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ABSTRACT This article suggests a unique technique for multi-exposure fusion using convolutional neural
networks (CNNs) for patch-wise illumination estimates. Multi-exposure fusion is a crucial component of
enhancing image quality, particularly in circumstances with erratic lighting. Our proposed approach makes
use of CNNs’ capability to anticipate light levels inside specific image patches in order to accurately change
exposure levels. We look at the theoretical foundations of our approach, emphasising the advantages of
patch-wise estimation in capturing intricate lighting details. Additionally, we present experimental results
demonstrating enhanced dynamic range expansion and image detail preservation, demonstrating that our
methodology is more effective than conventional fusion methods. This study advances the state-of-the-art
in multi-exposure fusion while also opening up new prospects for computational photography, surveillance,
and computer vision applications.

INDEX TERMS Convolutional neural network (CNN), dynamic range expansion, image enhancement,
multi-exposure fusion, patch-wise illumination estimation.

I. INTRODUCTION
Natural settings frequently have a wide dynamic range and
prominent differences in luminance across items in the same
image. Digital cameras can’t, however, capture all of the
nuances in such images due to their inherent limitations.
A common method for overcoming this difficulty is to take a
number of pictures using various exposure settings, creating
a collection of LDR pictures. These LDR images are then
combined or fused to create a final image with a HDR [10],
which enhances visual perception and preserves details across
the entire luminance spectrum.

The areas that can be accurately depicted in LDR pho-
tographs may vary depending on the particular lighting
circumstances at the time of capture. The information that
was lost in overexposed and underexposed areas, however,
is efficiently restored and enhanced in HDR photos. The
image produced by this restoration procedure has a wider
range of brightness and more accurately preserves the details
found in the original scene.

The associate editor coordinating the review of this manuscript and
approving it for publication was Gangyi Jiang.

Based on the underlying principles they employ, multi-
ple exposure fusion (MEF) techniques can be divided into
four major groups [10]. The first group of algorithms are
pixel-based and make use of multi-scale transforms such
pyramids, wavelets, and contour lets, as well as weight and
gradient-based fusion. The second group consists of methods
that take use of the sparsity of visual content to achieve fusion.
The third category includes techniques that use tone mapping
operators to adaptively modify the brightness and contrast of
the combined image. To learn complex feature extraction and
fusion rules, DL-based approaches employ NNs, particularly
CNNs [20].

Although the usefulness of current MEF approaches has
been shown, they are labor- and time-intensive since they
frequently call for the manual creation of complex feature
extraction methods and fusion rules. Although promising,
DL-based approaches have limits when it comes to the use
of CNNs. A different approach is suggested to deal with
these issues, one that makes use of the U-Net architec-
ture and incorporates various DL models for categorization.
By utilising the ability of DL to automatically extract
pertinent features and enhance fusion rules, this strategy
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seeks to increase the effectiveness and performance of MEF
approaches.

II. PROBLEM STATEMENT
According to the issue statement, a different approach will
be taken, one that makes use of the U-Net architecture and
various categorization DL models. However, it is not made
clear what issue this method is meant to specifically solve.
We might conclude from the context that the issue being
addressed has to do with the shortcomings and difficulties of
current MEF approaches in capturing and portraying a broad
dynamic range of brightness in natural settings.

The manual construction of intricate feature extrac-
tion techniques and fusion rules required by current MEF
approaches is frequently time-consuming, arduous, and chal-
lenging to optimize. Additionally, CNNs are not widely used
in DL-based MEF techniques. Consequently, the issue could
be stated as follows:

The vast dynamic range of brightness in natural settings
is difficult to adequately capture and represent with the MEF
approaches currently in use. Complex feature extraction tech-
niques and fusion rules require time-consuming and laborious
hand design. Furthermore, CNNs’ current use in DL-based
MEF methods is constrained. We provide a remedy that
makes use of the U-Net architecture and various DL models
for categorization in order to get around these restrictions.
In order to increase the effectiveness and performance of
MEF approaches in collecting and expressing the whole
dynamic range of natural scenes, this solution intends to auto-
mate the feature extraction process and optimize the fusion
rules.

III. PROBLEM JUSTIFICATION
The problem statement focuses on the deficiencies and chal-
lenges faced by present approaches for MEF in order to
effectively capture and illustrate the wide dynamic range
of brightness in natural settings. It takes a lot of time and
effort to manually construct complicated feature extraction
methods and fusion rules for these approaches, and it might
be challenging to get the best results.

Additionally, CNNs’ current use in DL-based MEF
approaches is limited. The full potential of CNNs, potent
instruments for automatic feature extraction and classifica-
tion, is hindered by this constraint.

A suggested remedy intends to implement the use of the
U-Net architecture along with several DL models, such as
CNN, MobileNet, and VGG19, for picture categorization.
The suggested solution aims to automate the feature extrac-
tion process, optimise the fusion rules, and improve the
performance of MEF techniques in portraying the complete
dynamic range of real scenes by using these cutting-edge DL
techniques.

As a result, the issue description supports the need for
a novel strategy that circumvents the drawbacks of current
MEF approaches by using the power of DLmodels like CNN,
MobileNet, and VGG19 for classification tasks. The goal of

this method is to improve the effectiveness and performance
of MEF techniques while addressing the difficulties asso-
ciated with effectively capturing the vast dynamic range of
brightness in natural settings.

IV. LITERATURE REVIEW
Recent years have witnessed remarkable advancements in
computer vision and image processing applications, largely
driven by DL techniques ( [17], [43]) In particular, DL has
shown great potential in enhancing the performance of MEF
methods ( [17], [34], [35], [38]) TheseMEFmethods leverage
DL approaches to improve fusion outcomes, and the literature
provides a valuable collection of references for researchers
interested in this domain. Consequently, this review aims
to summarize the recent achievements in DL-based MEF,
encompassing both supervised and unsupervised approaches.

In 2017, [13] presented a supervised CNN research
methodology for MEF. Their strategy entailed combining
three static photos with various exposure settings to cre-
ate a ground truth image collection. Then, utilizing optical
flow, these pictures were approximated into a static scene.
The aligned pictures were fused by the authors using a
CNN to determine fusion weights. The work made important
advancements in three areas: (1) it presented the first study
intoDL-basedMEF; (2) it examined and contrasted the fusion
impacts of three alternative CNN architectures; and (3) it pro-
duced a dataset specifically built for MEF. Since then, a large
number of DL-based MEF algorithms have been proposed.

Authors in [32] introduced the CNN-based supervised
framework MEF. This method’s main innovation was its use
of the CNN model to extract several sub-pictures from the
input images, enabling the convolution process to include
more neighborhood information. To obtain the ground truth
images, the author changed the pixel intensities of the
ILSVRC 2012 verification dataset [6]. It is important to keep
in mind, nevertheless, that the reality of the ground truth
photographs created using this method may be in doubt.

The supervised techniques outlined above are created espe-
cially to handle the MEF problem. Other supervised DL
techniques, such as MEF, have also been developed for a
variety of image fusion challenges: IFCNN, or an end-to-end
fully convolutional method, was proposed in [41]. To extract
convolutional features from the input images, the approach
used two branches. Following that, it fused the images with
element average fusion rules (notice that each fusion tasks
employed different rules). The degree of difference between
the input images and the ground truth was measured, and
both a fundamental loss and a perceptual loss were utilized
to optimize the IFCNN. IFCNN can handle image fusion at
any resolution, but because it was only trained on multi-focus
image datasets, its performance in MEF tasks may be con-
strained.

A global cross-modal image fusion network was intro-
duced in another paper [8] with the aim of evaluating
the similarities and features exhibited in different fusion
challenges. The impact of different network architectures on
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the effectiveness and quality of fusion was examined in the
study. The MEF task utilized the data constructed by [2].
However, it should be emphasized that these models were not
optimized using multi-exposure photos and were not specif-
ically developed for MEF difficulties, which could result in
subpar performance in some circumstances.

In 2017, Authors in [17] created DeepFuse, the first unsu-
pervised architecture for MEF. The input photos were first
converted using this method into the YCbCr color system.
Then, the chrominance (Cb and Cr) channels were manually
fusedwhile the CNNmade up of feature layers, a fusion layer,
and reconstruction layers was used to extract the luminance
(Y) channel. To create the final fused image, the image data in
YCbCr space were then transformed back to RGB space. The
MEF-SSIM fusion quality metric was used by DeepFuse in
[18] as the unsupervised learning loss function. By using the
CNN for brightness fusion, it was able to effectively extract
features and demonstrate robustness to various inputs, which
was its main advantage. Additionally, since DeepFuse is an
unsupervised approach, training did not require ground truth
images. It should be emphasized, though, that converting to a
different color space added more complexity than just fusing
RGB photos. Additionally, relying simply on MEF-SSIM as
the loss function can miss other important information that
MEF-SSIM does not cover.

In [24], Authors outlined the UMEF network, which was
created especially for MEF in static scenarios. In this method,
features were extracted using a CNN and then fused to create
the image of final fusion. DeepFuse and UMEF were dif-
ferent in three key ways. First of all, UMEF could combine
several input photos, whereas DeepFuse was only intended
to combine two input images. Second, while DeepFuse used
only MEF-SSIM as the loss function, UMEF’s loss function
included both MEF-SSIMc and an unreferenced gradient
loss. More features were preserved in the fused images as
a result of this improvement to UMEF. Last but not least,
UMEF eliminated the necessity for color space conversion,
which was a prerequisite in DeepFuse, by allowing direct
fusing of color pictures via MEF-SSIMc.

Numerous unsupervised MEF methods have been devel-
oped that use Generative Adversarial Networks (GANs),
in addition to unsupervised methods based on CNNs. [24]
proposed a MEF network that merged the pictures from
two inputs. This network includes homography estimation,
an attention mechanism, and adversarial learning to reduce
artifacts and compensate for camera motion.

Authors in [37] developed an end-to-end GAN-based
architecture named MEF-GAN for MEF, utilizing the dataset
from [2] Building upon the ideas presented in [37], a
GAN-based MEF network called GANFuse was introduced
in [40]. When compared to the aforementioned GAN-based
MEF methods, GANFuse showed two key distinctions. exp

The development of unsupervised MEF utilizing GANs
was demonstrated by several GAN-based MEF tech-
niques, such as Chen’s method, MEF-GAN, and GANFuse.
They used a variety of methods, including as adversarial

learning, attention mechanisms, and homography estimation,
to enhance the fused images’quality without the need for
ground truth data.

‘‘In light of the reviewed literature, it’s evident that
Deep Learning (DL) techniques, including Convolutional
Neural Networks (CNNs) and Generative Adversarial Net-
works (GANs), have significantly advanced the field of
Multi-Exposure Fusion (MEF). These approaches, both
supervised and unsupervised, have shown remarkable poten-
tial for enhancing fusion outcomes and addressing the
challenge of capturing the wide dynamic range of bright-
ness in natural scenes. Supervised methods have introduced
innovative ways to create ground truth images and employ
various CNN architectures for fusion, while unsupervised
approaches like DeepFuse have highlighted the advantages
of using DL for brightness fusion. Additionally, architec-
tures such as UMEF have demonstrated improvements in
terms of maintaining more features and eliminating the need
for complex color space conversions. Moreover, GAN-based
MEF techniques have further enriched the toolbox of MEF
approaches, utilizing adversarial learning, attention mecha-
nisms, and homography estimation to enhance image quality.
While these advancements are notable, they also present
areas for further exploration, such as developing hybrid
techniques that leverage the strengths of both supervised
and unsupervised approaches, and addressing the potential
limitations in terms of training data and color space conver-
sions. In the subsequent sections of this paper, we propose a
novel approach that seeks to build upon these achievements
and provide a potential solution to further enhance MEF
methods.’’

V. MOTIVATION FOR UTILIZING DL MODELS AND THE
U-NET ARCHITECTURE
The goal of the proposed method, which employs the U-Net
architecture and different DL models like CNN, MobileNet,
and VGG19, is to address the shortcomings and challenges
of existing MEF techniques. Through the incorporation of
contemporary DL techniques, the system hopes to provide a
number of noteworthy advantages.

First of all, traditional MEF approaches require extensive
manual design of complex feature extraction procedures and
fusion rules. The suggested approach uses DL models to
automate the feature extraction process, reducing the need for
user input and improving workflow.

Second, CNNs’ capacity to collect and represent the broad
dynamic range of brightness in natural images is constrained
by the limited use of current DL-based MEF techniques. The
suggested strategy broadens the selection of DL techniques
accessible for classification problems by incorporating CNN,
MobileNet, and VGG19 models. This improves the ACC
of the fusion process and allows for more thorough image
content analysis.

The well-known U-Net design, which excels at image
segmentation, also offers a useful framework for MEF. Its
one-of-a-kind encoder-decoder design enables the extraction
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of multi-scale information and precise localization of details
for flawless fusion in dynamic range imaging.

By exploiting the capabilities of DL models like CNN,
MobileNet, and VGG19 within the U-Net architecture,
the proposed system aims to automate feature extraction,
enhance classification ACC, and address the drawbacks of
current MEF methods. The method aims to increase the
brightness’s wide dynamic range in natural conditions while
also enhancing performance, efficiency, and ACC.

VI. RESEARCH AIM
The goal of this research is to create a solution for MEF that
is effective and efficient and overcomes the shortcomings of
current approaches in capturing the broad dynamic range of
brightness in natural settings. The project focuses on using
the U-Net architecture and other DLmodels for classification
tasks, including CNN, MobileNet, and VGG19. The project
intends to automate the feature extraction process, optimise
fusion rules, and improve the overall performance of MEF
by utilising these sophisticated DL approaches. The ultimate
objective is to increase the ACC, effectiveness, and visual
quality of MEF by utilising DL and tackling the issues that
present methods face. The goal of the study is to develop
dynamic range imaging and offer workable solutions formore
accurate portrayal of luminance-varying real scenes.

VII. RESEARCH QUESTIONS
The study problems can be phrased as follows in light of the
suggested solutions forMEF using theU-Net architecture and
for classification of picture classes using CNN, MobileNet,
and VGG19:

2. How well do current MEF techniques capture and dis-
play the vast dynamic range of brightness in natural scenes?
What are their drawbacks and difficulties?

3. In the context of MEF, how can DL models like CNN,
MobileNet, and VGG19 be used to automate feature extrac-
tion and enhance categorization ACC?

4. In order to extract multi-scale characteristics and make
exact localisation of information possible, how might the
U-Net architecture be modified and used as a framework for
MEF?

5. How can the advantages of DL models and the U-Net
architecture be combined to optimise the fusion process and
depict the full dynamic range of natural scenes?

6. How efficient is the suggested solution’s computation-
ally and in terms of dynamic range, image quality, and MEF
approaches now in use?

7. How does the proposed solution perform and how gen-
eralizable is it when put to the test on various datasets and
real-world scenarios?

8. How might dynamic range imaging and related disci-
plines benefit from using the provided approach for MEF
tasks?

In order to improve dynamic range imaging and capture
the wide dynamic range of luminance in natural scenes,
the study aims to address the following research questions,

develop practical solutions using DL models and the U-Net
architecture, and assess their performance and applicability.

VIII. PROPOSED APPROACH
Our dataset, which consists of photos with different bright-
ness levels, ensures a great range of lighting circumstances.
We then import this dataset. We next perform preprocessing
procedures to improve the image quality and get it ready for
the next phase. Then, with the use of a U-net architecture,
these photographs go through exposure fusion, a procedure
that combines different exposures to produce an image with
excellent lighting and lots of detail. Finally, in order to
classify these photos into predetermined categories, we use
powerful CNN models like VGG19 and MobileNet. Under a
variety of lighting circumstances, this model has the potential
to dramatically enhance picture classification ACC.

A. DATASET
’Everett_dining1’, ’Everett_dining2’, ’Everett_kitchen2’,
’Everett_kitchen4’, and ’Everett_kitchen5’ are the five differ-
ent classes that make up our dataset. These classes each depict
a certain room in a house, particularly the kitchen and dining
rooms. This dataset has a dynamic feature that allows us to
precisely alter and regulate the lighting in these scenarios,
enabling us to take a variety of pictures with variable light
levels of the same area. The variety of lighting circumstances
adds to the dataset’s richness and complexity and allows us to
examine how different lighting conditions affect both model
performance and how well images are perceived.

B. PREPROCESSING PHASE
Preprocessing is a critical step in getting your image data
ready for your model’s later phases. Your preprocessing pro-
cedures comprise:

• Resizing the picture: This phase entails adjusting the
picture dimensions to a standard size that works for
your model. This is required since most models demand
that input photographs be the same size. The precise
measurements would depend on the specifications of
your model, but 224 × 224 pixels is a popular option
for many models.

• The second step is normalising the pixel values, which
scales them down to a range between 0 and 1. In general,
this helps the model train more effectively by ensuring
that the input features (pixel intensities) are on a similar
scale. The most common method for normalisation is to
divide the pixel values by the maximum pixel intensity,
which for 8-bit images is 255.

These preparation procedures are common in many image
processing pipelines and help to guarantee that your model
receives high-quality, standardised inputs.

C. U-Net
To handle sequences of photos with various exposures, U-Net
architecture is built in an unconventional way. The encoder
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(downsampling path) and the decoder (upsampling path) are
the two fundamental components of the architecture.

Conv layers and max pooling procedures make up the
encoder. Each has a 3 × 3 kernel size with’relu’ as the
activation function, and the first one has 64 filters, the second
one has 128, and the third one has 256. Tomaintain the spatial
dimensions of the feature maps, padding is set to’same’. Each
Conv layer is followed by amax pooling layer with a pool size
of 2× 2, which cuts the spatial dimensions in half and boosts
the Conv layers’ receptive field.

Our model’s use of the Time Distributed wrapper sets it
apart from others. As a result, the sub-model may separately
process each image in the input sequence and provide a
unique feature map for each one.

The feature maps from the encoder are then averaged using
tf.reduce_mean across the time dimension. By fusing data
from various exposures into a single feature map, this is an
example of feature fusion.

Here, the decoder component of the U-Net gets to work
upsampling the feature map to its original image size. It con-
sists of layers for Conv and upsampling. With a kernel size of
3× 3 with ‘‘relu’’ activation, the first Conv layer has 128 fil-
ters, the second has 64, and the third has 32. An upsampling
layer, which doubles the spatial dimensions, comes after each
Conv layer. A Conv layer with three filters, which correspond
to the RGB channels of the output image, makes up the final
layer. The output pixel intensities are guaranteed to be in the
range [0,1] thanks to the’sigmoid’ activation function, which
is in line with our preprocessing.

The Architecture has a ’U’ shape, which is typical of U-Net
models. The regression model for the job of image recon-
struction is built into the model using the ‘‘Adam’’ optimizer
and the mean squared error loss function.

D. CNN
We put into practise a CNN architecture made for categoris-
ing images. This model is a stack of Conv, max pooling, and
dense layers that was built using the Sequential API from
Keras.

The Conv Layers serve as the model’s foundation. Filters
make up the first layer’s 32, the second and third layers’ 64,
and the fourth layer’s 128. Each layer makes use of a 3 ×

3 kernel using the ‘‘relu’’ activation function. ’Relu notes the
model’s non-linearity, which allows it to recognise complex
patterns. The input shape for the first layer is set to (600, 400,
3), which denotes the relative height, width, and quantity of
colour channels of the input images.

Each Conv layer is followed by a Max Pooling Layer. The
featuremaps are downsampled using these layers, which have
a pool size of 2 × 2, cutting their spatial dimensions in half.
This procedure lowers the computing cost of the model and
aids in making it invariant to tiny translations.

The 2D feature maps are converted into a 1D vector using
a flatten layer after the convolutional and max pooling layers.
To link the Conv layers to the FCLs that follow, this is
required.

The Conv layers extract features, which are then classified
by the FCLs, also known as dense layers. The first dense
layer’s node count of 128 and the second dense layer’s node
count of 5 both correspond to the number of classes in the
output. The’relu’ activation function is used in the first dense
layer. The output can be seen as class probabilities because
the final dense layer’s’softmax’ activation function makes
sure that the output sums to 1.

The ‘‘adam’’ optimizer is used to build the model, and
‘‘categorical_crossentropy’’ is used as the loss function for
multi-class classification problems. The performance of the
model is evaluated using ACC. A validation set is then used
to track the model’s performance on training data that hasn’t
yet been observed after 10 epochs of training with a batch size
of 32 are completed.

E. MOBILENET
Using the MobileNet architecture and a priori training on the
ImageNet dataset, we construct a transfer learning strategy.
MobileNet is a speed- and efficiency-optimized lightweight
model, making it appropriate for embedded andmobile vision
applications.

A powerful feature extractor is provided by the MobileNet
architecture’s weights that have been pre-trained on the Ima-
geNet dataset. Since we want to adapt the model to our
particular goal, we do not include the top layer of MobileNet.
(600, 400, 3) is the input shape’s specification to match the
size of our photos.

We add a GlobalAveragePooling2D layer after the base
model. This layer creates a 1D vector by averaging each
feature map’s spatial values. As a result, the features’ dimen-
sionality is greatly reduced, simplifying the model and
lowering the possibility of overfitting.

To add non-linearity to the model, we next add a Dense
layer with 128 nodes and ‘‘relu’’ as an activation function.
The GlobalAveragePooling2D layer’s output is directly tied
to this layer.

Another dense layer with 5 nodes, which corresponds to the
number of classes in our output, makes up the model’s final
layer. This layer generates a probability distribution over the
classes using the activation function ‘‘softmax.’’

We freeze the layers of the base model and render them
untrainable in order to fine-tune the model for our particular
job. As a result, during training, the weights of these layers,
which include useful characteristics discovered from the Ima-
geNet dataset, won’t be modified. Instead, we will simply
exercise the newly additional Dense layers’ weights.

The model is constructed using the ‘‘Aadam’’ optimizer
and the ‘‘categorical_crossentropy’’ loss, both of which are
suitable for multi-class classification. ACC is used to evalu-
ate the model’s effectiveness. The model is then trained for
10 epochs with 32 batches, using a validation set to track the
model’s effectiveness on unviewed training data.

F. VGG19
The VGG19 model, which has been pretrained using the
ImageNet dataset, is used to implement a transfer learning
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strategy. The VGG19 deep CNN performs well on the Ima-
geNet dataset and is known for being straightforward.

The VGG19 model filled with weights previously trained
on ImageNet serves as the basis model. To better adapt the
model to our particular goal, we do not include the top layer
of VGG19. To match the size of our input photographs, the
input shape is set to (600, 400, 3).

A Flatten layer is added after the underlying model. The
output of the base model’s 2D feature maps are converted into
1D vectors by this layer. To link the Conv layers to the FCLs
that follow, this is required.

The model then gains non-linearity when a Dense layer
with 128 nodes and the ‘‘relu’’ function is added. The output
of the Flatten layer is totally connected to this layer.

Another dense layer with 5 nodes, which corresponds to
the number of classes in our output, makes up the final layer.
To make sure the output forms a probability distribution over
the classes, the ‘‘softmax’’ activation function is employed.

We freeze the layers of the base model and make them
untrainable in order to fine-tune the model to our particular
job. As a result, training will not include updating the weights
of these layers, which contain useful characteristics discov-
ered from the ImageNet dataset. We solely exercise the newly
added Dense layers’ weights.

The model is suitable for multi-class classification appli-
cations because it was built using the ’adam’ optimizer and
’categorical_crossentropy’ loss function. The performance of
the model is evaluated using ACC. After then, the model is
trained using a batch size of 32 across 10 iterations, with
a validation set used to check the model’s performance on
hypothetical training data.

IX. EVALUATION MEASURES
The precision (PREC), recall (REC), ACC, and F1-score
metrics are generated in this thesis to assess the performance
of text categorization systems. To understand the predic-
tions given by the three models, the confusion matrix is
also required. Below is an overview of these measures in a
nutshell.

The confusion matrix is a table that is used to assess the
efficacy of multi-class classification models. It compares
the model’s predictions—both accurate and inaccurate—with
the actual data. The matrix is frequently an array of squares
where each row represents examples of a predicted class and
each column represents instances of the actual members of
that class. The diagonal elements in the matrix display the
proportion of accurate predictions for each class, whereas the
off-diagonal values in the matrix represent samples that were
mistakenly classified. The confusion matrix can be used to
construct a number of performance metrics, including ACC,
REC, and F1-score, which are used to evaluate the model’s
efficacy.

The percentage of samples in the dataset that are correctly
assigned to every sample in the dataset is known as the
accuracy coefficient (ACC). The formula is as follows:

Accuracy = (TP + TN)/(TP+FP+TN+FN) (1)

The PRECISION assessment statistic determines the per-
centage of correctly recognized positive samples among all
predicted positive samples. In other words, PREC is a mea-
surement of the model’s accuracy in identifying positive
samples. The calculation is as follows:

Precision = TP/(TP+FP) (2)

The RECALL, often referred to as sensitivity, is a perfor-
mance metric that is used in classification tasks to evaluate
a model’s capability to precisely identify positive examples
out of the total number of positive cases in the dataset. The
REC formula looks like this:

Recall = TP/(TP+FN) (3)

A model’s ACC and REC are combined into a single value
to provide the F1-Score, a performance indicator for classi-
fication tasks. It is a harmonic mean that equally weighs the
two measures, ACC and REC. The overall effectiveness of a
classification model is typically evaluated using the F1-score.
The F1-score formula is as follows:

F-score = 2∗(Precision∗recall)/(Precision + recall) (4)

X. METHODOLOGY AND APPROACHES
In this section, we present the results of our proposed
approach for MFE detection. We evaluate the effectiveness
of the proposed strategy using a number of metrics, including
ACC, PREC, REC, and F1-score. The section begins with a
description of the implementation environment. The model
results are then displayed. Finally, we discuss the benefits
and drawbacks of themodels after reviewing the experimental
results.

Users can write and run programmes written in a variety
of different programming languages, mostly Python, using
a free online tool called Google Colab. It provides a code
editor, terminal, and a range of tools for interacting with
and visualising data in an Integrated Development Environ-
ment (IDE). One of its key benefits is the availability of
strong processing resources like GPUs and TPUs, which
can be particularly useful for resource-demanding ML tasks.
Additionally, Google Colab offers data visualisation, col-
laboration, and sharing features that enable users to import
data from a variety of sources, including local files, Google
Drive, and websites. To resume their projects later, users can
save their work to Google Drive or local devices. There is a
12-hour runtime restriction on Google Colab, after which the
user must re-connect to the server.

XI. RESULTS
A. U-NET RESULTS
We used U-Net along with Multiple Exposure Fusion (MEF)
and saw encouraging outcomes. Performance was greatly
influenced by the U-Net architecture’s capacity to efficiently
learn and extract hierarchical features from various network
layers. Multiple exposure settings were utilised during the
MEF process to improve the image’s details, which were
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FIGURE 1. Loss and accuracy of CNN.

subsequently sent to the U-Net for additional processing. As a
result, the U-Net model was able to produce a picture that was
properly exposed and had balanced lighting, which improved
visual quality and preserved detail.

Additionally, the U-Net performed admirably when
handling photographs with complicated lighting circum-
stances. By efficiently reducing overexposure and under-
exposure, it may provide photographs with more even
and realistic-looking lighting. This outcome demonstrated
U-Net’s capability to handle jobs outside of its original scope
of biomedical picture segmentation.

B. CNN RESULTS
Our model has a significant learning process over the period
of 10 epochs, as seen by the graph. The training ACC begins
in the first epoch at a modest 14.52% and quickly rises to
100% by the eighth, where it stays until the final epoch.
This shows that our model is successfully picking up new
information from the training set.

In terms of loss, the first epoch has a high value of
3.8363 and by the tenth epoch, it has dropped to virtually zero.
The model is successfully minimising its prediction errors on
the training data as evidenced by the decrease in training loss
over epochs.

In the first epoch, the validation ACC is 34.92%, and in
the fourth epoch, it is 100%. It swings a little in the epochs
that follow, but it always stays high, showing that the model
generalises effectively to new data.While there are occasional
fluctuations in the validation loss, it generally decreases and
reaches a minimum of 0.0142 in the seventh epoch.

Even while the validation ACC is still high, there is a
little increase in validation loss in the eighth epoch, despite
the model doing well overall. In order to avoid overfitting,
it would be wise to keep an eye on this during subsequent

FIGURE 2. Loss and accuracy of CNN.

training. The validation loss does, however, start to reduce
once more in the next epochs, indicating that the model is
still effective at learning.

The learning curve’s trends show that the training process
was successful, and the model performed well on both the
training and validation sets.

Your given confusion matrix appears to be a 5 × 5 matrix,
indicating that your CNN model divided images into five
categories.

The confusion matrix’s diagonal elements, which are
counted from top left to bottom right, show how many points
have predicted labels that match actual labels, or correct
predictions.

The model accurately identified 14 instances of the first
class, 17 instances of the second class, 11 instances of the
third class, 10 instances of the fourth class, and 10 occur-
rences of the fifth class in this situation.

The cases that the model incorrectly classifies are known
as off-diagonal elements. One time, for instance, a second-
class photograph was mistakenly labelled as belonging to the
fifth class.

The confusion matrix indicates that your CNN model is
operating at a high level, with little misclassification and
high ACC across all classes. The model had no errors in
classifying the third, fourth, or fifth classes, which appears
to be exceptionally powerful.

XII. RONYMS
‘‘The classification report gives a thorough evaluation of how
well our model did for each distinct class. Across all criteria,
our model did exceptionally well in this situation.

Class 0 was predicted perfectly by themodel, with a PREC,
REC, and F1-score of 1.00, indicating that it had no errors in
its predictions.

PREC for Class 1 was 1.00 and REC was 0.94, resulting
in an F1-score of 0.97. The model correctly identified every
occurrence it classified as class 1 according to this, however
it overlooked a few genuine examples of class 1.

In comparison to Class 0, Class 2 and Class 3 both
achieved flawless scores across all measures, demonstrating
the model’s strong ability to identify these classes.

Class 4’s PREC was flawless, at 0.91, while the REC was
significantly lower. An F1-score of 0.95 was obtained as a
result, which is still impressive. In forecasting class 4, the
model was a little more cautious, but when it did, it was
accurate.
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The metrics on average for all classes were also high.
The PREC, REC, and F1-score macro and weighted aver-
ages were all over 0.98, showing that the model performed
well across all classes. The model’s overall ACC was 0.98,
which means that 98% of all classifications were accurate.
This highlights the model’s outstanding functionality in this
multi-class classification job.

A. EQUATIONS

FIGURE 3. CNN classification metrics.

B. MOBILENET RESULTS
As can be seen from the curve, both the training and validation
sets of the model show a continuous improvement over time.
The training loss begins high in epoch 1 at 1.65 but gradually
declines over the subsequent epochs, reaching a very low
value of 0.01 by epoch 10. This shows that with each iteration,
the model learns from the training data and makes better
predictions.

This pattern is mirrored by the validation loss, which starts
at 1.70 and falls to 0.01 by epoch 10. This is a very good sign
because it shows that the model is not overfit to the training
data and is generalising effectively to new data.

A favourable pattern can also be seen in the ACC curve.
The training ACC begins at about 32% and quickly rises to
100% by the sixth epoch, where it remains for the remaining
epochs. A similar pattern is seen in the validation ACC, which
rises from 52% in epoch 1 to 100% by epoch 3 and then stays
there for the remaining epochs.

The graphs show a highly successful training process,
where the model successfully absorbs the input and success-
fully generalizes to new data, obtaining a perfect ACC score
on both the training and validation sets by the end of training.

A confusion matrix, which is the type of matrix that is
provided, can be used to summarise how well a classification
system performed. It displays an almost flawless categoriza-
tion model.

The genuine positive counts for each class are displayed
diagonally from the top left corner to the bottom right.
In these cases, the class was correctly predicted by the model.
The instances of an actual class are shown in each row and
those of a predicted class are shown in each column of the
confusion matrix. By examining the matrix, we can learn:

• All 14 instances of class 0 were accurately detected by
the model.

FIGURE 4. MobileNet curves.

• It recognised all 18 instances of class 1 with accuracy.
• Class 2 was accurately identified in all 11 cases.
• All 10 instances of class 3 were accurately identified by
the model.

Additionally, all 10 instances of class 4 were accurately
identified.

This confusion matrix has no off-diagonal entries, indi-
cating that the model did not misclassify any data. This
demonstrates that the model excelled at the assigned classifi-
cation task.

This categorization report shows outstanding performance
by the model for each class across all measures.

The model achieved a perfect PREC, REC, and F1-score
of 1.00 for each class from 0 to 4. PREC and REC each
present a measure of a classifier’s precision and complete-
ness, respectively. Alternatively, a high REC indicates that
an algorithm found the majority of the relevant results, and a
high PREC indicates that an algorithm returned significantly
more relevant results than irrelevant ones. The F1-score seeks
to strike a balance between PREC and REC by taking the
harmonic mean of PREC and REC.

The’support’ row displays the total number of true
response instances that fall under that class, which comes
to 63.

The PREC, REC, and F1 scores are averaged in the’macro
avg’ row without taking into account the proportion for
each class in the data. The ’weighted average’ row weighs
each class member proportionally when calculating metrics
on a class-wide level.

The ’ACC’ row displays the percentage of real results—
both real positives and real negatives—out of the total
instances studied. In this instance, the model obtained a per-
fect score of 1.00, or the ACC.

In conclusion, this classification report demonstrates that
the model executed flawlessly on the given dataset.

C. VGG19 RESULTS
The curve shows that the model’s performance increased
noticeably with each training epoch. The model initially had
an ACC of 14.5% in the first epoch, but it quickly learned,
and by the second epoch, the ACC had increased to 72.5%.
The model was able to swiftly adapt to the characteristics and
patterns in the training data, as is mentioned in this.
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FIGURE 5. MobileNet confusion matrix.

FIGURE 6. MobileNet performance metrics.

A similar rising tendency was also seen in the validation
ACC. It began in the first period at 79.37% and swiftly
increased to 90.48% in the second. This shows that the model
was successful in generalising to fresh, untested data.

By the third epoch, both the training and validation ACCs
of the model had reached close to or reached 100%. For the
remaining epochs, this high ACC persisted. This performance
shows that the model has mastered the art of accurately
classifying photos using ACC.

In terms of loss, we had a somewhat large training loss
in the first epoch (7.9168), but it quickly dropped during
the following epochs. The loss decreased to almost nil by
the sixth epoch, showing that there was little discrepancy
between the model’s predictions and the actual labels.

A similar pattern was seen in the validation loss, which
peaked at 0.8873 in the first epoch before rapidly decreasing
to almost zero by the fifth.

These findings point to a highly efficient model with a
near-perfect ACC and little loss that learns the training data
well and generalises well to unknown validation data.

Since there are five classes in the dataset, the confusion
matrix for the VGG19 model is a 5× 5 matrix. The instances
in a real class are represented in each row of the matrix,
whereas the occurrences in a predicted class are represented
in each column.

FIGURE 7. VGG19 curves.

This matrix shows that all classes were correctly classified
by the VGG19 model. No classes were misclassified, and
each prediction was accurate.

There were 14 instances of the first class, and all of them
were correctly identified as belonging to it (there were no
misclassifications).

There were 18 instances of the second class, and all of them
were accurately identified as such (0 misclassifications).

There were 11 occurrences of the third class, and all of
them were correctly identified as belonging to it (there were
no misclassifications).

There were 10 instances of the fourth class, and all of them
were accurately identified as such (0 misclassifications).

There were 10 instances of the fifth class, and each one
was accurately identified as such (there were no misclassifi-
cations).

As a result, themodel has a 100%ACCbecause it has never
predicted the wrong thing. On this dataset, such a model per-
forms superbly, demonstrating an excellent comprehension of
the properties related to each class.

The PRECISION, RECALL, and F1-score for the VGG19
model were all perfect, according to the classification report
for the model.

Class 0 was predicted with 100% PREC, 100% REC, and a
f1-score of 1.00, indicating that all instances were accurately
detected and there were no false positives or false negatives.
Class 0 had 14 instances.

Class 1 had 18 instances and had PREC, REC, and f1-score
values of 1, which indicate perfect predictions.

Class 2 had 11 occurrences and received an A on every
count.

Class 3 and Class 4, which each had 10 incidents, were
also flawlessly predicted, obtaining a score of 1.00 across the
board.

By scoring 1.00 in both macro and weighted averages
and accurately detecting all 63 cases, the VGG19 model
displayed faultless ACC. Such findings point to a superior
model performance.

XIII. DISCUSSION
In terms of PREC, REC, f1-score, and ACC, MobileNet and
VGG19 outperformed CNN in the classification report for the
three models, CNN, MobileNet, and VGG19.

In particular, MobileNet and VGG19 both received
100 percent ratings for every metric, demonstrating that they
correctly classified every instance in every class. This shows
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FIGURE 8. VGG19 confusion matrix.

FIGURE 9. VGG19 performance metrics.

TABLE 1. Comparaison methods.

that both models were quite effective at learning the data
patterns and were able to distinguish between various classes
without making any mistakes.

The CNN model, on the other hand, performed admirably
overall, with an ACC of 98%, while Class 1 and Class 4 had a
modest underperformance. Class 1’s REC was 0.94, meaning
it wasn’t able to detect every true positive in that class. With a
PREC of 0.91, Class 4 may have mistakenly categorised cer-
tain instances of other classes as Class 4. In spite of these tiny
flaws, the CNN model nevertheless performed admirably.

In conclusion, all models performed excellently, but
MobileNet and VGG19 slightly outperformed the CNN
model in this particular test.

XIV. CONCLUSION AND FUTURE WORKS
In summary, our study offers valuable insights gained from
the comprehensive evaluation of several Deep Learning (DL)
models, including CNN, MobileNet, VGG19, and U-Net,
in the context of Multi-Exposure Fusion (MEF) and classifi-
cation tasks. U-Net has emerged as a powerful tool for MEF,
thanks to its unique architecture, enabling precise localization
and high-quality fusion image generation.All three models—
CNN, MobileNet, and VGG19—demonstrated impressive
performance in classification tests. However, MobileNet and
VGG19 slightly outperformed the conventional CNN in the
assessed dataset, owing to their deeper and more complex
architectures, enabling them to discern intricate patterns
within the data. MobileNet’s efficiency and suitability for
embedded and mobile vision applications stem from its
design, which significantly reduces model size and computa-
tional costs through depthwise separable convolutions. On the
other hand, VGG19, characterized by its use of 3× 3 convo-
lutions and deeper 19-layer architecture, excels in learning
complex patterns. The choice of model should be contingent
on the specific task requirements, computational resources,
and data characteristics. For instance, while MobileNet and
VGG19 offer enhanced performance, they also demand more
computational power. In scenarios where resource constraints
are a concern, simpler models like CNNs may be more
appropriate.

Furthermore, the dynamic nature of DL research continues
to yield increasingly potent and efficient models. Staying
updated with these advancements is imperative to ensure the
selection of the most suitable model for each task.

Future work holds promising opportunities to refine and
adapt DL models for enhanced performance in MEF and
classification tasks. Exploring more sophisticated and effec-
tive architectures, such as EfficientNet or Transformer-based
models, may provide substantial improvements. Augmenting
dataset diversity and size through various data augmenta-
tion techniques can bolster model robustness. Combining
the strengths of different architectures, such as the precise
localization abilities of U-Net with the feature extraction
capabilities of VGG19 or MobileNet, may yield superior
results. Additionally, the implementation of transfer learning
stands to enhance model generalization and performance on
smaller datasets. Finally, staying abreast of the latest devel-
opments and algorithms in the rapidly evolving field of DL
research is essential. The applications of these models are not
confined to their current limitations. Exploring their potential
in domains like remote sensing, self-driving cars, andmedical
imaging holds great promise. Future research should continue
to investigate these possibilities, as the promising findings
thus far indicate that these models can significantly impact
a variety of sectors.

In conclusion, our study underscores the transforma-
tive potential of DL models in MEF and classification
tasks, and we anticipate that ongoing research will fur-
ther unleash their capabilities in diverse and evolving
applications.
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