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ABSTRACT The increasing sophistication of malware threats has led to growing concerns in the anti-
malware community, as malware poses a significant danger to online users despite the availability of
numerous defense solutions. This study aims to comprehensively review malware evolution and current
attack trends to identify effective defense mechanisms. It reviews the most recent journal articles, conference
proceedings, reports, and online resources published during the last five years. We extensively review the
malware landscape from 1970 to the present and analyze malware types, operational mechanisms, attack
vectors, and vulnerabilities. Furthermore, we explore different defensive strategies developed in response
to these evolving threats. Our findings highlight the increasing sophistication of malware attack trends,
including a surge in cryptojacking, attacks on mobile devices, Internet of Things devices, ransomware,
advanced persistent threats, supply chain attacks, fileless malware, cloud-based attacks, exploitation of
remote employees, and attack trends on edge networks. Defense strategies have also evolved in parallel,
emphasizing multilayered security measures to counter these dynamic threats. This study highlights the
critical need for robust, multilayered security measures to combat dynamic malware. Despite these advance-
ments, some open challenges and significant research gaps remain, which require further innovation. This
review serves as a valuable guide for cybersecurity professionals by identifying the key trends, challenges,
limitations, and future cybersecurity research opportunities.

INDEX TERMS Malware evolution, malware attack trends, defense mechanisms, malware detection,
machine learning, deep learning.

I. INTRODUCTION
In the current digital era, malware attacks and defenses
are becoming increasingly complex, creating an evolving
cyberthreat landscape. Malware, which is characterized as
deleterious software, infiltrates host systems, impairs oper-
ating systems or networks, and causes many complications,
including data exfiltration. With the rapid progress in tech-
nology, malware threats have exhibited enhanced potency
and intricacy, often exceeding the capabilities of traditional
defense systems. This scholarly examination provides an

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Tong .

exhaustive review of the emerging trends in malware assaults
and their associated defensive structures.

Despite advances in technology and cybersecurity, mal-
ware attacks remain a challenge for netizens, as threat actors
seek to make money or trade by stealing personal data, bank
accounts, and credit statements. According to a report by
DataProt, 560,000 new types of malware are detected daily,
and the internet is currently flooded with over one billion
malware programs [1]. PurpleSec found that the average
data breach cost was $3.86 million, and cybercrime could
cost $10.5 trillion by 2025, indicating increasing concerns
about malware attacks [2]. According to Parachute in 2023,
the financial sector suffered losses of over $49,207,908
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from ransomware in 2021, and phishing attacks against
banks accounted for 23.2% of these losses [3]. In addition,
SonicWall’s latest report revealed that during the first half
of 2023, malware volume peaked at 575 million in June, rep-
resenting a 46% increase from the 395 million hits recorded
in January, as shown in Figure 1 [4]. The recent statistical
threat report mentioned above highlights that malware is
causing increasing damage to the global economy in terms
of quantity, complexity, and cost. To combat these threats,
it is crucial to understand recent malware attack trends and
the corresponding defense strategies.

FIGURE 1. The increasing rate of global malware volume (Q1, 2023).

With the blessings of AI technology, cybercriminals can
carry out targeted attacks quickly and on a larger scale,
while bypassing traditional detection methods. Intelligent
self-learning malware is an example of an AI-based cyberat-
tack [5]. Polymorphic and metamorphic malware can fall into
this category and reshape their appearance by altering their
code with or without a different encryption key [6]. This evo-
lution of malware has resulted in sophisticated threats, such
as espionage, ransom, and sabotage, which pose consider-
able challenges to individuals, businesses, and governments.
Several recent studies and threat reports have warned of
various emerging trends in attacks, such as Emotet, which
is dangerous malware. It began as a banking trojan, changed
to polymorphic malware to steal data, and is now active
again [4], [7]. Remote access trojans (RATs) and banking
trojans have also been used in recent attacks [8]. Ransomware
attacks have recently become increasingly sophisticated and
frequent. For example, in 2021, ransomware was the top
cyber threat, with attacks increasing by 140% in the third
quarter [9]. Fileless attacks are another emerging trend in
malware attacks that do not leave traces in the system; there-
fore, they are difficult to detect [10], [11], [12]. Advanced
persistent threats (APTs) are highly complex, target-specific,
persistent, and remain undetected until the target is com-
promised [13], [14]. In addition, cryptojacking [4], mobile
malware [15], Internet of Things (IoT) [4], cloud attacks [16],
and attack trends in edge networks [17] have become increas-
ingly frequent and complex. Exploring these modern attack
trends forms a primary focus of this review, as understanding
the ‘enemy’ is the first step in building a robust defense.

In the last decade, most reviewed articles on malware
discussed detection, approaches, and challenges. A com-
mon theme is the increasing importance of machine- and
deep-learning techniques, as noted by Gibert et al. [18],
Tayyab et al. [19], and Gopinath and Sethuraman [20]. How-
ever, these studies lacked a comparison with other techniques
and temporal effectiveness analysis. Aslan and Samet [21]
and Roseline and Geetha [22] surveyed detection and mit-
igation techniques but lacked a performance evaluation.
Huang et al. [23] and Zhang et al. [24] explored malware
detection through evasion tactics and memory forensics but
did not address the evolution or practicality of defiance
strategies. Shaukat et al. [25] proposed deep learning tech-
niques without comparing them with existing methods. The
authors of [26], [27], [28], [29], [30], and [31] only studied
ransomware detection and defense solutions, and no other
malware types. Similarly, [10], [11], [13], [32], [33], [34],
[35], and [36] studied APT and fileless malware detection
and prevention. In addition, Wang et al. and Liu et al. exam-
ined deep learning-based detection against Android malware
[37], [38], offering a thorough analysis but they did not
fully explore practical implementation and malware evolu-
tion. Several studies have investigated malware detection in
IoT devices [39], [40], [41]. However, there is a lack of
practicality and robustness in malware detection, and a failure
to account for the ever-changing nature of IoT threats.

Following a thorough examination of the extant litera-
ture, it is noted that most research on malware detection
uses machine and deep learning, not comprehensive defense
solutions. It is critical to emphasize that malware detection
alone does not provide a complete safeguard against mod-
ern malware; it is only one part of a multilayered defense
mechanism. In addition, most survey studies have focused
on certain malware types, such as ransomware or fileless
malware, without considering others. Hence, comprehen-
sive research is required to provide a complete picture of
malware evolution, contemporary attack trends, and defense
solutions. To our knowledge, no studies have been conducted
on this topic. This is a significant research gap as technology
advances and more devices are connected to global networks,
thereby increasing the number of attack surfaces. However,
an understanding of these threats is incomplete without a
parallel study of the defense strategies designed to combat
them.

This study aims to fill these gaps by comprehensively
reviewing current malware attack trends and defense strate-
gies. In this study, we explored malware evolution, ranging
from the Creeper virus (1971) to widespread ransomware
and other currently evolving attacks, to better understand the
trends and tactics employed in such attacks, as illustrated
in Figure 2. Our analysis revealed the latest sophisticated
attack trends, including a dramatic increase in cryptojack-
ing, ransomware attacks, APTs, supply chain attacks, fileless
malware, and malware attacks on mobile devices, Internet
of Things devices, and edge networks. We scrutinized threat
vectors, vulnerabilities, attack targets, innovative tactics,
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FIGURE 2. Roadmap of this study. Upon analyzing malware evolution, we aim to identify the most
current trends in malware attacks and suitable defense strategies by going through this outline.

TABLE 1. Classification of malware based on purpose and information-sharing system.

and case studies on well-known malware attacks. Further-
more, this study explored multilayered and other defense
strategies, ranging from traditional antiviral software to
advanced artificial intelligence and machine learning-based
solutions. Finally, this study identifies the major challenges
and significant research gaps in malware detection and
protection.

The key contributions of this paper are as follows:

• We survey malware evolution from 1970 to the present
and discuss its history, features, and development to help
understand current attack trends.

• We analyze the latest malware attack trends to gain
insight and investigate effective countermeasures.

• This study highlights the need for multilayered secu-
rity measures to defend against intelligent and dynamic
malware.

• Finally, we identify the challenges and limitations of the
current study and offer ideas and suggestions for future
research.

The remainder of this paper is organized as follows. Section II
presents insights into malware. Section III provides a tax-
onomy of malware evolution. Section IV explores modern

malware attack trends and case studies on recent high-profile
attacks. Section V reviews malware defense mechanisms
and other protective strategies. Section VI presents the chal-
lenges, limitations and research gaps in the literature. Finally,
Section VII concludes the paper.

II. AN INSIGHT INTO MALWARE
Knowing the fundamentals of malware is essential for effec-
tive cyberdefense against modern threats. This section covers
malware basics.

A. MALWARE DEFINITION
Malware is malicious software designed to compromise sys-
tem security and make illegal profits. Its criminal activities
include data breaches and identity theft and it can be spread
via various executable or software vectors [42].

B. MALWARE TYPES AND COMMON ATTACK VECTORS
1) CLASSIFICATION OF MALWARE
We categorized malware according to its aims and methods
using information from the literature [18], [22], as outlined
in Table 1.
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FIGURE 3. The ongoing evolution of malware reflects the persistent efforts of cybercriminals to
bypass security measures and exploit new vulnerabilities.

2) COMMON ATTACK VECTORS
Cybercriminals constantly invent new ways to infiltrate the
victim’s system and steal sensitive data. Popular malware
propagation sources are included in [41] and [45].
Drive-by Download: Attackers may infect secure web-

pages or ads with malware to exploit user data, causing
accidental downloads.
Backdoors: Backdoors such as FinSpy allow unauthorized

access to a computer, enabling remote malware installation
and malicious script execution by the attackers.
Phishing: Typical malware attacks. Attackers trick trust-

worthy sources by manipulating users to trigger malware by
using deceptive links or downloads.
Removable drives: Removable drives such as flash drives

and hard disks are familiar sources of malware transfer,
including viruses, worms, and ransomware.
Vulnerabilities: Malware authors often exploit operating

systems, browsers, or other software flaws using tools, such
as exploit kits, to leverage known or zero-day vulnerabilities.

III. THE EVOLUTIONARY LADDER OF MALWARE OVER
TIME
We classified malware development into five generations
based on their era of origin and features. Figure 3 shows the
typical characteristics of each generation.

A. FIRST-GENERATION MALWARE (1970s–1980s):
SIMPLE VIRUSES AND WORMS
Thomas Bob–were the first computer virus creepers to per-
form self-replicating tests in 1971. Elk Cloner hit Apple II
in 1982, followed by the ‘Brain’ virus in 1986. Morris 1988
created the first computer worm, Morris Worm [46]. In 1989,
Joseph Popp led the first ransomware, AIDS Trojan, demand-
ing a ransom after infection [47].

B. SECOND-GENERATION MALWARE (THE LATE-1980s TO
THE MID-1990s): MACRO AND SCRIPT VIRUSES
The mid-90s saw second-generation malware such as
Microsoft Word macro language (WM Concept) and

X97M/Laroux used macros and scripting [48]. In 1999, the
Melissa virus disrupted the email system [49].

C. THIRD-GENERATION MALWARE (THE MID-1990s TO
LATE-2000s)COMPLEX NETWORK WORMS
Third-generation malware, called network worms, exploit
network vulnerabilities. Examples include the ‘ILOVEYOU’
worm [49], Code Red [50], and Nimda [51].

D. FOURTH-GENERATION MALWARE (2000s–2010s): THE
EMERGENCE OF TROJANS, ROOTKITS, POLYMORPHISM,
AND RANSOMWARE
Fourth-generation malware evolved into polymorphism, tro-
jans, rootkits, and ransomware. The initially harmless tro-
jans became a significant threat to cybersecurity with
the emergence of sophisticated trojans, such as Beast in
2002 [52], Zeus in 2007 [53], and Tor-pig in 2008 [54].
A recent advancement is Taidoor, a RAT associated with the
Chinese government [55]. In 1999, Sony Entertainment cre-
ated the first Windows rootkit, SONY BMG, leading to CD
recalls [56]. Over time, rootkits such as FuTo and Meb-
root have advanced, demonstrating the need for boot-process
security [57]. The Alureon/TDL-4 Rootkit in 2011 high-
lighted the complexity of data breaches [58]. Ransomware
originated with the AIDS Trojan and evolved with pro-
grams such as Gpcoder, CryZip, Archives [59], [60], and
Krotten [61]. Locker ransomware appeared in 2008, and the
advent of cryptocurrencies in 2009 facilitated more attacks
owing to secure and anonymous payments [62].

E. FIFTH-GENERATION MALWARE (2010s–PRESENT):
ADVANCES IN RANSOMWARE, APTs, FILELESS MALWARE,
POLYMORPHISM, MOBILE MALWARE, AND IoT MALWARE
Our review found that fifth-generation malware is the
most damaging, elusive, and efficient and uses tech-
niques such as polymorphism and metamorphism [63], [64],
living-off-the-land strategies [35], [65], encryption [26],
[28], exploiting vulnerabilities, and other innovative tactics.
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Ransomware changed from CryptoLocker’s RSA encryption
and Bitcoin in 2013 [26] to NotePetya and WannaCry [66].
In 2019, corporate-focused ransomware, such as Ryuk [67],
Ransomware-as-a-Service (RaaS), double extortion, and bug
bounty tactics by Conti and Revil, improved the ransomware
landscape [68].
Ransomware attacks surged in 2020 due to Covid-19

[69] and skyrocketed in 2021, with significant inci-
dents, such as the Colonial Pipeline [70], JBS [71], and
Kaseya [72]. Although attacks decreased in 2022 [73],
threats remain with new techniques such as triple extor-
tion and BlackCat’s Rust language [74]. State actors
developed malware such as Stuxnet and Flame, dis-
rupting Iran’s nuclear program and spying in the Mid-
dle East in 2010 and 2012 [49], [75]. APT attacks,
such as Hydraq, Operation Aurora, and Carbanak [76]
are notable. In 2020, the APT29 conducted SolarWinds sup-
ply chain attacks [77], [78]. Finally, long-standing snake
malware was neutralized in 2023 by Perseus [79].
Cybercriminals have shifted their focus from file-based

to fileless malware attacks and living-off-the-land (LotL)
tactics to increase sophistication in cyber threats. This poses
new challenges for detection. ToddyCat (2022) defines these
threats using system tools or memory scripts [80]. This trend
led to a 900% increase in the infiltration rate [81]. Zero-day
exploits rose over 100% in 2021 compared to 2019, target-
ing Microsoft, Google, and Apple [82]. Twitter Zero-Day
Exposed is a recent example [83]. Another current attack
trend is the substantial spike in cryptojacking [4]. Further-
more, both Apple and Android phones are rising targets
of cybercriminals. However, Android’s open marketplace
and third-party app stores may render it more vulnerable.
FluBot [15] and Exodus Spyware [84] are the most recent
and notorious examples of mobile malware. IoT devices are
highly exposed to network attacks such as data theft, DDoS,
ransomware, and data breaches, leading to recovery costs
and downtime. Mirai botnet (2016), Verkada (2021), Jeep
Hack (2015), and Stuxnet (2010) are examples of IoT cyber
threats [85]. Recently, BlackMamba ChatGPTmalware plans
to use generative AI to create elusive variants by 2023 [86].
This growing threat complexity necessitates urgent and inno-
vative countermeasures.

F. SUMMARY OF THE FINDINGS IN MALWARE EVOLUTION
Table 2 summarizes malware generation from 1970 to the
present in terms of the emergence period, target platforms,
initial access methods, key characteristics, and destruction.
The key findings of each generation are as follows:

• Table 2 shows that the first generation of malware
marked the birth of self-replicating codes, which were
typically spread via floppy disks or MS-Word docu-
ments, with harmless payloads. The primary purpose of
this study was to demonstrate technical skills such as the
Creeper virus.

• Second-generation malware targeting Windows soft-
ware emerged from the late 1980s to the mid-1990s.

The malware in this generation accessed systems by
exploiting software vulnerabilities through email attach-
ments, particularly Word, Excel, and Melissa. Although
less harmful, this paved the way for more destructive
malware attacks.

• Third-generation malware, from the mid-1990s to the
late-2000s, included complex network worms that
primarily targeted Windows and other systems. For
example, the ‘ILOVEYOU’ worm exploited network
vulnerabilities and used social engineering to spread and
infect millions of computers. Code Red and Nimda used
multiple propagation methods and caused billions of
dollars in damages.

• The fourth malware generation (2000s–2010s) used
advanced techniques for stealth and evasion, mainly tar-
geting Windows. It resulted in boosting cyber security.
This period saw the emergence of ransomware, which
poses a significant risk to encrypting user data.

• Table 2 shows that the fifth or current generation of
malware has evolved into highly sophisticated forms
since 2010, targeting a more comprehensive range of
platforms, including Windows, Linux, Mobile, IoT, and
network systems. According to the literature, some of
these factors are unknown. Some malware types have
become powerful weapons because they cause severe
damage without affecting human life. For example,
APTs can remain in a system to launch sophisticated
attacks. We also found that modern malware leverages
cutting-edge strategies, such as the RasS model, double
and triple extortion, and high-level programming lan-
guages to maximize financial gains, scale, and evade
detection.

Based on the information in Table 2, we further categorized
the chronological evolution of malware trends, focusing on
the most recurring attack vector, the initial access approach,
and the primary purpose of the attack, as shown in Figure 4.

• Considering the target platforms summarized in Table 2,
Windows is the most popular target for notable mal-
ware strains because most end users, organizations, and
enterprises use this popular and user-friendly operating
system. Figure 4(a) shows that only 21.2% of the mal-
ware author’s attacks targeted other platforms.

• Regarding the initial access method illustrated in
Figure 4 (b), phishing and exploiting vulnerabilities are
the two most popular infection methods used in modern
malware. Spam emails, floppy disks, drive-by down-
loads, Smishing, and MS-Word documents are infection
methods that follow phishing and vulnerability.

• Figure 4 (c) shows that the primary purpose of malware,
particularly in the modern age, is to perform malicious
activities and earn financial profit.

Our review of malware evolution reveals that prior studies
have mainly focused on technical aspects, such as defin-
ing and types of malware and not on their consequences
for defense strategies. To address this issue, we studied
the behaviors of malware, targets, and damaging actions
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TABLE 2. Summary of significant malware evolution of five generations.
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FIGURE 4. Dispersion of (a) target platform, (b) attack strategies, and (c) attack goals of notable malware families from 1970 to the present.

to provide clear insights into sophisticated attack trends.
Our findings indicate that recent malware has attempted to
bypass AV/AM techniques, which is a primary concern for
the research community. Therefore, finding a robust solution
for malware detection remains a challenge.

IV. CURRENT MALWARE ATTACK TRENDS
Recently, the frequency and complexity of malware attacks
have increased significantly, posing extensive threats to indi-
viduals and organizations. By studying the evolution of
malware, including our previous research [87], we identified
the most current attack trends encompassing attack meth-
ods, case studies, and their impacts, which are detailed in
this study, to facilitate the formulation of effective defense
strategies.

A. RECORD RISE IN CRYPTOJACKING ATTACKS
Cryptojacking is the unauthorized use of a victim’s computer
resources to mine a cryptocurrency. SonicWall’s latest report
reveals that cybercriminals are shifting from ransomware to
covertly mine digital currencies for financial gain. In the first
half of 2023, the number of cryptojacking attacks surpassed
332 million, compared to 66.7 million in the corresponding
period of 2022. Cybercriminals adjust tools, tactics, and pro-
cedures to improve their success. For instance, they moved
from attacking endpoints to cloud services, such as using
Kubernetes clusters to mine Dero.
Key Characteristics We found some specific characteris-

tics of cryptojacking attacks in the literature, including:
• Cryptojacking attacks use a victim’s device to mine
cryptocurrency, resulting in high CPU usage [88].

• Graphics processing units (GPUs) are now acces-
sible to computers, making them attractive for
cryptojacking [88].

• Vulnerable routers are lucrative attack vectors for cryp-
tojacking attacks [89].

• Cryptojacking uses malicious scripts to mine cryptocur-
rencies, which can be found in the victim’s browser
cache or a hacked website’s source code [90], [91].

These specific characteristics, such as increased CPU usage,
compromised graphics processing units (GPU), vulnerable

routers, and malicious scripts of cryptojacking attacks, can
be used as indicators for detection using advanced machine-
learning techniques.

For example, in late March 2023, cybercriminals included
a new variant of Async RAT malware designed to steal cryp-
tocurrencies [4]. The new variant has extra command support,
clippers, crypto stealers, and keylogger modules, and stops
system sleep. SonicWall RTDMI identifies a JavaScript file
that downloads and runs fileless AsyncRAT.

B. MOBILE MALWARE ATTACKS
Among the recent malware attack trends, mobile malware
has grown significantly in sophistication and frequency.
The surge in mobile device usage and dependency offers a
golden opportunity for cybercriminals to target naïve users.
Researchers observed a 500% surge in mobile malware
attacks in early 2022, with two peaks in February [15].
Key characteristics: Mobile malware attacks share certain

characteristics as follows:
• Mobilemalware drains battery power and communicates
with command-and-control servers, thereby leading to
higher data usage. A sudden battery drain without a
change in the usage pattern may indicate malware [92].

• If new apps appear on a device that the user has not
downloaded, it may indicate malware [93].

• Malware can cause applications or devices to crash fre-
quently.

• Certain malware may make unauthorized payments via
SMS or even online [94].

Mobile malware attacks can be identified early using AI
tools by analyzing unexpected characteristics, such as battery
drain, increased data usage, unfamiliar apps, frequent crashes,
and unauthorized payments.
Case study of Exodus Spyware as a mobile malware

attack (2019): One notable example of mobile malware is
Exodus Spyware targeting iPhones and Android phones,
which caused an alarm after being discovered in 2019.
Once installed on a device, it can obtain root permis-
sions, giving attackers complete control of the device and
access to all data, thereby raising substantial privacy con-
cerns [84]. Based on the analysis of the attack traits, it became
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apparent that command-and-control server security measures
were inadequate.

C. INTERNET OF THINGS (IoT) ATTACKS
SonicWall shows 7.9 million IoT malware attacks in the first
half of 2023, a 37% increase from the same period in 2022.
This attack level surpasses the full-year total for 2020 and
2021 and the combined totals for 2018 and 2019 [4]. With
the growing number of IoT devices, such as smart gadgets
and sensors, common security weaknesses and valuable data
make them prime targets for cybercriminals. Cybercriminals
exploit these devices for multiple destructive purposes, such
as prompting DDoS attacks, espionage, stealing data, and
sabotage.
Key characteristics: IoT malware has distinct features and

attack behaviors, as follows:

• Malware-infected IoT devices have large abnormal traf-
fic patterns that can be detected by analyzing packet
headers, size, and distribution [95].

• Stealth is an IoT malware feature that hides files, boot
sectors, and partitions [40].

• Some IoT malware converts infected devices from the
worm category into networks, honeypots, and proxy
servers such as Moose, TheMoon, and OMG [40].

• Malware often modifies the configuration of IoT
devices; this can be detected by comparison with a
known good configuration [95].

• IoTmalware often prevents rebooting to avoid deletions;
however, rebooting usually removes malware [40].

Monitoring these characteristics can enable early identifica-
tion of IoT attacks and possible remedies.
Case study of Mirai botnet as a malware attack on IoT

devices: This attack was first identified in 2016 and has
attacked many IoT devices to create a network of compro-
mised units that are then used to launch DDoS assaults.
This attack shuts down popular websites like Twitter, Netflix,
and GitHub. This real-life scenario illustrates the impact of
malware attacks on devices and highlights the importance
of safeguarding these devices against widely recognized
vulnerabilities [96].

D. INCREASED NUMBER OF TARGETED RANSOMWARE
ATTACKS
Recent malware trends have highlighted increased targeted
ransomware attacks, in which hackers access a network or
system, encrypt data, and demand a ransom to restore access.
This increase in ransomware attacks is driven by several fac-
tors, including potential financial gains, easy operation, the
rise of ransomware-as-a-service platforms, and the popularity
of cryptocurrencies like Bitcoin [97]. Ransomware attacks
are wide-ranging, targeting everything from desktops and
mobile devices and increasingly involving IoT devices.
Key characteristics: Ransomware attacks exhibit the fol-

lowing specific characteristics:

• Ransomware often exhibits abnormal file behavior, such
as encrypting files at a rapid rate or modifying file
extensions [30].

• This may generate unusual network traffic patterns, such
as a sudden increase in outbound connections or commu-
nication with suspicious IP addresses [31].

• Often, they propagate through spam emails and phishing
attacks [30].

• It often exploits the vulnerabilities of a system [26].
• Ransomware targets an array of devices, including desk-
tops, mobile devices, and IoT devices [26].

Therefore, network traffic spikes, encrypted files, system
modifications, andmalicious emails with attachments or links
are signs of ransomware attacks. AI tools such as machine
learning and deep learning can detect and address these indi-
cators early.
Case study of the Colonial Pipeline as a ransomware

attack:We chose the Colonial Pipeline ransomware attack for
our case study in which the U.S. oil transportation entity fell
victim to a sophisticated ransomware attack in May 2021 by
DarkSide through a compromised Virtual Private Network
(VPN) account [98]. Attackers carried out this operation
in several stages: initial system breach via a dormant VPN
account, network surveillance, loading of the ransomware,
and, ultimately, the ransom demand. The attack caused
a 45% energy supply disruption, fuel shortages, and price
hikes [99]. An analysis of the attack characteristics indicates
the presence of outdated VPNs and vulnerable network secu-
rity measures. This scenario highlights the significance of
understanding the attack characteristics and vulnerabilities
for timely detection and response.

E. SUPPLY CHAIN ATTACKS
Supply chain attacks have recently emerged as a signif-
icant and growing threat to cybersecurity. These attacks
have extensive implications for both organizations and
customers [100].
Key characteristics: The main characteristics of supply

chain attacks are as follows [101].
• Supply chain attacks are well-planned, sophisticated,
and tend to be legitimate software updates to avoid
suspicion.

• Large scale and highly damaging.
• The attacker infiltrates a trusted vendor or supplier and
introduces malicious code or backdoors into software or
system components early in the supply chain.

• A large amount of data can be transferred to or from
third-party vendors.

• Sometimes, it generates fake websites and sends phish-
ing emails to access a victim’s system.

An analysis of the above characteristics reveals some early
indicators of supply chain attacks that can be detected using
AI tools, including unusual network activity, unknown soft-
ware, poor system performance, and unusual communication.
These signs may not confirm an attack but together increase
the likelihood of an ongoing attack.
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Case study of SolarWinds as a supply chain attack: The
SolarWinds attack in early 2021 demonstrated the sophis-
tication of supply chain attacks. Hackers infiltrated Solar-
Winds’ software development and planted malicious code
into legitimate software updates, which were then sent to cus-
tomers, including government agencies and Fortune 500. This
attack remained undetected for months, enabling hackers to
steal sensitive data, spy, and potentially threaten national
security [77], [78]. The case study revealed that the Solar-
Winds attack exploited specific vulnerabilities, including
weak user credentials and poor network monitoring, indicat-
ing a growing threat of complex network attacks.

F. FILELESS MALWARE ATTACKS
Recent studies have demonstrated a sharp increase in fileless
malware attacks. Hence, the early detection of vulnerabilities
and potential solutions is vital for minimizing their effects.
Key characteristics: Some indicators of fileless malware

attacks that aid early detection are as follows.
• Fileless malware uses social engineering, email attach-
ments, exploit kits, and advertisements to deceive users
into clicking malicious links to download [10].

• It exploits legitimate tools such as PowerShell, Java
script, and WMI to evade traditional security [35].

• Fileless malware attacks computer memory or registries,
leaving no files and making detection difficult [11].

• These attacks use software or operating system flaws to
inject malicious code into the memory.

• Fileless malware uses persistence to remain active after
rebooting [35].

Therefore, unusual system calls or network traffic can reveal
fileless malware attacks that reside in memory or registries.
In addition, because fileless malware resides in memory or
registries, analyzing memory dumps, registries, commands,
security logs, processes, email attachments, and links in
conjunction with advanced state-of-the-art machine-learning
algorithms can effectively detect fileless malware.
Case study of ToddyCat attacks as fileless malware attacks:

A recent example of fileless malware attacks is the ToddyCat
attacks in Southeast Asia for data espionage in 2022 [102].
The attackers used social engineering tactics to entice users
to open malicious URLs that installed backdoor malware into
the computer’ memory. This attack used advanced cyber-
espionage tools, like Samurai Backdoor and Ninja Trojan,
to infiltrate the targeted networks. Malware bypasses tra-
ditional security by exploiting innocent user behavior and
deceptive emails and remains undetected [80]. ToddyCat
attacks weaken societal trust in technology and cybersecurity
and highlight improved security measures, advanced threat
detection, and increased anti-phishing training.

G. ADVANCED PERSISTENT THREATS (APTs)
APTs have become a growing concern in recent malware
trends, exhibiting steady increases in sophistication and
persistence. These are long-term targeted attacks and combi-
nations of different methods are used to achieve their goals.

These threats are often associated with nation-state actors,
who aim to steal sensitive information or disrupt critical
infrastructure [13], [34], [103].
Key characteristics: Some primary characteristics of APT

attacks are as follows.
• APT malware often runs processes to hide detection
during an attack. Collecting this data is essential for
detecting abnormal behaviors [104].

• APT malware camouflages during C&C server inter-
actions. Behavioral analysis cannot detect APT at this
stage. APT detection requires the analysis of initial
Domain Name System (DNS) requests and host com-
munications with remote C2 servers [103].

• This type of attack often exploits software
vulnerabilities.

• APTs are multistage, low, and slow attacks throughout
the attack lifecycle. During lateral movements, attack-
ers search for vulnerable hosts, gain knowledge about
targets, and escalate privileges. Exfiltration involves
copying sensitive data to an external server. Hence, APT
activities can be detected by tracking network com-
munications for signs such as changes in the vertex
degree (number of connections to the network). For
example, APTs have a lower vertex degree during lateral
movement but a higher vertex degree variation during
exfiltration (more connections to external servers) [103].

To find solutions for timely remedies, AI tools can be trained
to detect and classify APT activity based on different stages
of attack characteristics, such as different processes (registry
events, network events, etc.), initial DNS requests, number of
connections with the network, and other parameters involved
in communication between the host and remote C2 servers.
Case study of NotPetya as an APT attack: In 2017, Not-

Petya was responsible for one of the most destructive APT
attacks in the world. Initially, NotPetya appeared to be ran-
somware, but it was a destructive APT attack that targeted
Ukrainian organizations and quickly spread globally, affect-
ing numerous multinational companies. The attack leveraged
a compromised Ukrainian accounting software update to
spread the malware. NotPetya caused billions of dollars in
damage by disrupting shipping ports, banks, and government
systems [105]. This case study indicates that attackers can
exploit software flaws, emphasizing the importance of rec-
ognizing attack traits and vulnerabilities for prompt detection
and response.

H. CLOUD-BASED ATTACKS
In 2022, cloud-based cyberattacks experienced a 48% surge,
with Asia documenting the most significant increase, fol-
lowed by Europe and North America. These increasing trends
underscore the need for robust security measures at individual
and organizational levels [16].
Key characteristics:Cloud-based attacks target cloud-based

platforms such as computing, storage, or hosted applications.
Such attacks can lead to data breaches, data loss, unau-
thorized access to sensitive data, and service disruptions.

121126 VOLUME 11, 2023



J. Ferdous et al.: Review of State-of-the-Art Malware Attack Trends and Defense Mechanisms

The following are some common techniques used in
cloud-based attacks [106].

• Attackers steal login credentials to access a user’s cloud
account.

• Attackers use DoS attacks to crash cloud services by
flooding them with traffic.

• Cloud-based attacks often involve unusual network
traffic, such as a sudden data transfer spike or commu-
nication with dubious IPs.

• Attackers may inject malicious code to gain control or
exploit cloud app/infrastructure vulnerabilities.

Knowing these common characteristics can help organiza-
tions defend themselves against cloud-based attacks.

I. EXPLOITING A REMOTE WORKFORCE
Working from home has revealed various vulnerabilities
in accessing corporate networks. By taking advantage of
the pandemic, attackers have targeted a remote work-
force. Reports show a surge in malware attacks exploiting
remote-work vulnerabilities to infiltrate networks. For exam-
ple, in March 2022, Alliance Virtual Offices reported a 238%
increase in cyberattacks owing to remote working during
the pandemic. These incidents highlight business risks in
telecommuting environments [107]. Remote access trojans
(RATs) also target remote workers; RATs are often disguised
as legitimate software. Additionally, the use of the video-
conferencing service Zoom skyrocketed in 2020, with people
working from home and connecting with loved ones. In April,
a cyberattack called zoombombing enabled hackers to join
private meetings, access conversations, and share offensive
content [108].
Key characteristics:Malware attacks that exploit a remote

workforce exhibit certain traits, as outlined below.
• Cybercriminals use weak password security and VPN
flaws to breach corporate networks and steal data [109].

• Attackers can exploit a Remote Desktop Protocol (RDP)
to access the internal system of a network. Malware such
as Ryuk,WannaCry, andNotPeya uses exploits to spread
and infect systems through known vulnerabilities [110].

• The misuse of both work and personal devices
leads to increased vulnerability when working
remotely [107].

Organizations should protect against malware attacks on
remote workers by using secure passwords, remote access
tools, and phishing awareness training.

J. ATTACK TRENDS ON EDGE NETWORKS
Edge networks are computer networks that process data near
their sources. Unlike traditional networks, which send data to
a centralized location for processing, edge networks process
data at the edge of the network, either on a device or in
a nearby router or switch. This approach speeds up data
processing and reduces latency, making it ideal for the IoT,
self-driving cars, and smart cities [17], [111]. Like other com-
puter networks, edge networks are susceptible to malware.

Because edge networks are designed to process data quickly
and at the edge of the network, they often rely on lightweight
hardware and software that may not be as secure as the
more robust traditional network architectures. This leaves
them open to attacks that exploit vulnerabilities in networks,
devices, or software. Attackers have recognized the growing
importance of edge networks and have devised various strate-
gies to exploit their vulnerabilities. Common attack trends in
edge networks include Distributed Denial of Service (DDoS)
attacks, data breaches, and man-in-the-middle attacks. These
attacks aim to disrupt network operations, compromise sensi-
tive data, or intercept communication between users and edge
devices [17].

K. SUMMARY OF FINDINGS IN MODERN MALWARE
ATTACK TRENDS
In the subsequent discussion, we have summarized and com-
pared the leading attack trends in Table 3.

• The table shows that cryptojacking attacks can hijack
devices and use them to mine cryptocurrencies that are
unrecognized by the owner.

• Mobile malware is also increasing, exploiting sys-
tem and app weaknesses to steal sensitive data using
mainly SMS phishing and mobile botnet attack vectors,
as shown in the 2019 Exodus spyware attack.

• Ransomware threats are escalating and usually target
healthcare, financial, and governmental entities, lever-
aging phishing emails and brute-force attacks. RaaS
and multiple extortion methods increase the threat com-
plexity and adaptability, as highlighted by the Colonial
Pipeline attack.

• The number of supply chain attacks, primarily for finan-
cial and espionage purposes, is rising. Attackers employ
phishing and fake websites to exploit software develop-
ers and suppliers via software hijacking and counterfeit
components. The 2020 SolarWinds attack has high-
lighted this trend.

• APTs and fileless malware attacks exemplify stealth
and persistence. Both attacks target long-term data theft
while hiding in the system. This represents a shift
from direct attacks to covert operations, highlighting the
growing importance of data. The 2017 NotPetya attack
used innovative tactics, such as living-off-the-land and
zero-day vulnerabilities, whereas scripting languages
were used in the 2022 ToddyCat attack. Infrastructure,
energy, and technology are common targets.

Our analysis of modern malware attack trends reveals sev-
eral similarities and divergences. The landscape of malware
threats is evolving, with each attack pattern presenting unique
challenges. Understanding these trends, their effects and
attackers’ tactics is essential for creating successful defense
strategies.

V. DEFENSE MECHANISMS
Based on a previous study on malware evolution and cur-
rent attack trends, it is evident that malware is persistently
advancing with novel threats and vulnerabilities, leading to
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TABLE 3. Summary of the characteristics of modern malware attack trends.

increased intelligence and a shift from single-phase defense
to comprehensive, multilayered defense systems. We classi-
fied the defense mechanisms into two categories.

• Multilayered defense mechanisms.
• Other defense mechanisms.

A. MULTILAYERED DEFENSE MECHANISMS
Wemainly focus on a multilayered defense strategy to protect
against potential malware threats; this approach has gained
significant attention in the recent cybersecurity literature.
This approach ensures that, if an attacker breaches one layer
of defense, the other layers remain opposed, making it chal-
lenging for attackers to evade detection. This method involves
implementing multiple layers of protection: assessing, pro-
tecting, detecting, responding, and recovering [112], [113],
which are interdependent and mutually supportive. Each
area has distinct objectives that can be categorized further.
The subsequent subsections provide detailed explanations for
each category.

1) ASSESSING
The layered defense approach starts with a thorough assess-
ment of an organization’s security posture, including its
resources and potential vulnerabilities, which guides future
risk management practices and contributes to minimizing the
threat exposure [113], [114].

2) PROTECTING
The protection layer plays a significant role by using multiple
security checks at different levels and prevents modern mal-
ware attacks by controlling access, as illustrated in Table 4.

3) DETECTING
Severalmalware detectionmethods have been proposed in the
literature. Figure 5 illustrates the various malware detection
methods [20], [22], [120]. This section provides a concise
overview of each technique and focuses on AI-based detec-
tion methods.

a: ARTIFICIAL INTELLIGENCE-BASED MALWARE DETECTION
This section explores advanced AI techniques, such as
machine learning and deep learning, for superior malware
detection, owing to their adaptability, scalability, and real-
time response. This method effectively manages obfuscated
malware, reduces false positives, and outperforms traditional
methods in addressing unknown threats. Table 5 summarizes
the datasets that are widely used for training and evaluating
deep learning and machine learning models for malware
detection. This section reviews the most recent literature
on detecting different malware attack trends, including ran-
somware, APT, fileless, Android, and IoT malware attacks,
using different datasets and AI techniques.

b: RANSOMWARE DETECTION APPROACHES
This review examines recent studies employing different
machine learning and deep learning techniques for ran-
somware detection, focusing on how these methods adapt to
the evolution of ransomware. For example, [121] proposed
a hierarchical neural network approach called SwiftR for
cross-platform ransomware detection. The authors extracted
features from process-trace files and employed deep learning
techniques, such as file encryption and process injection,
to identify ransomware behavior. Experiments demonstrate

121128 VOLUME 11, 2023



J. Ferdous et al.: Review of State-of-the-Art Malware Attack Trends and Defense Mechanisms

TABLE 4. Various security points at the protection layer.

FIGURE 5. Typical malware detection approaches.

that SwiftR (98%) accurately distinguishes legitimate pro-
cesses from ransomware but cannot handle non-executed
ransomware. Singh et al. [138] introduced a unique machine
learning approach, SINN-RD, which uses spline interpola-
tion and neural networks for efficient ransomware detection.
This study demonstrates its superior performance over tra-
ditional detection methods, reinforcing its potential as a
significant advancement in combating ransomware threats.
Homayoun et al. [123] proposed a deep ransomware
threat hunting and intelligence system for the fog layers.
Fernando and Komninos [124] introduced a feature selection
architecture for ransomware detection under concept drift.
Davies et al. [138] utilized a differential area analysis
for ransomware attack detection within mixed-file datasets.
For early stage detection, Al-rimy et al. [139] presented a
crypto-ransomware early detection model using advanced
machine learning models, such as incremental bagging and
enhanced semi-random subspace selection. Rhode et al. [140]

explored early stage malware prediction using Recurrent
Neural Networks (RNNs). Zhang et al. [109] employed
patch-based Convolutional Neural Networks (CNN) and
self-attention networks for ransomware classification by
leveraging embedded n-grams of opcodes. Herrera-Silva
and Hernández-Álvarez [141] developed a dynamic fea-
ture dataset for ransomware detection using ML algo-
rithms, whereas Zhang et al. [142] adopted a similar
approach but used n-grams of opcodes. In the context of
encrypted traffic, Berrueta et al. [143] applied ML mod-
els to crypto-ransomware detection in file-sharing network
scenarios. Abbasi et al. [144] developed behavior-based
ransomware classification using a Particle Swarm Opti-
mization (PSO) wrapper-based approach for feature selec-
tion. Almashhadani et al. [145] created a multifeatured
metaclassifier-network-based system for ransomware detec-
tion. Hsu et al. [146] enhanced file entropy analysis to
improve the machine learning detection rate of ransomware.
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TABLE 5. Datasets for malware detection.
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TABLE 5. (Continued.) Datasets for malware detection.

Limitations: We found that most techniques proposed in
the literature require large datasets, have the risk of producing
false positives, and struggle to identify unfamiliar or novel
ransomware.

c: ADVANCED PERSISTENT THREAT (APT) DETECTION
APPROACHES
The landscape of machine learning and deep learning appli-
cations for advanced persistent threat (APT) detection spans
various techniques and features. For example, Ghafir et al.
used machine-learning correlation analysis [147] and Hidden
Markov Models [148] for APT detection using multiple fea-
tures. The first utilized features include network and system
events, process execution patterns, and log data. The sec-
ond approach provides time- and frequency-based attributes
focusing on network measures. Do Xuan et al. proposed
a deep learning-based Flow Network Analysis [149] and a
combined deep learning model [126]. The authors used net-
work flow data and graph-based features to train the detection
model. Niu et al. [127] proposed amethod that combines deep
learning, time-sequence analysis, and association analysis
to detect APT malware traffic. They used features such as
network flow, traffic statistics, and temporal patterns. Other
methods include semi-supervised learning with complex net-
work characteristics [103], real-time provenance tracking
[32], real-time APT detection using an ensemble learning
approach [150], decepticon techniques [151], and deep graph
networks [104] to detect APTs by leveraging packet- and
network-level attributes, network flow data, traffic analy-
ses, and graph-based features. Yang et al. [33] developed
a data backup and recovery strategy for the APTs. Several

studies have focused on improving the defensive capabili-
ties of a game theory approach against APTs [152], [153],
[154]. Whereas Moothedath et al. [152] employed dynamic
information flow tracking to detect multistage APTs,
Yang et al. [153] proposed an effective repair strategy using
a differential-game approach. Rass et al. [154] primarily
focused on defense strategies using game theory. Notably,
these studies largely underscore the efficacy of game theory
in APT defense; however, they also share some common lim-
itations. For example, it is a complex task that requires deep
knowledge of both game theory and APTs, which mainly
targets APT detection and prevention but can also consider
aspects such as vulnerability, risks, awareness, and preventive
actions.
Limitations:Many of these studies face challenges such as

the need for real-world data for validation [32], [104], [127],
[147], [148], [151], computational complexity [104], [126],
scalability [149], [150], false positives [32], [127], [149],
[151], and feature selection issues [104], [126].

d: FILELESS MALWARE ATTACK DETECTION APPROACHES
Several studies have provided valuable insights into fileless
malware detection using machine learning and deep learning
methods. Sanjay et al. [155] proposed a technique that uses
memory forensics-based analysis to detect fileless malware
based on opcode sequences, whereas Tsai et al. [10] utilized
multi-label classifiers for de-obfuscating and profiling mali-
cious PowerShell commands. Khalid et al. [11] presented an
overview of ML techniques for fileless malware detection,
suggesting that combining deep-learning methods with large
datasets can provide an effective solution. Borana et al. [156]

VOLUME 11, 2023 121131



J. Ferdous et al.: Review of State-of-the-Art Malware Attack Trends and Defense Mechanisms

proposed an assistive tool for detecting fileless malware,
whereas Bozkir et al. [128] combined memory forensics,
manifold learning, and computer vision to detect malware.
Limitations: Detecting fileless malware presents issues,

including ineffective signature-based detection, challenges in
securing samples from inactive controls and common servers,
and their ability to resist virtual environment analysis.

e: MALWARE DETECTION APPROACHES IN IoT DEVICES
The literature presents various ML and DL techniques for
IoT malware detection. Several studies have focused on the
use of federated learning [95], [129], [130] to ensure privacy
and lower communication costs despite potential data bias
and resource challenges. For example, Shukla et al. [129]
proposed a federated learning approach that uses hetero-
geneous models for on-device malware detection in IoT
networks. It outperformed traditional federated learning in
terms of accuracy by 13% and reduced the number of false
positives by 63.99%. However, this requires homogeneous
on-device models, which may be difficult to implement
in networked IoT systems. Other studies have explored
the use of deep-learning models for malware detection
in IoT devices [132], [157], [158], [159]. For instance,
Chaganti et al. [157] used deep-learning models to achieve
high accuracy but only for certain types of malware.
Abdullah et al. [158] and Khan and Ullah [159]
employed hybrid learning models with a high detection
rate but with complexity and limited training datasets.
Smmarwar et al. [160] developed AI for detecting malware
in industrial IoT, emphasizing dynamic feature selection
and continuous model updates. Ali et al. [161] proposed a
flexible multitask deep-learning method that addresses the
issue of imbalanced datasets. Golmaryami et al. [162] demon-
strated high detection rates using self-supervised adversarial
machine-learning models.
Limitations: Overall, deep-learning-based methods, such

as CNNs and LSTMnetworks, are promising for IoTmalware
detection. However, challenges such as heterogeneous mod-
els, scalability, diverse datasets, and computational demands
remain.

f: MALWARE DETECTION APPROACHES IN ANDROID
Several studies have explored various machine learn-
ing (ML) methods for detecting Android malware.
Zhao et al. [133] discussed the effect of sample duplication on
machine learning but did not examine different types of repe-
titions. Sahin et al. [134] presented LinRegDroid, a detection
system that uses multiple linear regression models. How-
ever, their effectiveness against complex malware remains
unclear. Kim et al. [135] explored amultimodal deep-learning
approach using various features and achieved notable
results, whereas Tang et al. [163] proposed an obfuscation
variant detection method using multi-granularity opcode
features. Zhu et al. [164] proposed an end-to-end detec-
tion system; however, its real-time efficiency was unclear.
Bakır and Bakır [137] developed an autoencoder-based

malware detector, but its resistance to advanced evasion
remains unknown. Islam et al. [136] optimized the feature
selection and ensemble machine learning to classify mal-
ware. Finally, Bhat et al. [165] focused on system-call-based
detection by leveraging homogeneous and heterogeneous
machine-learning ensembles.
Limitations: Although these studies point to an ongoing

trend in ML and ensemble methods for malware detection,
gaps are apparent in terms of addressing complex, obfuscated,
or zero-day malware.

g: STATE-OF-THE-ART TOOLS AND TECHNIQUES FOR
TACKLING MODERN MALWARE
In this section, we describe AI-powered anti-malware tools
designed to detect modern malware attacks and enhance
scanning engines. We divided AI-enabled modern malware
detection tools and techniques into two categories: traditional
machine-learning techniques and deep-learning techniques to
detect, analyze, and prevent various types of malware threats.
Security analysts may use traditional machine learning tools
and techniques to automate different types of malware anal-
ysis, such as behavior or dynamic analysis, network traffic
analysis, memory forensic analysis, system log and event
analysis, and static analysis. These approaches use manual
features based on domain expertise. Deep learning solutions
have replaced feature engineering in the traditionalMLwork-
flow with a trainable system that can automatically extract
features from the raw input to the final output. These sophis-
ticated tools respond much faster and are more accurate than
traditional systems. Table 6 summarizes the best AI-powered
tools and techniques to combat today’s sophisticated and
intelligent malware.

4) RESPONDING AND RECOVERING
The response layer focuses on rapidly mitigating the detected
threats and protecting the organization from further damage.
Incident response teams can achieve this goal by following a
pre-set plan. Subsequently, in the recovery layer, measures
are executed to recover system functionality following an
attack. Combining these security controls across disciplines
provides a robust defense against modern malware.

Numerous methods have been identified for recovering
data compromised by malware attacks, including key recov-
ery [166], hardware-based recovery, cloud backups [167]
[168], and the use of ‘out-of-place update’ features of
SSD [169], although their effectiveness varies. Recently,
a deep-learning-powered framework called PowerDP [10]
was developed, which offers innovative recovery approaches
by de-obfuscating PowerShell scripts and identifying behav-
ior patterns to help recover from malware attacks.

A review of cybersecurity recovery strategies revealed gaps
and potential areas for future research.

B. OTHER DEFENSE MECHANISMS
Various other defense strategies, including moving-target
techniques, access control mechanisms, and holistic defense
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TABLE 6. Summary of state-of-the-art tools and techniques for combating modern malware.

systems, have been studied to combat specific threats.
Lee et al. [175] devised a strategy that randomly alters

the file extensions for ransomware protection by intro-
ducing an element of unpredictability. On a broad scale,
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Keong et al.’s VoterChoice [176] and Shaukat et al.’s
honey file-based systems [177] utilize intrusion detec-
tion and ML-based layers, respectively. In addition,
Chowdhary et al.’s [178] SDN-based system for cloud
network systems demonstrated advanced measures against
sophisticated threats. Moreover, Krishnan, Duttagupta, and
Achuthan [179] proposed a SDNFV-based security frame-
work for edge-computing infrastructure, emphasizing threat
monitoring. Similarly, Myneni et al. [180] introduced Smart-
Defense, a distributed, deep-learning-aided solution for com-
bating DDoS attacks within edge-computing realms. Both
studies underline the relevance of cutting-edge technologies
in enhancing edge network security. Hence, to improve the
security of edge networks, organizations should implement
customized defense plans, including implementing network
segmentation to minimize exposure to threats, deploying
intrusion detection and prevention systems (IDPS), leverag-
ing behavioral analytics and machine learning for anomaly
detection, and maintaining up-to-date firmware and patch
management practices to address vulnerabilities and ensure
the integrity of edge devices.

Despite these various approaches, they highlight the neces-
sity of multifaceted and evolving defense against complex
malware threats.

1) SUMMARY OF THE FINDINGS ON DEFENSE MECHANISMS
This section presents a comparative analysis of multilayered
defensive methods and other systems, highlighting the core
function of each layer against modern malware and their
relative effectiveness. For instance,

• The assessment part identifies and studies risks, help-
ing obtain a system that is ready for possible attacks.
It differs from the protecting domain, which keeps things
safe by using special tools. Instead of using direct safety
measures, an assessment area reacts to potential threats.

• A protection mechanism can protect against specific
types of attack. However, its effectiveness is compro-
mised if an attacker can circumvent this safeguard
and remain undetected. Moreover, the organization’s
risks remain high even if potential dangers are detected
early without appropriate response and recovery tactics.
Therefore, it is imperative to implement robust pre-
vention measures coupled with practical strategies for
incident management to match emerging threats within
an organizational context.

• The protection and detection domains are then com-
bined. The protection layer attempts to maintain the
safety of the system while detecting security problems.
Both are important but offer different benefits. The pro-
tection phase stops many attacks but may not work on
new threats. The detection stage identifies issues that
may result from past protection efforts, mainly unknown
or advanced threats.

• Recent studies have shown a trend of using AI,
specifically DL and ML, to detect malware such as

ransomware, APTs, fileless, mobile, and IoT malware
using various techniques. One notable trend is the
integration of deep learning networks, such as CNNs
and RNNs, for ransomware and other complex attack
detection. These networks are good at processing large
and complex data, such as opcode sequences and
file entropy, to enhance detection accuracy. Memory
forensics and metaclassifiers are recent approaches to
detecting fileless malware, which is typically difficult
because of the lack of disk footprints. Autoencoders,
which can learn patterns from limited data, are also
gaining popularity because of their self-learning capabil-
ities. Moreover, recent studies on IoT malware detection
have highlighted the use of federated learning owing
to its ability to reduce communication costs and ensure
privacy. Genetic algorithms and transfer learning have
also attracted attention for the detection of the latest
malware attack trends.

• Table 5 summarizes the datasets available for malware
detection. For each dataset, we provide a brief descrip-
tion of its characteristics, such as the number of samples,
types of malware, and features provided. We also pro-
vide the sources and links of these datasets, which is an
essential aspect of research. In addition, we evaluated
the performance of several deep learning and machine
learning architectures on these datasets. New researchers
can save time by using existing datasets instead of
spending time and resources to create their dataset from
scratch. These datasets are useful for creating and test-
ing malware detection methods and assessing malware
detection tools.

• Table 6 summarizes the state-of-the-art tools and tech-
niques for modern malware analysis, helping new
researchers become familiar with them. These tools and
techniques can be effective in hunting modern malware
based on specific needs, capabilities, and budgets.

• Finally, the response and recovery layers help fix
problems after detecting a computer attack. They are
essential because they allow things to return to normal
and work well when earlier steps do their job correctly.

• By contrast, other defense strategies may rely on a more
singular focus, such as signature-based detection, behav-
ior analysis, or isolated security controls. Although
these methods can prevent specific types of malware,
their overall efficacy is limited by the increasingly
sophisticated threats that exploit new vulnerabilities.
The narrow scope of such strategies may result in
potential security gaps and weaker defense mechanisms.
Simultaneously, multilayered defenses holistically com-
bat malware threats through several layers of security,
with unique roles. Their combined efforts have yielded
adaptable and robust defenses against the continuously
evolving malware landscapes.

In summary, although a multilayered defense strategy offers
a more comprehensive and resilient approach to mod-
ern malware threats, it also presents challenges, including
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its complexity, cost, and potential for defensive gaps,
necessitating careful planning and continuous evaluation to
ensure optimal protection in an organization’s cybersecurity
landscape.

VI. CHALLENGES, LIMITATIONS AND FUTURE RESEARCH
DIRECTIONS
Studies on existing malware detection methods indicate that
researchers in this field are exploring multiple ways to
address security vulnerabilities across different platforms.
However, several challenges and limitations remain in the
realm of malware detection techniques that should be consid-
ered when devising new approaches in the future, as follows.
Evasion techniques: Attackers use complex obfuscation,

code morphing, and encryption methods to bypass detection
and require constant model updates to remain relevant.
Dynamic and evolving threats: The dynamic nature of

malware is another challenge as malware authors constantly
adapt their strategies and develop new techniques. Hence,
timely updates in defense strategies are required to identify
malicious activities accurately.
Scalability of detection methods:With the increasing vol-

ume and complexity ofmodernmalware, traditional detection
methods face scalability and real-time response challenges.
Lack of signatures: An increase in fileless malware

that does not leave detectable traces on a disk renders
signature-based detection methods ineffective.

In addition to these open issues, the current literature lacks
comprehensive defense solutions, accurate model validation,
diverse and large datasets, cross-platform detection methods,
and computational complexity.

A. THE CRITICAL RESEARCH GAPS IN THE LITERATURE
ARE AS FOLLOWS
1) DEVELOPMENT OF MULTILAYERED DEFENSE
MECHANISMS
This study discusses the limitations of single-layer
defense mechanisms and the need for more comprehen-
sive approaches. Future research could explore multilayered
defense mechanisms by including more security layers to
protect against different phases, such as analyzing network
traffic, monitoring system activities, and integrating contex-
tual information (e.g., user behavior) for accurate multistage
attack detection and false positive reduction. In addition, this
review reveals some potential areas for the future exploration
of multilayered defense mechanisms, such as their inherent
complexity, resource allocation, and associated costs.

2) DEVELOPMENT OF A CROSS-DEVICE CRYPTOJACKING
DETECTION AND PROTECTION MECHANISM
Most existing studies focus on a particular type of architecture
that does not address group device security. As cryptojacking
attacks can affect a wide range of devices, including desktops,
mobile phones, and IoT devices, it could be useful to develop
a solution that can comprehensively detect and prevent

these attacks. This solution could involve machine-learning
algorithms and deep neural networks that can detect patterns
and anomalies in device behavior without needing spe-
cific signatures. Potential suspicious activities to be flagged
include high CPU usage, increased power consumption, sus-
picious network activities, and other system activity logs.
For example, a potential solution may include browser
extensions to detect and block cryptojacking scripts, stan-
dardized testbeds to evaluate anti-cryptojacking tools, and
containerization to isolate sensitive resources from malicious
processes.

3) NOVEL ADAPTIVE RANSOMWARE DEFENSE FRAMEWORK
The existing literature still needs to focus on the practicality,
robustness, and constantly evolving nature of ransomware
threats. This study highlights the challenges posed by the
dynamic nature of modern ransomware attacks that can
bypass traditional antivirus and firewall systems. Future
researchers could focus on developing an adaptive model that
uses machine learning and adaptive learning techniques, such
as transfer learning, reinforcement learning, and incremen-
tal learning, to respond to these new and evolving threats.
Using these advanced techniques, an anti-ransomware system
can identify patterns of behavior associated with previous
ransomware attacks, learn from them, and adapt its defense
measures accordingly.

4) CREATING MORE COMPREHENSIVE DATASETS AND
OPTIMIZING THE DETECTION MODEL EFFICIENCY
Although the proposed adaptive ransomware defense frame-
work is promising for addressing ransomware threats, the
effectiveness of machine learning and adaptive learning tech-
niques requires further research. Additional evaluations are
required to assess the scalability, reliability, and efficiency
of these techniques to mitigate and prevent ransomware
attacks effectively. A major limitation of the literature is
the scope of the dataset used for training and testing the
adaptive model. Although the dataset covers a broad range
of ransomware behaviors, it may not capture all possi-
ble ransomware strains or attack scenarios. Additionally,
the dataset may be limited by sample size, which could
affect the accuracy and generalizability of the adaptive
model. Another limitation is the computational complexity
of implementing the adaptive models. The use of machine
learning and adaptive learning techniques such as transfer
learning, reinforcement learning, and incremental learning
requires significant computational resources, which may not
be feasible for all organizations or systems. In addition, the
complexity of the model may hinder its ability to respond
quickly to new and evolving ransomware threats. To address
these limitations, future researchers could focus on devel-
oping more comprehensive and diverse datasets for train-
ing and testing adaptive ransomware defense frameworks.
Moreover, new research can explore techniques for optimiz-
ing the computational efficiency of machine learning and
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adaptive learning models for real-time ransomware detection
and defense.

5) ADAPTIVE DEFENSE STRATEGY AGAINST APTS THROUGH
GAME THEORY–MACHINE LEARNING HYBRID APPROACH
Detecting advanced persistent threats (APTs) is challeng-
ing because of their complex and targeted nature. Although
game-theoretic approaches have shown promising results,
they have limitations, and there is room for continued
research to further enhance their detection efficiency, scala-
bility, and applicability. They may need to be combined with
other approaches to fit into a security strategy. For instance,
adaptive defense strategies incorporating game theory and
machine learning could be an innovative research gap. This
would explore how deep reinforcement learning models can
learn from dynamic APTs using neural networks, and game
theory would be used to identify the optimal defense against
an attack at any stage. This solution allocates resources for
detecting and preventing APTs.

6) REAL-TIME DETECTION AND MITIGATION OF IOT
MALWARE ATTACKS THROUGH EDGE COMPUTING
Edge computing can be combined with AI-based techniques
to detect and mitigate IoT malware attacks in real-time, while
reducing the overhead of centralized cloud-based analysis.
This method can provide faster response times and pre-
vent the propagation of malware. A well-known example
of real-time detection and mitigation through edge com-
puting includes fog computing, which uses a lower-layer
edge device and fog layer to enable real-time data analysis
and decision-making [181]. Hence, implementing AI-based
techniques such as deep learning and machine learning to
enhance IoT malware detection and mitigation, combined
with novel architectural solutions, such as edge-computing-
based systems to counter potential threats, represents an
exciting research direction with significant potential for fur-
ther exploration.

7) APPLICATION OF TRANSFER LEARNING TO IMPROVE
DETECTION ACCURACY
The combination of transfer learning and machine learning,
as evidenced by successful applications in the literature [182],
[183], [184], [185], appears to be a promising technique for
defending devices against tricky and sophisticated malware
and leveraging pre-trained models to improve accuracy and
reduce reliance on heavily labeled data. However, additional
research is necessary to fully understand their role in com-
bating modern malware threats, including zero days, and to
deliver robust adaptive models.

VII. CONCLUSION
This study explores how malware threats have become
more complicated and why we need a more robust defense
against them. Based on the analysis in this review, this study
highlights the developing nature of malware, explores preva-
lent attack patterns, and emphasizes the need for a more

comprehensive approach to defense solutions rather than
a narrow focus on detection strategies. Maintaining pace
through continuous innovation and knowledge enhancement
is paramount as the malware landscape evolves. We studied
various defense systems and highlighted a layered security
system that maintains resilience even when a single layer
fails, thereby forming an effective counter to diverse malware
threats. This study also identifies gaps in current research,
particularly the lack of comprehensive studies that cover the
complete picture of malware evolution, contemporary attack
trends, and their defense solutions. The practical implica-
tions of multilayered defense systems include their enhanced
resilience against modern complex malware threats. Ulti-
mately, an improved security stance for an organization is
achieved through amultilayered defense system, adding com-
plexity to the compromise of the attacker’s system. This
review suggests that further research is required to improve
the efficiency of multilayered defense systems, which are
currently challenged by their complexity, cost, and poten-
tial security gaps. In addition, we aim to address the issues
outlined in Section VI, and develop a comprehensive and gen-
eralized model for malware detection. This study concludes
with a call for an ongoing emphasis on research and inno-
vation in cybersecurity to match the pace of fast-changing
malware threats, thus ensuring a secure digital space.
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