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ABSTRACT Online social networks have become important channels for spreading rumors, and the
spreading process in these networks is influenced by many factors. This study focuses on the problem of
rumor spreading through indirect contact, such as non-following/non-friend relationships due to the roles of
social networks, and considers the phenomenon of rumor isolation from users resulting from information
overload on social networks.The SMQIR rumor-spreading model with five user groups was developed
by introducing two parameters: the probability of social network influence and the probability of rumor
isolation. The laws of influence of the relevant parameters were investigated using numerical simulations.
Furthermore, the reproduction number and equilibrium point of the model were calculated, and the stability
of the equilibrium point was analyzed based on the Routh-Hurwitz criterion. The proposed model was
evaluated through a comparative analysis with the SIR and SIHR models, while two authentic datasets
were employed for validation purposes. This study revealed that online social networks not only intuitively
increase the rate of rumor propagation and amplify its reach and magnitude, but also prolong the duration of
rumor spreading. Moreover, a higher influence coefficient of online social media leads to an extended period
for spreading rumors in terms of speed, scale, and longevity. Conversely, information overload hampers
the speed and scale of rumor spreading while simultaneously extending its duration. Additionally, it was
observed that information overload may result in the limited exposure to rumors for certain individuals.

INDEX TERMS Rumor spreading, online social networks, social media effect, information overload.

I. INTRODUCTION
Large-scale online social networks (e.g., Facebook, Twit-
ter, Sina Weibo, etc.) have accelerated the speed and scope
of information sharing [1], [2], [3], but have also become
important channels for rumor spreading [4], [5], [6], [7]. The
negative impact of rumors on online social networks is also
more significant because of the large number of participants,
rapid spread, and wide influence [8], especially during cri-
sis events and natural disasters. This can confuse people,
cause greater panic, and even endanger national security and
stability [9]. For instance, during the COVID-19 pandemic,
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a portion of individuals in Iran believed the rumors spread
through social media that ‘‘drinking alcohol (ethanol) can
treat or prevent COVID-19’’, and consumed alcoholic bev-
erages obtained from illicit channels, leading to an increased
number of fatalities caused by alcohol poisoning compared
to those resulting from the virus itself in certain provinces
of Iran at one point [10]. The proliferation of such rumors
exacerbates the challenges associated with controlling the
spread of the coronavirus [11]. Due to the detrimental impact
of rumors on society, the problem of rumor propagation has
emerged as a significant subject matter among numerous
experts and scholars.

Rumor spreading as a social contagion process is sim-
ilar to the spread of an epidemic in many respects [12].
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Therefore, various epidemic models have been used to study
rumor spreading and assume that rumors spread along the
edges formed between users through following relationships
or friendships [13]; that is, it is assumed that a node in a
social network can infect only its neighboring nodes [14].
However, this assumption ignores the important role played
by the social networking platform itself in rumor spreading
[15].

Social networks are not only networks of followers or
friends, but also provide rich functions to ensure that a mes-
sage is delivered to as many users as possible [16], such
as hashtags [17], information recommendation and pushing
[18], trending topics [19], [20], and hot searches [21]. Users
can utilize these functions to access the relevant content
directly and browse or retweet it. This information spread-
ing does not occur only between neighboring nodes but can
also occur between non-neighboring nodes. This form of
spreading is indirect and arises from the influence of social
networking platforms. Fig. 1 depicts the SN as a special node
that can present perceived content to any potentially inter-
ested user using relevant functions, leading to the user being
infected without contacting its neighboring users. However,
the phenomenon of rumor spreading caused by social net-
working platforms has not attracted the attention of scholars.

FIGURE 1. A rumor spread by non-neighborhood users due to the roles of
social networks. The thick solid line represents the following relationship
or friend relationship between users in the social network. ‘‘SN’’
represents the social networking platform; ‘‘M’’ represents a Media
spreader status caused by the social network platform; ‘‘S’’ represents a
spreader status caused by the following relationship or friend
relationship.

In addition, a large amount of information is generated in
online social networks all the time, and which exceeds the
processing capacity of users, leading to information overload.
On the one hand, information overload may cause some
information to be buried without drawing users’ attention
[22]. On the other hand, information overload creates pres-
sure for users to process information and causes them to
use online social networks negatively [23], [24], [25], [26].
Moreover, users might choose to ignore or avoid some infor-
mation in social networks due to their personal interests and
physical effort [27], [28]. All of these situations brought

about by information overload reduce the probability of users
being exposed to rumors, so that rumors do not reach them
in a timely manner. However, the influence of information
overload on rumor spreading has not yet attracted sufficient
attention.

The present study introduces a novel rumor spreading
model, SMQIR, to investigate the roles of social networks in
facilitating rumor propagation and the impact of information
overload on its dissemination. Building upon the SIR model,
two additional groups are incorporated: M (media spreader)
represents the role of rumor spreaders facilitated by social
network platforms, and Q (quarantine) individuals result-
ing from information overload. Through theoretical analysis
and extensive simulation experiments, we comprehensively
examine how social network platforms and information over-
load shape the dynamics of rumor spreading.

The main contributions of this study can be summarized as
follows:

(1) The SMQIR rumor spreading model was developed by
considering rumor spreaders M due to online social
network media and rumor quarantiners Q due to infor-
mation overload.

(2) We calculated the basic reproduction number and equi-
librium points of the SMQIR model and proved and
analyzed the stability of the equilibrium points based
on the Routh-Hurwitz criteria.

(3) Through numerical simulation experiments, we con-
ducted a comprehensive analysis of the stability char-
acteristics of the model at each equilibrium point.
Additionally, by systematically varying the model
parameters, we investigated the underlying laws gov-
erning the impact of online social networks and infor-
mation overload on rumor spreading. Furthermore,
we employed two real datasets to validate the SMQIR
model.

(4) Based on the results of the model simulation, we pro-
pose methods to mitigate the spread of rumors.

The remainder of this paper is structured as follows:
Section II provides a review of related work on rumor spread-
ing. In Section III, we develop the SQIMR rumor spreading
model on homogeneous network and describe its relevant
parameters. Subsequently, in Section IV, we determine the
equilibrium point and calculate the basic reproduction num-
ber of the equation, followed by a stability analysis of the
equilibrium point. Moving forward to Section V, we validate
our proposed model through simulation experiments and two
real datasets. Finally, in Section VI, we conclude our study.

II. RELATED WORK
Researchers have developed numerous models to reveal the
mechanisms and influencing factors of rumor spreading.
Daley and Kendall used the SIR epidemic model to study
the rumor-spreading problem and proposed the classical DK
model [29], [30]. In the model, closed and mixed popula-
tions were divided into three categories: ignorants, spreaders,
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and stiflers. Ignorants are those who are unknown to the
rumor, equivalent to the susceptible population in the epi-
demic model. Spreaders are those who believe in the rumor
and spread it, that is, the infected in the epidemic model.
Stiflers are those who withdraw from the spread of the rumor,
that is, the recovered in the epidemic model. The DK model
assumes that rumors spread through paired contact between
spreaders and others. Maki and Thomson proposed the MK
model based on the DK model, in which they argued that
rumor spreading occurs through direct contact between the
spreader and others and that only the initial spreader becomes
a stifler [31]. Subsequently, experts and scholars built numer-
ous models to study rumor spreading by introducing different
mechanisms and factors.

In existing rumor models, user psychology is an important
factor that scholars focus on. Users’ responses to rumors
are influenced by their individual discrepancy and various
psychological factors [32]. Nekovee et al. [33] first investi-
gated the existence of a spontaneous forgetting mechanism
in the rumor spreading process and modified the classical
SIR rumor spreading model to obtain a deterministic mean
field equation with arbitrary degree correlation using the
Markov chain theoretical framework. Zhao et al. [34] con-
sidered the memory and forgetting mechanisms of rumor
propagation, added hibernation groups to the classical SIR
model, and considered the possibility of direct transformation
from ignorant to Stifler. Hasan et al. [35] used forgetting
and hesitation mechanisms to build an IVESR rumor spread-
ing model containing five states, and found that forgetting
has a large impact on rumor spreading time. Wang et al.
[36] believed that the trust mechanism reduced the size and
speed of online rumor propagation, but increased the critical
threshold. Xia et al. [37] considered the attractiveness and
ambiguity of rumor content and proposed a SEIR model with
a hesitation mechanism.

The attitudes or behaviors of users towards rumors are
also important factors influencing the spread of rumors.
Zhang et al. [38] established an ICSAR rumor propagation
model with eight states considering the refutation of rumors
and truth propagation and subsequently improved this model
by including population mobility and official debunking in
a further study [39]. Zan et al. [40] introduced a rumor
counter mechanism and established the SICR model. Hu et
al. [15] considered the influence of individual attitudes on
rumor propagation, and found that people who are reluctant
to spread rumors have a positive influence on rumor propaga-
tion. Li et al. [41] built a rumor propagation model containing
multiple factors by considering individual differences and the
influence of the rumor refutation nodes. Mou et al. [42] posit
that the behavior of forwarding rumors can be perceived as
a decision-making process wherein users optimize their own
interests, and thus they employed evolutionary game theory
to construct a rumor diffusion model encompassing three
types of information: rumor, counter-rumor, and motivated
rumor. The influence of individuals intentionally spreading

rumors [43] and those refuting rumors on the process of
rumor propagation are examined by other scholar [44], [45].
Social network structures have an important impact on the

spread of rumors. Zanette [46], [47] proved the existence of a
critical value for rumor spreading by building a small-world
network rumor spreading model. Moreno et al. [48] derived
a stochastic DK model for a scale-free network and pointed
out that rumor homogeneity has a significant effect on the
dynamic mechanism of rumor spreading. Zhao et al. [49]
discovered that network topology has a significant influence
on rumor spreading, and the BA scale-free network has a
faster rumor spreading speed and smaller rumor spreading
scale than the ER network.

The above studies treat the social network platform as
a medium where rumors can spread from one node to its
neighboring nodes only, and this assumption ignores the role
played by the social network itself in rumor propagation [13].
Online social networks are not just networks of user relation-
ships, but also provide various functions (e.g., trending topics,
search, recommendation, hashtags, etc.) to dynamically push
relevant information to all users who might be interested in
it. Users are exposed to additional information either through
active search [50] or passively while searching and browsing
for relevant content [51]. Reference [19] found that users who
retweeted were not only their adjacent neighbor nodes by
examining the retweeting relationships of tweets with popular
topics on Twitter. Li et al. [52] highlighted the insufficiency
of solely relying on the explicit topology of social networks
for predicting rumor forwarding behavior, and enhance pre-
diction accuracy by establishing implicit links among users.

Liu et al. [53] regarded mobile social network applications
as buffered devices, and users could have chances to read
cached information: they could forward any messages when
they believed in them or deny them. Zhao and Wang [54]
developed an ISRW rumor propagationmodel and considered
the phenomenon of rumor propagation between individuals
and the media to describe the issue of rumor spreading more
precisely. Qian et al. [55] andMyers et al. [13] considered the
phenomenon that spreaders might acquire rumors from chan-
nels other than their neighboring nodes. These studies have
made substantial contributions to revealing the roles of social
networks in rumor spreading, but still do not break away from
the assumption that users need to contact neighboring nodes
to be infected.

III. SMQIR RUMOR SPREADING MODEL
A. ONLINE SOCIAL NETWORK EFFECT FACTOR
In our research, we assume that rumors on social network
platforms spread not only through direct contact between
users, but also through indirect contact by the functions pro-
vided by the social network platform. We define the state in
which a user becomes a spreader because of the role of online
social media as M (Media) and assume that the probability
that a rumor is spread for platform reasons is 8(t). This
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parameter is a time-dependent parameter that is proportional
to the density of the spreader in the spreading group (includ-
ing direct and indirect contact spreaders), while it decreases
over time. We define two parameters, ϕ and µ, to denote
the promotion factor and time-dependent attenuation factor
of social network media, respectively. Therefore, we have:

d8

dt
= ϕ(S +M ) − µ8(t) (1)

B. INFORMATION OVERLOAD AND RUMOR ISOLATED
PROBABILITY
A large amount of information is continuously generated in
social networks, the ability of users to process information
is limited, and they may choose to avoid some information
[56] or temporarily deactivate their social networks. Mean-
while, the large amount of information can also make rumors
obsolete and not accessible to users in time. In addition,
inactive users on social networks are not exposed to rumor
information for the first time. These cases can be considered
as certain users in social networks that are isolated from
rumors. Therefore, based on these actual situations, we use
quarantine state (Q) to denote individuals that are isolated
from rumors for the reasons mentioned above. For conve-
nience, we assume that isolation occurs only among rumor
ignorants and that the probability of a user being isolated from
the rumor is θ .
At the same time, in social networks, some people (e.g.,

wise men [57], [58]) can recognize the content of spreading
as rumors and are immune to themwithout participating in the
act of spreading and becoming stiflers directly. We use β and
α to define the rejection rate when users are in direct contact
with rumors and when they are exposed to rumors impacted
by online social networking platforms, respectively.

C. MODEL FORMULATION
In our study, we assumed that a rumor occurs in a closed and
homogeneous online social network with a total population of
N . The whole population is divided into five categories: igno-
rants I (referring to the individuals who have not yet heard
the rumor), quarantiners Q (referring to the individuals who
are temporarily isolated from the rumor due to information
overload, etc.), spreaders S (referring to the individuals who
spread the rumor by direct contact with friends or followers
in the social network), media spreaders M (referring to the
individuals who become rumor spreaders due to the roles of
the social network platform), and stiflers R (referring to the
individuals who do not want to spread or quit spreading the
rumor). We use I (t),Q(t),S(t),M (t), and R(t) to denote the
population density at time t for the above five categories.
They satisfy the following normalization condition:

I (t) + Q(t) + S(t) +M (t) + R(t) = 1.

In addition, we assumed that the average degree of the
network is ⟨k⟩. The transition processes of the states are
shown in Fig. 2.

The transition rules of the states in the SMQIR model are
described as follows.

(1) When an ignorant contacts a spreader (including direct
contact spreader and media spreader), the former
becomes a new spreader with probability λ, or becomes
a stifler with probability α if he/she does not believe in
the rumor. Here, λ is the rumor spreading rate and α is
the rejection rate.

FIGURE 2. States transition diagram of the SMQIR model.

(2) Due to the roles of social network platform, an ignorant
is exposed to the rumor with a probability denoted
as 8(t) and transforms into a media spreader with a
probability of 1−α when he/she believes in the rumor;
alternatively, if he/she do not believe in the rumor, there
is a probability of α that he/she will act as a stifler.
The definition and explanation of 8(t) can be found in
Equation (1) within this Section.

(3) A user may discontinue using the social network due
to information overload, or excessive information may
lead to the burial of a rumor, causing an ignorant
individual to fail to encounter it during that period.
In either case, this only affects individuals who are
ignorants. Therefore, in each round of rumor spreading,
we assume that an ignorant becomes a quarantined
individual by being isolated from the rumor with a
probability θ , referred to as the isolation rate. Addition-
ally, in every spreading round, a quarantined individual
can also transition into an ignorant with a probability
η, namely, the wakeup rate.

(4) When a spreader contacts a stifler or another spreader,
the former becomes a stifler with probability γ , namely,
the stifling rate.

According to the above rumor spreading rules, the differen-
tial dynamic equations of the SMQIR model are established
based on the mean-field method, as shown in (2).



dI
dt

= −(λ + β)⟨k⟩I (S +M ) − θI − 8I + ηQ
dQ
dt

= θ I − ηQ
dS
dt

= λ⟨k⟩I (S +M ) − γ ⟨k⟩S(S +M + R)
dM
dt

= (1 − α)8I − γ ⟨k⟩M (S +M + R)
dR
dt

= γ ⟨k⟩(S +M )(S +M + R) + β⟨k⟩I (S +M ) + α8I
d8

dt
= ϕ(S +M ) − µ8

(2)
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Equation (2) should satisfy the following constraints: I ⩾
0,Q ⩾ 0,S ⩾ 0,M ⩾ 0,R ⩾ 0, and 8 ⩾ 0.

IV. MODEL DYNAMICS ANALYSIS
A. EQUILIBRIUM POINT
Because the sum of the densities of all states is 1, we can
derive that S(t)+M (t)+R(t) = 1− I (t)−Q(t), and bring it
into each equation of (2), which can be simplified into (3) as
shown below.

dI
dt

= −(λ + β)⟨k⟩I ( S +M ) − θI − 8I + ηQ
dQ
dt

= θ I − ηQ
dS
dt

= λ⟨k⟩I (S +M ) − γ ⟨k⟩S(1 − I − Q)
dM
dt

= (1 − α)8I − γ ⟨k⟩M (1 − I − Q)
d8

dt
= ϕ(S +M ) − µ8

(3)

We consider that the probability parameter 8(t) of the
roles of online social network platforms is determined by
the density of rumor spreaders and the attenuation factor
µ over time in the system; therefore, the value of d8/dt
is not necessarily equal to 0 when the system reaches its
equilibrium state. Hence, in this study, we only let dI/dt = 0,
dQ/dt = 0, dS/dt = 0, and dM/dt = 0 solve the equilibrium
points of (3). We can then obtain the equilibrium point of the
system:E(I ,Q, S,M , 8) = (I∗, θI∗/η, 0, 0, 8∗). The value
range of I∗ is [0, η/(θ + η)], which can be calculated from
I∗ + θ I∗/η ⩽ 1. Where 8∗

= 0 if I∗ ̸= 0.
Combined with the actual process of rumor spreading on

online social networks, we define three specific equilibrium
points as follows:
(1) When I∗ = η

/
(θ + η), there are only rumor ignorants

and quarantiners in the system, and the equilibrium
point can be regarded as one of the initial states of the
system. The rumor equilibrium point at the moment
is defined as E1, where E1 = (η/(θ + η), θ/(θ +

η), 0, 0, 0).
(2) When I∗ = 0, the rumor spreading process ends com-

pletely and the system reaches its final state, with all
other states in the system transitioning to the R state,
that is, R=1. This equilibrium point is defined as E2,
where E2 = (0, 0, 0, 0, 8∗).

(3) During the 0 < I∗ < η/(θ + η), this equilibrium
point is an alternative stable state at the end of rumor
propagation process. Specifically, upon completion of
rumor spreading process, a portion of rumor ignorants
and rumor quarantiners persist in the system, while all
rumor spreaders transition into stiflers. We define this
equilibrium point as E3, and E3 = (I∗, θI∗

/
η, 0, 0, 0),

where I∗ + θ I∗
/
η < 1.

B. BASIC REPRODUCTION NUMBER
In this study, we use the next-generation matrix method [59]
to calculate the basic reproduction number of the model and

designate S and M as the infected groups, resulting in the
following:

F =

[
λ⟨k⟩I (S +M )
(1 − α)8I

]
(4)

V =

[
γ ⟨k⟩S(1−I − Q)
γ ⟨k⟩M (1−I − Q)

]
(5)

Deriving the partial derivatives of F and V with respect to
S andM at E(I∗, θI∗/η, 0, 0, 8∗), respectively, we obtain the
following:

F =

(
λ⟨k⟩I∗ λ⟨k⟩I∗

0 0

)
, (6)

V =

(
γ ⟨k⟩(1 − I∗ −

θ
η
I∗) 0

0 γ ⟨k⟩(1 − I∗ −
θ
η
I∗)

)
(7)

Then the basic reproduction number of the model is:

R0 = ρ(FV−1) =
λI∗

γ [1 − (1 + θ/η)I∗]
, (8)

where ρ(A) denotes the spectral radius of a matrix A. It is
clear that R0 is related to I∗. According to the epidemic model
theory, rumors will spread among the population during R0 >

1, and will gradually die out during R0 < 1.

C. STABILITY ANALYSIS OF EQUILIBRIUM POINTS
To analyze the stability of the equilibrium points, the Jacobian
Matrix of system (3) is used, as shown in (9).

J =


a11 η −(λ + β)⟨k⟩I −(λ + β)⟨k⟩I
θ −η 0 0
a31 γ ⟨k⟩S a33 λ⟨k⟩I
a41 γ ⟨k⟩M 0 −γ ⟨k⟩(1−I − Q)


(9)

where

a11 = −(λ + β)⟨k⟩(S +M ) − θ − 8,

a31 = λ⟨k⟩(S +M ) + γ ⟨k⟩S,

a33 = λ⟨k⟩I − γ ⟨k⟩(1−I − Q), and

a41 = (1 − α)8 + γ ⟨k⟩M .

Theorem 1: The rumor-free equilibrium point E1 is unsta-
ble.
Proof: The Jacobian matrix at the rumor-free equilibrium

point E1 = ( η
θ+η

, θ
θ+η

, 0, 0, 0) can be expressed as (10).

J (E1) =


−θ η −(λ + β)⟨k⟩I∗ −(λ + β)⟨k⟩I∗

θ −η 0 0
0 0 λ⟨k⟩I∗ λ⟨k⟩I∗

0 0 0 0

 (10)

The characteristic equation of Jacobian matrix J (E1) can
be obtained as follows:∣∣JE1 − λE1E

∣∣ = (λE1 )
2(λE1 − λ⟨k⟩I∗)(λE1 + θ + η)
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The third eigenvalue of the characteristic equation is
(λE1 )3 = λ⟨k⟩I∗ = λ⟨k⟩ · η/(θ + η) > 0. According to
the Routh-Hurwitz criterion, equilibrium E1 is unstable.
Theorem 1 shows that once a new rumor spreader appears

in the system at the equilibrium point of E1, the rumor always
spreads. At this equilibrium point, the basic reproduction
number is much greater than 1, which also indicates that a
rumor can spread widely.
Theorem 2: The equilibrium E2 is locally asymptotically

stable.
Proof: The Jacobian matrix at the equilibrium point of E2

is expressed as follow:

J (E2) =


−θ − 8∗ η 0 0

θ −η 0 0
0 0 −γ ⟨k⟩ 0

(1 − α)8∗ 0 0 −γ ⟨k⟩

 (11)

The characteristic equation of (11) is as follows:∣∣JE2 − λE2E
∣∣

= (λE2 + γ ⟨k⟩)2[(λE2 )
2
+ (θ + η + 8∗)λE2 + η8∗)

We can calculate the eigenvalues of the characteristic
equation as follows:

(λE2 )1 = (λE2 )2 = −γ ⟨k⟩,

(λE2 )3 = −(θ + η + 8∗) −

√
(θ + η + 8∗)2 − 4η8∗

/
2,

and

(λE2 )4 = −(θ + η + 8∗) +

√
(θ + η + 8∗)2 − 4η8∗

/
2.

It is obvious that the four eigenvalues are negative, so the
equilibrium of E2 is locally asymptotically stable according
to the Routh-Hurwitz criterion.

Theorem 2 shows that when the system reaches this equi-
librium point, only stiflers are left in the system, and everyone
has heard the rumor. This is a very special case.
Theorem 3: The equilibrium E3 is stable when R0 < 1 .
Proof: The Jacobian matrix at the equilibrium point of E3

is expressed in (12).

J (E3)=


−θ η −(λ + β)⟨k⟩I∗ −(λ + β)⟨k⟩I∗

θ −η 0 0
0 0 a33 λ⟨k⟩I∗

0 0 0 −γ ⟨k⟩
(
1 − I∗ −

θ
η
I∗
)


(12)

where a33 = λ⟨k⟩I∗ − γ ⟨k⟩(1 − I∗ −
θ
η
I∗).

The characteristic equation of (12) is provided as follows:

∣∣JE3 − λE3E
∣∣

= (λE3 )[λE3 + γ ⟨k⟩(1 − I∗ −
θ
η
I∗)][λE3

+ γ ⟨k⟩(1 − I∗ −
θ
η
I∗) − λ⟨k⟩I∗](λE3 + θ + η)

The eigenvalues of the characteristic equation are:

(λE3 )1 = 0, (λE3 )2 = −λ⟨k⟩I∗/R0,

(λE3 )3 = −λ⟨k⟩I∗(1/R0 − 1), and (λE3 )4 = −(θ + η).

The first eigenvalue is 0, and the row rank and column
rank of (12) are both three, indicating that there are two
linearly related equations for the system at the equilibrium
point of E3. Without considering the linear correlation of the
equations, and the remaining eigenvalues are all negative, the
equilibrium point of E3 is stable when R0 < 1, according to
the Routh-Hurwitz criterion.

The E3 equilibrium point is an alternative final state of the
system (3). In the current state, the system contains rumor
ignorants, rumor quarantiners, and rumor stiflers. This is a
typical situation on online social networks.

V. NUMERICAL SIMULATION AND VERIFICATION
In this section, we conducted a series of numerical simula-
tions to investigate the rumor spreading model and theory
presented in the previous section. We examined the evolution
of each state of the model within the context of online social
network media effects and information overload.

A. NUMERICAL SIMULATION
In the simulations, we determined each parameter value by
combining the equilibrium point of the rumor spreading
model proposed in this paper with the parameter values pro-
vided in other relevant studies.

We consider a rumor spreading scenario in a closed homo-
geneous network comprising N nodes, where each user
represents a node within the network. The nodes form edges
between nodes through following relationships or friend rela-
tionships between users. A rumor can be spread not only
along the edges between users but also among non-friends
with the aid of relevant functions provided by the social
networking platform.

In the following simulations, we assume that N=10000
and the average degree of the network⟨k⟩ = 10. According to
the initial conditions in the model built in Section III, we have
S(0) = 1/10000 ≈ 0, I (0) = (10000 − 1)/10000, Q(0) = 0,
S(0) = 0, M (0) = 0, and R(0) = 0. In addition, we assume
that the initial effect coefficient of social media is8(0) = 0.

1) EQUILIBRIUM POINT STABILITY VERIFICATION
The values of λ = 0.4, β = 0.2, θ = 0.05, η = 0.1, γ =

0.3, α = 0.2, ϕ = 2.0, µ = 0.8, I (0) = η/(θ + η), and
Q(0) = θ/(θ + η) are chosen to satisfy the initial condition
of equilibrium point E1.

Fig. 3 shows that, at the E1 equilibrium point, the den-
sities of the S and M states reach their peaks and then
gradually decrease to zero. Following a rapid decline, the
density of the I state gradually increase and tends towards
a steady state. Combined with the model, the increase in I
density is transformed from the quarantined stateQ, resulting
in a gradual decrease in Q density towards a steady state.
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Fig. 3 demonstrates that at this equilibrium point, even if
the spreader’s density is small, all states deviate from their
initial states and exhibit instability for an extended period
of time. However, as the density of I decreases, the system
progressively stabilizes at the equilibrium point E3 when I <

γ
/
[λ + γ (1 + θ

/
η)] ≈ 0.353.

FIGURE 3. The stability of the model at E1 and E3.

Fig. 4 simulates the stability at the equilibrium point of
E2. In this simulation, we set λ = 0.4, β = 0.1, θ = 0.05,
η = 0.1, γ = 0.01, α = 0.2, ϕ = 3, and µ = 0.8. Through
multiple simulations, it was observed that the system achieves
stability at the equilibrium point only when the model has
a small value of γ and a large value of ϕ. As depicted in
Fig. 4, the density of state I drops to zero within a short period
of time, while the densities of S and M rise rapidly to the
peak and then slowly drop to zero. This observation suggests
that the rumor generates widespread interest among users,
with only a minority capable of recognizing and halting its
spread; thus indicating that suppression of the rumor does not
occur over an extended duration. Concurrently, quarantined
users are gradually awakened to become ignorants due to
the widespread spread of the rumor. Nonetheless, with the
passage of time, the system eventually stabilizes at the equi-
librium point ofE2, wherein all other states transition to the
R state. At this point, the final density of R is 1. However,
it should be noted that such an outcome is theoretically
extreme and exceedingly rare in real-world social networks.

2) IMPACT OF SOCIAL NETWORK MEDIA ON RUMOR
SPREADING
To investigate the impact of social network media on the
rumor spreading process, we examined the variations in 8

and each state by adjusting the parameters ϕ and µ. In our
simulation experiments, we utilized the initial values for
each state as provided at the beginning of this section, while
keeping all other parameters consistent with those used in the
experiment in Fig. 3.

FIGURE 4. The stability of the model at E2

The temporal evolution of the media effect 8 for different
values of ϕ and µ is illustrated in Fig. 5. It can be observed
that 8 initially increases over time, reaching a peak before
gradually declining to zero. Notably, larger values of ϕ lead
to a more rapid ascent in 8, higher peak levels, and slower
decay rates. Conversely, the impact of µ exhibits an opposite
trend compared to ϕ. Furthermore, higher values of ϕ or
lower values of µ result in a prolonged duration for 8. These
findings align well with the practical implications of social
media on information dissemination.

Fig. 6 depicts the influences of different values of the social
media facilitating factor ϕ on the variations in the densities of
the S and M states in our SMQIR rumor spreading model.
As shown in Fig. 6 (a) and Fig. 6 (b), S and M exhibit a
similar pattern during the rising phase, where larger values of
ϕ lead to faster increases in their densities. However, during
the falling phase, the S and M states exhibit contrasting
behaviors; overall, a larger ϕ leads to a faster decline in S
but a slower decline inM .
As depicted in Fig. 7 (a), a higher media-facilitating factor

ϕ leads to a faster decrease in the density of I and a lower
final steady-state density. In Fig. 7 (b), it can be observed
that Q state is less influenced by ϕ during the rising phase,
while its densities at peak and steady state are somewhat
affected by ϕ, with larger values of ϕ resulting in smaller
densities at both its peak and steady state. Fig. 7 (c) shows
that an increase in the media-facilitating factor ϕ leads to
faster growth rates for R and higher densities at the steady
state.

Based on the results depicted in Fig. 6 and Fig. 7, we con-
clude that the facilitating effect of social network media
increases both the probability and size of infection among
ignorants, while partially mitigating the potential isolation
of rumors caused by information overload and activating a
portion of the isolated individuals; thus, a larger facilitating
factor ϕ leads to an increased number of stiflers once the
system reaches final stability.
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FIGURE 5. Social network media effect probability 8 over time with various values of ϕ and µ.

FIGURE 6. S and M over time with various values of ϕ.

FIGURE 7. I, Q and R over time with various values of ϕ.

3) INFLUENCE OF RUMOR ISOLATION ON RUMOR
SPREADING
We have selected five values of θ to examine the influence
of rumor isolation probability on the system’s states. The
remaining parameters retain their values from Part 2).

From Fig. 8 (a), it is evident that the rumor isolation
factor θ accelerates the decline in the density of I , with a
higher value of θ resulting in a more rapid decrease rate of
I . However, no regulation on the magnitude of I is observed
when the system reaches its final steady state.
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FIGURE 8. I, Q and R over time with various values of θ .

FIGURE 9. S and M over time with various values of θ .

From Fig. 8 (b), it can be observed that an increase in
the value of θ leads to a more rapid rise in the density of
quarantined individuals, consequently resulting in a higher
final density of Q within the system. In essence, a greater
density of Q at the termination of rumor spreading indicates
a larger proportion of individuals who consistently remain
unexposed to the rumor.

Fig. 8 (c) shows that a higher isolation probability reduces
the final density of R when the system is in the final steady
state. Since R represents people who quit rumor spreading
or people who were exposed to the rumor but did not spread
it during the rumor spreading process, the final density of
R represents the people who were exposed to the rumor
after the rumor spread completely terminated. The simulation
results in Fig. 8 (c) suggest that rumor isolation caused by
information overload also makes the rumor less influential.

The rumor isolation rate θ , as depicted in Fig. 9, exhibits a
similar reduction in the spreading speed and peaks of S and
M . Moreover, it also extends the duration of S and M within
the system. Notably, a higher value of θ amplifies its impact
on S andM .

TABLE 1. Parameters and values in model comparison.

B. MODEL COMPARISON
We conduct comparative experiments between the SMQIR
model proposed in this paper and the classical SIR model as
well as the SIHR model proposed in the literature [34]. The
SIR model serves as the foundational basis for our research,
while the Q state in our model has a similar transition rule to
the H state in the SIHR model.
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FIGURE 10. Comparison between the SMQIR model and the SIR and SIHR models.

FIGURE 11. Comparison of spreader density changes in the SMQIR model with actual data.

In the comparative experiment, we set the number of indi-
viduals in the social network (N ) to be 100,000 and the
average degree of the network (⟨k⟩) to be 10. The remaining
parameters for each model in both comparative experiments
are presented in Table 1.

The comparison between the SMQIR model and the SIR
model is illustrated in Fig. 10 (a). It is evident that the density
changes of ignorants, spreaders, and stiflers in the SMQIR
model differ from those observed in the SIR model. Notably,
states transitions occur at a later stage in the SMQIR model
compared to the SIR model. Upon reaching steady state, both
models exhibit zero density of spreaders; however, higher
final densities are observed for both ignorants (I ) and stiflers
(R) states in the SMQIR model when compared to the SIR
model.

The comparative experiment between the SMQIR model
and the SIHR model shown in Fig. 10 (b) demonstrates that
the rate of decrease of I state in the SMQIR model is more
rapid compared to the density of I state in the SIHR model.
However, upon reaching their final state, the density of I
state is higher in the SMQIR model than that observed in the
SIHR model. Regarding changes observed in S and R states,
it can be noted that these changes occur at a later time for the
SMQIR model compared to those seen in the SIHR model.
Additionally, there is a lower peak value observed for S state
within the SMQIR model when compared to that seen in the
SIHR model. Finally, during their final states, there is also a
lesser density of the R state within the SMQIR model than
that found in the SIHR model, and it takes a longer time for
the R state to reach equilibrium compared to the SIHRmodel.
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TABLE 2. Parameters in the two validation experiments.

C. VALIDATION BY ACTUAL DATA
In this part, we utilize authentic data to further validate
the extent to which the SMQIR model aligns with real-
world scenarios. For our validation experiment, we specif-
ically selected the dataset contributed by Bodaghi [60],
which comprises 12 instances of rumor propagation events.
The Dataset_R1 and Dataset_R12 datasets are particularly
well-suited for validation purposes due to their substantial
participant numbers and minimal fluctuations in rumor dis-
semination throughout the propagation process.

The total population involved in rumor spreading is deter-
mined by considering the number of rumor-related rows in
each dataset, while tweets labeled with ‘r’ in the state column
are identified as rumor spreaders. Starting from the initial
occurrence of rumor tweets, we calculate the hourly density
of rumor spreading by dividing the count of such tweets
per hour by the total number of rumor tweets. The model
parameters in both validation experiments are estimated by
employing the initial 6-hour data from Dataset_R1 and the
first 11-hour data from Dataset_R12, respectively, according
to the methodology outlined in reference [61]. The remaining
data is utilized for model validation, and Table 2 presents the
parameters used for validation purposes.

The comparison between the spreader density curve of the
SMQIR model and the observed change in actual spreader
density is illustrated in Fig. 11. In our verification experiment,
the spreader density of the SMQIR model is determined by
aggregating the densities of both S andM states. It is evident
that our proposed model exhibits a superior fit to the actual
trend of rumor spreading, thereby enabling a comprehensive
investigation into the dynamics of rumor propagation.

D. DISCUSSION
In this study, we explored the dynamic mechanisms of rumor
spreading considering the roles of online social networks
and information overload. In contrast to previous studies that
solely consider social networks as a medium, we perceive
the social network platform as an exceptional node capable
of disseminating rumor information to all potential users
through trending topics [20], hot search [20], [62], hashtags,
platform recommendations [63], etc., thereby acknowledg-
ing the pivotal role of social networks in facilitating rumor
spreading. Simultaneously, it has been acknowledged that

information overload is a common phenomenon in online
social networks, and as we previously discussed in the intro-
duction, information overload can lead to the isolation of
users from rumors. Building upon these two considerations,
we introduced a spreader M induced by social network
media and a quarantined group Q resulting from information
overload into the classical SIR rumor spreading model to
investigate the dynamics of rumor spreading within online
social networks.

Intuitively, the introduction of the special node for social
networking platform accelerates the spread of rumors and
amplifies their impact, as substantiated by our study. Fur-
thermore, our study reveals that the magnitude of media
involvement directly correlates with the persistence dura-
tion of rumors, which is further supported by comparative
experiments. One potential explanation is that social net-
working platforms, as a distinct type of infectious sources,
differ from disease-related sources in that they actively seek
out interested users to infect them. Additionally, rumor
spreaders take advantage of hot searches, trending topics,
hashtags, and other means to expose more users to their
rumor content. Simultaneously, users may become spread-
ers through active searching [50] or information encounters
[64], [65], [66].

Our study indicates that information overload diminishes
the peak of rumor propagation while prolonging its dura-
tion. This phenomenon can be attributed to the reduction in
infected individuals due to the rumor isolation rate within
a fixed population, thereby decreasing the peak of rumor
spreading. However, considering the awaken rate, users tend
to become susceptible again after recovering from infection,
leading to an extended process of rumor spreading. This
partially elucidates why certain rumors repeatedly emerge in
online social networks.

We validated the proposed model using two real dataset.
The model parameters were estimated through least squares
method, employing a subset of data from the datasets. And,
we assessed the goodness-of-fit between the model curves
and the remaining data. We found that our proposed SMQIR
model can effectively reflect the rumor spreading trend. It is
reasonable to believe that our proposed model can well
describe the role of online social networking platforms and
information overload on rumor spreading. However, it is
important to acknowledge that in a real online social network,
the process of rumor spreading is interactively influenced by
multiple factors, such as rumor content [67], [68], [69], event
or social context [67], [70], network structure [71], [72], and
user characteristics [70], [73]. Consequently, while our model
can simulate overall trends in rumor spreading accurately,
it cannot fully replicate all intricacies present within the
entirety of observed data.

Admittedly, our current study still has some limitations.
Firstly, real social networks are dynamic with population
outflow or inflow phenomena, and incorporating the factor
of population flow may enhance the model’s accuracy in
depicting real-world scenarios. Secondly, the data used to
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validate themodel was collectedwithin a specific time period,
which may overlook users who withdrew from rumor spread-
ing by deleting a post but potentially influenced other users.
When there is a high number of such users and limited data
availability studying this issue, it could impact the predictive
accuracy of the model. Lastly, although our study considers
individuals capable of recognizing rumors and refusing their
spread, we do not explicitly incorporate a distinct group of
rumor-dispelling users as observed in some studies; however,
these groups can indeed influence trends in rumor propaga-
tion [74].

Despite the limitations, our study has several advantages.
Firstly, while most existing literature on rumor spreading
views social network as a communication medium, our study
regards it as a special node with contagiousness and investi-
gates its influence on rumor spreading. This novel perspective
offers a fresh approach to rumor research. Secondly, the find-
ings regarding the impact of information overload on rumor
spreading can provide a novel strategy for relevant authorities
or individuals to counteract rumors. Specifically, in order
to mitigate the detrimental effects caused by major rumors,
rumor counters can minimize users’ exposure to rumors on
online social networks by enhancing the dissemination of
accurate information. Lastly, our study can be extrapolated to
address other dissemination issues in online social network
contexts by considering the roles of social networking and
information overload.

VI. CONCLUSION
In online social networks, rumors are not only spread through
the following relationships or friendships among network
users, but can also be spread through the functions of social
networks, such as recommendation, user search, and trending
topics. Meanwhile, the phenomenon of information over-
load on online social networks may isolate rumors from
users. Therefore, based on the classical SIR rumor spreading
model, a SMQIR rumor spreading model is developed in this
study to address the two phenomena by introducing a rumor
spreader group M due to the roles of social media and a
rumor-quarantined groupQ due to information overload. The
equilibrium points of the model are solved mathematically,
and the stability of the three possible equilibrium points are
discussed in the context of the rumor propagation process.

The stability of the SMQIR model at its equilibrium point
is examined through numerical simulations, elucidating the
influence of parameters related to social network media role
and rumor isolation probabilities on rumor spreading pro-
cess. The findings from simulation studies demonstrate that
social media not only facilitates the rapid spread of rumors
to a larger number of users, but also extends the duration
of their propagation. Furthermore, it has been observed that
the presence of information overload on social networks can
impede the rapid spread of rumors, reduce their scale, and
prolong their propagation. However, the prevalence of infor-
mation overload in social networks will always keep certain
individuals from being exposed to rumors.

To further validate the efficacy of our proposed model,
we conducted a comparative study with both the classical
SIR model and the SIHR model. Furthermore, we validated
our findings using two authentic datasets. The results demon-
strate that our proposed model aligns consistently with the
spreading patterns of rumors in online social networks.

Our research suggests that to suppress the spread of
rumors, we can reduce their impact at a technical level
by implementing measures such as refraining from search-
ing and disabling the push of identified rumor content,
thereby mitigating media effects. At an administrative level,
we can isolate rumor information by implementing cer-
tain immunization strategies or increasing the density of
rumor-debunking information or non-rumor content, thereby
reducing the scale of rumor spread.

The present study should be enhanced or expanded in the
following directions for future research. Firstly, it is crucial
to acknowledge that a real social network is not closed and
homogeneous; instead, open heterogeneous network aligns
more closely with the actual environment and associated
issues. Therefore, one of our objectives in future work is to
conduct this study within an open heterogeneous network.
Secondly, based on the other researchers’ findings, we will
refine the parameter settings by considering the specific
characteristics of online social media and the antecedents
of information isolation generation to provide a more accu-
rate depiction of relevant issues. Lastly, we will validate the
model by incorporating additional real-world data in con-
junction with specific social networks, thereby enhancing its
credibility.
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