp. 170–178, Sep. 2015.

[25] K. Holmberg, M. Joborn, and K. Melin, ‘‘Lagrangian based heuristics for
the multicommodity network flow problemwith fixed costs on paths,’’ Eur.
J. Oper. Res., vol. 188, no. 1, pp. 101–108, Jul. 2008.

[26] S. Deleplanque, S. Kedad-Sidhoum, and A. Quilliot, ‘‘Lagrangean
heuristic for a multi-plant lot-sizing problem with transfer and storage
capacities,’’ RAIRO-Oper. Res., vol. 47, no. 4, pp. 429–443, Sep. 2013.

[27] B. Ghaddar, J. Naoum-Sawaya, A. Kishimoto, N. Taheri, and B. Eck,
‘‘A Lagrangian decomposition approach for the pump scheduling problem
in water networks,’’ Eur. J. Oper. Res., vol. 241, no. 2, pp. 490–501,
Mar. 2015.

[28] V. Betz and J. Rose, ‘‘VPR: A new packing, placement and routing tool
for FPGA research,’’ in Proc. Int. Workshop Field Program. Log. Appl.,
London, U.K., 1997, pp. 213–222.

[29] Y. Moctar, M. Stojilovic, and P. Brisk, ‘‘Deterministic parallel routing
for FPGAs based on Galois parallel execution model,’’ in Proc. 28th
Int. Conf. Field Program. Log. Appl. (FPL), Dublin, Ireland, Aug. 2018,
pp. 214–221.

121798 VOLUME 11, 2023

R. Agrawal et al.: Parallel FPGA Routers With Lagrange Relaxation

[30] W. Yuan, ‘‘Circuit clustering for cluster-based FPGAs using novel
multiobjective genetic algorithms,’’ Ph.D. thesis, Dept. Electron., Univ.
York, York, U.K., 2015.

[31] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, ‘‘Timing-driven
titan: Enabling large benchmarks and exploring the gap between academic
and commercial CAD,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 8,
no. 2, pp. 1–18, Apr. 2015.

ROHIT AGRAWAL received the B.Tech. degree
in computer science and engineering from BIET
Jhansi, India, the M.Tech. degree in computer
application from the Indian Institute of Technol-
ogy (Indian School of Mines), Dhanbad, India,
and the Ph.D. degree in computer science and
engineering from the Indian Institute of Technol-
ogy Indore, India. He was a Guest Researcher
with TU Dresden, Germany; Lancaster University,
U.K.; and LU Hannover, Germany. He is currently

an Assistant Professor with the Department of Computer Science and
Engineering, Madhav Institute of Technology and Science (a Government
Institute), Gwalior, India. His current research interests include computer
science and mathematical optimization, especially optimization, artificial
intelligence, machine learning, data science, image processing, and circuit
designing.

KAPIL AHUJA received the B.Tech. degree
from IIT (BHU), India, and the joint M.S. and
Ph.D. degrees from Virginia Tech, USA. He was
a Postdoctoral Research Fellow with the Max
Planck Institute, Magdeburg, Germany. He has
been a Visiting Professor with IMT Atlantique,
France; LU Hannover, Germany; TU Braun-
schweig, Germany; TU Dresden, Germany; and
Sandia National Labs, USA. He was an Assistant
Professor and an Associate Professor of computer

science and engineering with IIT Indore, India, where he is currently a Full
Professor. At IIT Indore, he heads the Mathematics of Data Science and
Simulation (MODSS) Research Laboratory. His current research interests
include machine learning, network science, numerical linear algebra, and
optimization.

DHAARNA MAHESHWARI received the B.Tech.
degree in computer science from the Indian Insti-
tute of Technology Indore, India. She is currently
pursuing the master’s degree in computer science
with Columbia University, New York. Her current
research interests include optimization and natural
language processing.

MOHD UBAID SHAIKH received the B.Tech.
degree in computer science and engineering from
the Indian Institute of Technology Indore, India.

He has interned with the Development Bank of
Singapore (DBS Bank) and has been a Google
Summer of Code (GSoC) Fellow. He is currently
a Compiler Developer with GSI Technology,
where he is focusing on LPython and LFortran
Compilers. His current research interests include
computer science, optimization, programming lan-

guages, and systems and circuit designing.

MOHAMED BOUAZIZ (Graduate Student Mem-
ber, IEEE) received the National Engineering
Diploma degree from Ècole Polytechnique de
Tunisie, in 2021. During his studies, he was
an Erasmus+ Visiting Student with the Univer-
sity of Trento, Italy, and received a scholarship
to undertake his graduation project with the
Technical University of Dresden, Germany. His
current research interest includes electronic design
automation for reconfigurable computing.

AKASH KUMAR (Senior Member, IEEE)
received the joint Ph.D. degree in electrical
engineering and embedded systems from the
Eindhoven University of Technology, Eindhoven,
The Netherlands, and the National Univer-
sity of Singapore (NUS), Singapore, in 2009.
From 2009 to 2015, he was with NUS. He is
currently a Professor with Technische Universität
Dresden, Dresden, Germany, where he is directing
the Chair of Processor Design. His current

research interests include the design, analysis, and resource management
of low-power and fault-tolerant embedded multiprocessor systems.

VOLUME 11, 2023 121799

