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ABSTRACT In the ever-expanding Internet of Things (IoT) domain, the production of data has reached
an unparalleled scale. This massive data is processed to glean invaluable insights, accelerating a myriad of
decision-making processes. Nevertheless, the privacy and security of such information present formidable
challenges. This study proposes an innovative methodology for resolving these challenges, by augmenting
the privacy and efficacy of big data analytics through federated learning in the IoT ecosystem. The proffered
approach amalgamates a hierarchical structure, a scalable learning rate, and a rudimentary cryptographic
mechanism to foster learning while ensuring robust privacy and security. Additionally, we introduce a novel
communication protocol - SEPP-IoT, designed to facilitate efficient, secure, and confidential interactions
between IoT devices and a central server. In our pursuit of optimizing communication overhead, we propose
an adaptive data compression algorithm, aimed at curbing the volume of data transferred between IoT
devices and the central server. To fortify resilience and fault tolerance, our approach incorporates multiple
mechanisms such as data replication, error correction codes, and proactive fault detection and recovery. Trust
management, a salient feature of our framework, bolsters the security and integrity of federated learning.
We recommend a unique technique that gauges the dependability of IoT nodes using four trust parameters.
We employ the FedSim simulator to evaluate our method’s effectiveness. The results indicate a notable
enhancement in privacy and efficiency of big data analytics within the IoT.

INDEX TERMS Internet of Things, big data, security, privacy preservation, federated learning, cryptography,
trust management, adaptive learning, trustworthiness.

I. INTRODUCTION
The advent of the Internet of Things (IoT) [1] has led to
a networked ecosystem of physical entities, encompassing
a myriad of appliances, vehicles, and objects, which are
vested with the ability to connect and exchange data due to
their embedded software and sensors [2]. The exponential
growth of the IoT paradigm [3] has engendered a tremendous
surge in the volume, diversity, and speed of data generated
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by these devices. This profusion of data, termed Big Data,
has evolved into a crucial resource across an array of
sectors. Big Data, garnered from IoT devices, can be
aggregated and analyzed to unravel patterns, preferences,
and behavioral insights [4] conducive to informed decision-
making and enhancement of operational efficiencies. A deep-
seated interrelation exists between Big Data and IoT, with
IoT being the predominant progenitor of this data [5]. The
IoT network-connected sensors and devices churn out vast
quantities of data [6], which are consequently dispatched
to centralized servers or cloud-based platforms for storage
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and analytical processing. The inferences drawn from these
data can potentiate streamlined operations, innovation of
products and services, and fortify market positioning. With
the continual growth in the volume and heterogeneity of
IoT device-generated data, the security of this data has
emerged as a critical concern. Given that the data from IoT
devices often encapsulates sensitive personal or corporate
information, it becomes a potential target for cyberattacks
[7]. Therefore, ensuring robust Big Data security in IoT
[8] becomes imperative to fend off data breaches [9], cyber
threats, and other malicious attacks [10], the consequences
of which can be severe, including substantial financial
losses, reputation damage, and legal liabilities. The Big Data
generated by IoT devices presents a plethora of security
challenges [11], such as data privacy [12], data management
[13], and network security [14]. Ensuring data privacy
necessitates the implementation of robust access controls
and data encryption strategies [15], while the efficient and
scalable management of the colossal data produced by IoT
devices requires competent storage, processing, and retrieval
systems. Additionally, network security is pivotal for the
safe transmission of data, preventing unauthorized access or
tampering.

Encompassing our physical environment, the IoT has
instigated a paradigm shift in our modes of interaction with
the physical realm. This transformation has culminated in
the creation of intelligent systems capable of assimilating
and scrutinizing data from heterogeneous sources, thereby
facilitating insightful analysis and giving rise to novel
applications. The data deluge generated by IoT devices,
also known as Big Data [16], is typified by its substantial
volume, high velocity, rich variety, and excellent veracity.
Such comprehensive data analysis can significantly augment
operational efficiency, decision-making acuity, and customer
satisfaction for businesses. However, the escalating prolif-
eration of IoT devices, coupled with the expansion of Big
Data [17], has rendered data security a paramount concern.
The sensitivity of the data procured by IoT devices implies
that unauthorized access or exploitation could yield severe
ramifications [18]. For instance, a malevolent actor might
leverage security vulnerabilities in an IoT device to gain
unauthorized access to the device or the data it generates,
potentially resulting in data theft, data tampering [19],
or denial-of-service attacks [20].
Furthermore, integrating federated learning into IoT sys-

tems poses its unique set of challenges, such as managing
concurrency in a distributed IoT device environment, which
can be a formidable task. To counteract this, our proposed
method incorporates a specialized mechanism adept at
efficiently handling concurrency, thus guaranteeing smooth
and coordinated operations across devices. The heterogeneity
of IoT devices necessitates addressing the crucial issue of
resource allocation. Devices vary significantly in resources
such as processing power, memory, and energy, thereby
mandating the establishment of proficient resource allocation
mechanisms to ensure each device’s contribution to the

learning process without being burdened by resource con-
straints. Additionally, optimizing the number of computing
rounds is vital for the efficiency of federated learning.
Excessive rounds could inflate communication overhead and
energy consumption [21], whereas an inadequate number of
rounds could undermine the learning outcome. Our approach
has been architectured to dynamically adjust the number of
computing rounds based on the system’s current state, thereby
striking an equilibrium between efficiency and learning
quality.

Federated learning’s applicability in IoT permeates various
sectors. In the healthcare domain, federated learning can
enable the creation of predictive models based on patient data
from disparate healthcare establishments while preserving
patient privacy [22]. In the agricultural sector, federated
learning can assist in the analysis of data from multiple
farms to make accurate predictions about crop yields, pest
infestations, and other significant events, thus bolstering
agricultural practices. For smart cities, federated learning can
be harnessed to analyze data from a plethora of IoT devices
dispersed across the city to optimize resources, enhance
services, and ameliorate the overall quality of life.

Traditional security measures fail to adequately secure
Big Data generated by IoT devices [23]. The resource
constraints inherent to IoT devices further complicate the
deployment of robust security mechanisms [24]. These
challenges necessitate the development of an innovative
strategy tailored for safeguarding Big Data generated by
IoT devices. The proposed methodology aims to provide a
secure and scalable solution for IoT devices participating in
federated learning. This machine learning paradigm trains a
global model using data from multiple devices, precluding
the necessity for data transmission to a central server, thereby
offering enhanced privacy, scalability, and energy efficiency.
To secure the privacy of data transmitted during federated
learning, cryptographic techniques are integrated into the
proposed approach. The methodology also incorporates
fault tolerance mechanisms to ensure the reliability of
communication between IoT devices and the central server.
The approach provides a scalable and reliable solution to
the security challenges posed by Big Data generated by
IoT devices. A novel trust management protocol proposed
in the study secures the federated learning process within
IoT networks. The protocol employs four trust parameters-
honesty, model accuracy, resource utilization, and communi-
cation reliability-to evaluate the dependability of IoT devices
involved in federated learning. Based on these parameters,
the protocol computes a trust score for each device and
compares it with a predetermined threshold. If a device’s
trust score exceeds the threshold, it is deemed trustworthy
and awarded a certificate of trustworthiness. The contri-
butions of the proposed methodology can be summarized
as follows:

1) The approach employs federated learning in IoT to
enhance the privacy and efficiency of big data analytics.
This is achieved through an innovative aggregation
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algorithm, adaptive learning rates, and a hierarchical
architecture that optimizes the learning process.

2) A lightweight cryptographic solution is provided
for IoT devices engaged in federated learning. This
solution ensures robust security while minimizing
computational and energy expenditures.

3) The communication protocol, termed SEPP-IoT,
addresses the unique challenges posed by federated
learning in IoT environments, ensuring efficiency,
privacy, and security.

4) An adaptive data compression algorithm minimizes
communication overhead and data transmission
between IoT devices and the central server. It dynami-
cally selects the most effective compression technique
based on data type, available bandwidth, and the
computational capabilities of the IoT devices.

5) The proposed methodology integrates several mecha-
nisms into the communication protocol to ensure fault
tolerance and resilience.

6) Trust management is incorporated into the proposed
federated learning framework, using four trust param-
eters to assess the trustworthiness of IoT nodes.

The structure of the paper is as follows: Section II will pro-
vide background information and discuss existing approaches
for securing big data generated by IoT devices, as well as their
limitations. Section III will describe the proposed approach
in detail. Section IV will present the results of experimental
simulations. Finally, Section V will summarize the proposed
approach, highlight its main contributions, and discuss future
work and possible extensions of the research.

II. BACKGROUND AND RELATED WORK
Recent years have seen a significant increase in interest in the
integration of IoT, big data, and various computing technolo-
gies, sparking extensive research in the area. An overview of
recent developments in this fieldwill be given in this literature
review, with a focus on security and privacy issues as well
as cutting-edge applications and techniques. As shown in
Table 1, the section will also discuss any shortcomings of
current approaches and lay out potential future research
avenues.

A new method for monitoring diabetes in IoT environ-
ments made possible by 5G technology is proposed in
Venkatachalam et al. [25]. This method combines a deep
belief neural network (DBNN) model for precise blood
glucose level prediction with an edge computing framework
for effective big data processing. While protecting patient
data’s security and privacy, the system shows promise in
healthcare applications. The integration of cloud computing,
big data, and IoT technologies in healthcare, smart cities,
and agriculture is covered by Rani et al. in [26]. The authors
examine the potential advantages and difficulties resulting
from the integration of these technologies, emphasizing the
necessity of effective data processing, storage, and security
mechanisms for successful implementation.

In [27], the authors examine the security and privacy
issues that arise in IoT-based big data cloud systems that are
operating in a digital twin environment. The integration of
IoT, big data, and cloud computing technologies is examined
by the authors in terms of potential risks, weaknesses, and
difficulties. They offer a number of solutions, such as the
use of sophisticated encryption methods and reliable access
control mechanisms, to mitigate these problems. In [28], the
authors explore the use of intrusion detection systems (IDS)
in big data environments based on the Internet of Things. The
authors examine various IDS techniques, including signature-
based, anomaly-based, and specification-based strategies,
and their use in Internet of Things big data systems. They
emphasise the critical function of IDS solutions in protecting
the accuracy of data collection and securing IoT networks.
An overview of the technologies powering Healthcare 4.0,
powered by IoT, is provided in [8]. They talk about the
opportunities and problems that come with the adoption of
cutting-edge technologies like blockchain, big data analytics,
and artificial intelligence in the healthcare industry. In order
to meet the future demand for increasingly individualized
and data-driven healthcare services, the authors stress the
importance of developing secure, effective, and privacy-
preserving solutions.

The authors of [29] introduced a novel technique for
detecting cybercrime in IoT infrastructures that make
use of big data. The framework analyses and correlates
data from IoT devices using deep learning and neuro-
fuzzy techniques, and they emphasise the potential for
cutting-edge machine learning techniques to enhance the
cybersecurity of big data and IoT systems. In [30], the
authors look into various anonymization techniques that
are suitable for big data and IoT environments. The
purpose of the paper is to assess the effectiveness of
various methods for maintaining data usefulness while
maintaining privacy, including k-anonymity, l-diversity, and
t-closeness. The authors stress the significance of effective
anonymization techniques for maintaining the analytical
power of big data and IoT systems while protecting data
privacy.

With a focus on security issues, challenges, and rec-
ommendations, the authors of [36] explore the use of
blockchain technology in energy trading, smart grid, and
big data. The authors address concerns about data privacy
while highlighting the potential advantages of blockchain
for enhancing the security, openness, and effectiveness of
energy management systems. To reduce the rising security
risks in the energy sector, they emphasise the need for more
study on fusing blockchain with IoT and big data systems.
A security framework for IoT big data in cloud environments
that combines stream cypher and clustering techniques is
proposed in [37]. To improve data transmission security and
stream cypher performance in the cloud, the proposedmethod
uses a lightweight stream cypher algorithm and clustering
model. The authors use the integration of data processing
and cryptographic techniques to show how this strategy

120920 VOLUME 11, 2023



K. A. Awan et al.: Privacy-Preserving Big Data Security for IoT With FL and Cryptography

TABLE 1. Comparative analysis of the discussed articles.

can improve the security and effectiveness of IoT big data
systems. Venu et al. [31] propose a framework that combines
AI techniques with network layer security controls to ensure
effective and secure data processing in IoT environments.
The availability, confidentiality, and integrity of data inmulti-
homing networks are just a few of the security issues that this
method addresses in IoT big data systems.

A unified decision-making strategy is proposed in [32],
which combines risk assessment, access control, and intru-
sion detection methods to improve big data system security.
This strategy highlights the importance of putting in place a
thorough security strategy to handle the escalating problems
of big data and IoT environments. Li et al. [33] proposed a
technique for precision marketing using information mining
from big data and IoT cloud platforms. The strategy aims
to develop customized marketing strategies while protecting
the security and privacy of customer information. The study
emphasizes how integrating IoT, big data analytics, and cloud
computing technologies in various business applications and
processes has the potential to transform entire industries.

Mohapatra et al. [38] suggested a fiber Bragg grating
(FBG) sensors to drive a structural health monitoring system
that incorporates multimedia-enabled IoT and big data
technology. By combining these technologies, they high-
lighted the potential for enhanced monitoring accuracy and
effectiveness while still prioritizing data security and privacy.
To address the increasing demand for smart infrastructure
systems, the authors stressed the importance of continued
research into integrating these technologies. Vanga et al. [34]
delved into the topic of safety measures driven by semantics
in IoT-based distributed big data systems. They put forward
a framework that incorporates semantic web technologies
to enhance data security and safety in such systems. The
authors demonstrated the efficacy of semantic technologies
in mitigating the rising safety and security concerns in
distributed big data environments.

A framework that combines edge computing and
blockchain technology has been proposed in [35] to increase
the security, efficacy, and scalability of IoT-based big
data systems. This study shows how edge computing and
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blockchain can work together to address the growing privacy
and security concerns in IoT environments. Manzoor et al.
[39] propose a platform that makes use of proxy re-encryption
and blockchain technology to create secure and private IoT
data exchange. This method ensures end-to-end data security
and permits safe data sharing by using proxy re-encryption
to securely re-encrypt data without the need for decryption.
To guarantee the accuracy and transparency of data-sharing
operations, the platform uses the decentralized and tamper-
proof features of blockchain technology.

In recent years, Edge Computing has emerged as a
promising solution to overcome the challenges of latency,
bandwidth usage, and privacy in Federated Learning (FL)
[40]. It empowers IoT devices to perform computations on
the data locally, which contributes to reducing the commu-
nication overhead, and improves the real-time processing
capabilities of FL models [41]. However, implementing FL at
the edge introduces its unique privacy and security concerns.
One of the primary concerns is data privacy, as sensitive
data from individual devices could be potentially exposed
during the model aggregation process [42]. Further, device
authentication becomes crucial to prevent malicious devices
from participating in the learning process and injecting false
updates, which could adversely affect the global model’s
performance [43]. Secure communication between the edge
devices and the server is another critical issue. Protecting the
exchanged model updates from interception and tampering is
important to ensure the integrity of the global model [44].
Lastly, ensuring secure computation at the edge nodes is
a major challenge, considering the limited computational
capabilities of IoT devices [45].

With the proliferation of IoT systems, the preservation of
privacy and assurance of security have become paramount.
The inherently decentralized architecture of IoT, coupled
with the heterogeneity of devices and the vast amounts
of data generated, present complex challenges. Moreover,
due to the large-scale and open nature of IoT networks,
traditional security mechanisms, such as firewalls and
intrusion detection systems, are inadequate. Addressing these
privacy and security challenges requires comprehensive and
robust solutions that can effectively handle the complexities
inherent in IoT systems. For instance, novel cryptographic
techniques, such as homomorphic encryption, can be used to
enable secure computations on encrypted data [46], ensuring
data privacy [47]. Similarly, blockchain-based solutions can
ensure data integrity and non-repudiation in IoT systems
[48]. Also, machine learning-based anomaly detection can
be leveraged to detect and mitigate various forms of
cyberattacks [49].

III. PROPOSED APPROACH
The proposed novel strategy intends to merge federated
learning and lightweight cryptography to build an IoT
framework for big data analytics with privacy protection. This
section provides an overview of the essential elements of

our approach, which include federated learning, lightweight
cryptography, and the entire design of the proposed frame-
work.

A. ARCHITECTURE AND COMPONENTS
The overall architecture of the proposed privacy-preserving
big data analytics framework for IoT is designed to
maximize efficiency, security, and privacy. We achieve this
by combining federated learning, lightweight cryptography,
and a carefully designed system architecture consisting of
the following key components as discussed below whereas
Figure 1 illustrate the working flow of the proposed appraoch:

1) IoT Devices: IoT devices use encrypted data and
lightweight cryptography for security when producing,
storing, handling, and taking part in federated learning.
In order to contribute to the management of trust for
the strength and dependability of the system, they also
actively monitor and report on the actions of their own
and nearby devices.

2) Central Server: Federated learning must be managed
by a central server. It gathers encrypted updates to the
global model from IoT devices, decrypts them, updates
the global model, and then sends the updated global
model back to IoT devices for additional development.
To improve system security and efficiency, it can also
examine the combined models for odd patterns or
irregularities.

3) Communication Protocol: For seamless sharing of
model updates and pertinent information between IoT
devices and the central server, a secure communica-
tion protocol is created. It ensures data privacy and
integrity while reducing communication load by using
lightweight cryptography. Additionally enhancing pri-
vacy guarantees for federated learning, the protocol
is compatible with secure multi-party computation
techniques.

4) Model Management: To guarantee that IoT devices
have access to the most recent models and increase
the effectiveness and accuracy of the learning process,
the model management module is in charge of storing,
versioning, and sharing local and global models. This
module also maintains the security of the system by
distributing and storing encrypted models in a secure
manner.

5) Trust Management: The proposed framework adds
a further layer of trust management to strengthen
security measures. In the federated learning process,
this component evaluates the dependability of IoT
devices and identifies any compromised or malicious
devices. Reputation-based systems, behavior-based
systems, and machine learning algorithms are just a
few examples of the many methods that can be used.
By monitoring and upholding trust levels among IoT
devices, trust management ensures system integrity,
durability, and confidentiality.
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FIGURE 1. The proposed working architecture.

These elements function as a cohesive whole to accomplish
the goals of our suggested strategy. IoT devices cooperate
in the federated learning process, which is supported by
the communication protocol and secured by simple crypto-
graphic methods. Model management guarantees quick and
secure access to the most recent models while the central
server coordinates the entire process. By upholding a high
standard of security and robustness throughout the learning
process, trust management protects the system.

B. FEDERATED LEARNING FOR IoT
Our innovative approach presented in this section focuses
on the utilization of federated learning in IoT to improve
the efficiency and privacy of big data analytics. Our novel
method employs an aggregation algorithm, adaptive learning
rates, and a hierarchical architecture to optimize the learning
process in the context of IoT.

1) NOVEL AGGREGATION ALGORITHM
The key innovation in our approach is the use of a novel
aggregation algorithm that improves the convergence and
accuracy of the global model by considering the quality and
diversity of localmodels as represented byAlgorithm 1where
as the mathematical symbols are illustrated by Table 2.
Let n be the total number of IoT devices, and let wi be the

local model parameters of the i-th device. Our aggregation
algorithm computes the global model parametersW as:

W =
n∑
i=1

αiwi, (1)

where αi is a weighting factor for each device, calculated as:

αi =
βi∑n
j=1 βj

, (2)

and βi is a measure of the quality and diversity of the local
model wi, defined as:

βi = γi · exp (−η · di) , (3)

where γi is the accuracy of the local model wi, di is the
distance between the local model wi and the current global
model, η is a positive constant controlling the trade-off
between quality and diversity, and exp(·) is the exponential
function.

2) ADAPTIVE LEARNING RATES
To further optimize the learning process, we employ adaptive
learning rates for each IoT device. The learning rate λi for the
i-th device is updated based on the local model’s quality and
the device’s resource constraints, as follows:

λi(t) = λ0 ·
γi(t)

maxj = 1, . . . , nγj(t)
·

Ri
maxj = 1, . . . , nRj

,

(4)

where λ0 is the initial learning rate, γi(t) is the accuracy of the
local modelwi at iteration t , Ri is the available resources (e.g.,
computation, energy) of the i-th device, and max(·) denotes
the maximum function.
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Algorithm 1 Novel Federated Learning Aggregation
Algorithm With Adaptive Learning Rates
Input: Local model parameters wi for i = 1, . . . , n,

current global modelW , initial learning rate λ0,
resource constraints Ri, and constant η

Output: Updated global model parametersW
1 for each local model wi do
2 Compute the local model accuracy γi;
3 Compute the distance di between the local model wi

and the current global modelW ;
4 Calculate βi as:

βi = γi · exp (−η · di)

5 for each local model wi do
6 Compute the weighting factor αi as:

αi =
βi∑n
j=1 βj

7 Update global model parametersW as:

W =
n∑
i=1

αiwi

8 for each local model wi do
9 Update the learning rate λi(t) as:

λi(t) = λ0 ·
γi(t)

maxj=1,...,nγj(t)
·

Ri
maxj=1,...,nRj

10 returnW ;

C. INTEGRATION AND WORKFLOW
The proposed federated learning technique is integrated
into our framework of privacy-preserving big data analytics,
which was explained in the previous section. The learning
process follows the standard federated learning workflow but
with modifications to include our novel aggregation algo-
rithm, adaptive learning rates, and hierarchical architecture.
The modified workflow can be described as follows:

1) Data is collected and stored on IoT devices, with
sensitive information encrypted using lightweight
cryptographic algorithms. Let the encrypted data on
device i be:

xi = Enc(x ′i ) (5)

2) IoT devices are organized into clusters, and a local
aggregator is selected for each cluster. Supposewe have
m clusters and n devices.

3) IoT devices train local machine learning models on
their encrypted data. The local model update for device
i at iteration t is given by:

wti = Train(xi, yi,wt−1) (6)

TABLE 2. List of mathematical symbols.

where yi are the labels and wt−1 is the model from the
previous iteration.

4) Model updates are encrypted and securely transmitted
to the local aggregator within the cluster. The encrypted
update is:

ŵti = Enc(wti ) (7)
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5) The local aggregator computes an intermediate global
model using the novel aggregation algorithm, consid-
ering the quality and diversity of local models:

Ŵ t
k =

nk∑
i=1

αti ŵ
t
i , k = 1, . . . ,m (8)

6) Intermediate global models from local aggregators are
encrypted and securely transmitted to the central server.
The encrypted intermediate global model is:

W̌ t
k = Enc(Ŵ t

k ) (9)

7) The central server aggregates the encrypted intermedi-
ate global models, decrypts them, and updates the final
global model using the same aggregation algorithm:

W t
=

m∑
k=1

β tkDec(W̌
t
k ) (10)

8) IoT devices use the updated final global model to refine
their local models and repeat the process:

wt+1i = Train(xi, yi,Dec(W̄ t )) (11)

D. LIGHTWEIGHT CRYPTOGRAPHY FOR IoT
This section introduces a new lightweight cryptographic
technique that is tailored to IoT devices in the context of
federated learning. Our approach aims to provide strong
security while reducing computational and energy expenses
for low-resource devices. The critical elements of our
suggested methodology comprise:

1) DYNAMIC KEY MANAGEMENT
Our method utilizes a dynamic key management system that
enables secure and effective key generation, distribution,
and revocation. The complete process of cryptography for
federated IoT is illustrated by Algorithm 2. To generate
unique keys, we employ a lightweight key generation
algorithm that allows IoT devices to generate their key pairs
(pk_i, sk_i). The public keys pki are then securely transmitted
to the central server, which maintains a key directory for all
participating devices.

We suggest a method for refreshing keys and minimizing
the possibility of long-term key vulnerability. Our proposal
involves a key update mechanism that relies on a time-
constrained validity period. When the predetermined period
T elapses, IoT devices create new key pairs and notify the
central server of the update.

2) IoT DEVICE DATA ENCRYPTION
To protect sensitive data stored on IoT devices, we propose
a lightweight symmetric encryption algorithm denoted as
Enc(·). Let Di represent the data of the i-th IoT device and
ki be the encryption key derived from the device’s private key
ski. The encrypted data D̂i can be calculated as:

D̂i = Encki(Di). (12)

3) SECURE MODEL UPDATE TRANSMISSION
For securely transmitting model updates from IoT devices
to the central server, we propose a lightweight asymmetric
encryption scheme. Let Ui represent the model update from
the i-th IoT device. The encrypted model update Ûi can be
computed as:

Û i = Encpks(Ui), (13)

where pks is the public key of the central server.

4) SECURE MULTI-PARTY COMPUTATION FOR MODEL
AGGREGATION
In order to increase the level of privacy protection offered by
federated learning, we integrate secure multi-party computa-
tion (SMPC) methods into the process of model aggregation.
This enables the central server to aggregate model updates
without directly accessing each individual update.

We define an SMPCprotocol SMPC(·) that takes encrypted
model updates Û i as input and outputs an encrypted
aggregated model update Ûagg:

Ûagg = SMPC
(
Û1, Û2, . . . , Ûn

)
, (14)

where n is the total number of participating IoT devices.

5) DECRYPTION OF AGGREGATED MODEL UPDATES
Finally, the central server decrypts the aggregated model
update Ûagg using its private key sks. The decrypted
aggregated model update Uagg can be computed as:

Uagg = Decsks(Ûagg). (15)

The usage of a lightweight cryptographic technique
guarantees the safeguarding of confidential data stored on IoT
devices and provides security for communication between
the devices and the central server. Moreover, this approach
leverages secure multi-party computation techniques to
further enhance the privacy protection of federated learning.

E. COMMUNICATION PROTOCOL
The proposed communication protocol, named Secure Effi-
cient Privacy-preserving Protocol for IoT (SEPP-IoT), aims
to tackle the difficulties posed by federated learning in IoT
settings. It achieves this by guaranteeing security, privacy,
and efficiency. The complete workflow of the proposed
protocol is illsutrated by Algorithm 3 whereas the essential
characteristics of SEPP-IoT are:

1) HIERARCHICAL CLUSTERING
Our suggested strategy involves grouping IoT devices into
clusters. Each cluster is headed by a designated leader who
is in charge of communicating with the central server. This
hierarchical arrangement lessens communication burden and
distributes workload among devices. The process of forming
clusters involves the subsequent stages:

1) Each device i calculates a measure of similarity
between its local model wi and the current global
modelW .
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Algorithm 2 Lightweight Cryptography for Federated
IoT
Input: IoT devices D1,D2, . . . ,Dn, central server S

1 Initialization:
2 for each IoT device Di do
3 Generate key pair (pki, ski);
4 Send pki to the central server;

5 Data Encryption:
6 for each IoT device Di do
7 Derive encryption key ki from ski;
8 Encrypt local data: D̂i← Encki (Di);

9 Federated Learning:
10 while not converged do
11 for each IoT device Di do
12 Train local model and compute update Ui;
13 Encrypt model update: Ûi← Encpks (Ui);
14 Send Ûi to the central server;

15 Model Aggregation: Aggregate encrypted model
updates using SMPC:;

16 Ûagg← SMPC
(
Û1, Û2, . . . , Ûn

)
;

17 Decrypt aggregated model update:
Uagg← Decsks (Ûagg);

18 Update global model with Uagg;
19 Send updated global model to IoT devices;

2) Based on these similarity measures, the devices
are partitioned into K initial clusters using a clus-
tering algorithm, such as k-means or hierarchical
clustering.

3) Each cluster elects a leader device based on criteria
such as device capabilities or trustworthiness.

4) The leaders communicate with each other and with the
central server to form a hierarchical structure, with the
top level consisting of a single leader communicating
with the central server.

Let Ck denote the k-th cluster in the hierarchical structure,
with Lk being the leader device for that cluster. Each
device i belongs to exactly one cluster, denoted as Cki . The
communication between the devices and the central server is
handled through the leaders Lk . The following steps outline
the communication process between the leaders and the
central server:

1) Each device i computes the difference between its
local model and the current global model, denoted
as 1wi = wi −W .

2) The leader device Lki aggregates the local model
differences from devices in its cluster Cki to obtain a
cluster-level update 1Wki .

3) The top-level leader aggregates the cluster-level
updates from all leaders to obtain the global
update 1W .

4) The current global model W is updated by adding the
global update1W to the previous global modelW , i.e.,
W = W +1W .

5) The updated global model is shared with all leaders for
further dissemination to their respective clusters.

Themethod of hierarchical clustering effectively decreases
the communication burden by restricting the quantity of
devices that communicate with the central server. At the same
time, it ensures an even distribution of workload among the
devices.

Algorithm 3 Novel Communication Protocol with Hier-
archical Clustering
Input: IoT devices, central server, security parameters,

clustering parameters
Output: Updated global model

1 Divide IoT devices into clusters using hierarchical
clustering;

2 Select a leader for each cluster;
3 For: each training iteration
4 For: each cluster leader Compute local model update
wi for each device i in the cluster;

5 Encrypt the local model update using the public key pkj
of the leader as: Enc(wi) = Epkj (wi);

6 Send the encrypted update to the central server using
secure communication protocol;

7 Aggregate local model updates from all cluster leaders
to obtain updated global modelW as:;

8 W =
∑k

j=1 wjαj;
9 where k is the number of clusters, wj is the local model
update from the j-th cluster leader, and αj is the
weighting factor for the j-th cluster leader, calculated as:;

10 αj =
βj∑k
l=1 βl

;

11 and βj is a measure of the quality and diversity of the
local model update from the j-th cluster leader, defined
as:;

12 βj = γj · exp
(
−η · dj

)
;

13 Here, γj is the accuracy of the local model update from
the j-th cluster leader, dj is the distance between the
local model update wj and the current global modelW , η
is a positive constant controlling the trade-off between
quality and diversity, and exp(·) is the exponential
function.;

14 Share the updated global model with all cluster leaders;
15 each cluster leader Decrypt the global model using its

private key skj as: Wj = Dskj (W );
16 Distribute the updated modelWj to its cluster members;
17 return Updated global model

2) DIFFERENTIAL PRIVACY-BASED MODEL
To augment the privacy assurances of our suggested frame-
work, we integrate differential privacy methods into the
model update process. This technique offers a precise
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mathematical foundation for evaluating and regulating the
privacy hazard of data processing algorithms (as shown in
Algorithm 4).

In our approach, we include arbitrary noise to the local
model updates before transmitting them to the central server.
This random noise guarantees that the contributions made by
individual devices to the global model are indistinguishable,
ensuring robust privacy protection. We use the Laplace
mechanism, which adds noise extracted from a Laplace
distribution with an average of 0 and a magnitude determined
by the sensitivity of the aggregation function.

Let f (·) be the aggregation function used to combine the
local model updates. We define the sensitivity of f (·) as
the maximum amount by which f (·) changes when a single
device’s local model update changes. Formally, we have:

1f = max
wi,w′i
||f (w1, . . . ,wi, . . . ,wn)

−f (w1, . . . ,w′i, . . . ,wn)||2 (16)

wherewi andw′i are the local model updates of device i before
and after a single data point is added or removed.

We add Laplace noise to the local model updates as
follows:

wpriv
i = wi + Laplace

(
1f
ϵ

)
(17)

where wpriv
i is the differentially private local model update, ϵ

is the privacy budget controlling the trade-off between privacy
and utility, and Laplace(b) denotes the random noise drawn
from a Laplace distribution with scale parameter b.
The noisy local model updates are then sent to the central

server, where they are aggregated using the same function
f (·). The global model is then returned to each device, and the
process repeats for each training iteration. The algorithm for
the differential privacy-based model updates is shown below
in Algorithm 4.

Algorithm 4 Differential Privacy-Based Model Updates
Input: Local model parameters wi for i = 1, . . . , n,

aggregation function f (·), privacy budget ϵ
Output: Updated global model parametersW

1 for each local model wi do
2 Compute the sensitivity of f (·) as 1f ;
3 Add Laplace noise to the local model update:

wpriv
i = wi + Laplace

(
1f
ϵ

)
;

4 Aggregate the differentially private local model updates
to obtain updated global model parametersW :
W = f (wpriv

1 , . . . ,wpriv
n );

5 returnW

3) ADAPTIVE DATA COMPRESSION
Our proposal aims to minimize communication overhead
and decrease the volume of data transmitted between IoT

devices and the central server. We suggest an adaptive
data compression algorithm that employs both lossless and
lossy compression methods. This algorithm intelligently
chooses the most suitable compression technique based on
the type. Let x be the data to be transmitted, and let c(x)
be the compressed data. The adaptive compression algorithm
is represented by Algorithm 5. The adaptive compression
algorithm consists of the following steps:

1) Data analysis: The statistical traits of the data to
be sent, such as its entropy and autocorrelation, are
examined by the algorithm. This information is then
utilized to determine the compression method that is
most suited for the data.

2) Compression: After analyzing the data, the algorithm
chooses the appropriate compression method, either
lossless or lossy. For lossless compression, methods
such as Huffman coding or arithmetic coding are
utilized, which have been widely used and are well-
known. For lossy compression, methods such as
discrete cosine transform (DCT) or discrete wavelet
transform (DWT) are employed, which are effective in
compressing audio and image data.

3) Adaptive thresholding: To enhance the compression
ratio further, we use an adaptive thresholding technique
that eliminates insignificant coefficients in the com-
pressed data. The compressed data after thresholding is
denoted by c′(x), and the threshold value is represented
by t . The thresholding process can be expressed as a
formulation.

c′(x)i,j =

{
c(x)i,j, if |c(x)i,j| > t
0, otherwise

(18)

where c(x)i,j and c′(x)i,j denote the i-th row and j-th
column of the compressed data c(x) and thresholded
compressed data c′(x), respectively.

4) Quantization: To further decrease the size of the
compressed data, a quantization step is utilized, which
maps the thresholded coefficients to a smaller range
of values. The compressed data after quantization is
denoted by c′′(x), and the size of the quantization step
is represented by q. The process of quantization can be
formulated as follows:

c′′(x)i,j = round
(
c′(x)i,j
q

)
(19)

where round(·) denotes the rounding function.
To explain the algorithm, it takes input data x and

compression parameters as input and outputs compressed
data c(x). Firstly, it analyzes the statistical properties of input
data to select a suitable compression method. Then, it applies
lossless or lossy compression to the data to obtain compressed
data c(x).

Next, it applies adaptive thresholding to the compressed
data to obtain thresholded compressed data ct (x). The
algorithm sets the initial threshold T0, minimum threshold
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Algorithm 5 Adaptive Data Compression
Input: Data x, compression parameters
Output: Compressed data c(x)

1 Analyze the statistical properties of x to select
compression method;

2 Apply lossless or lossy compression to x to obtain c(x);
3 Apply adaptive thresholding to c(x) to obtain
thresholded compressed data;

4 Set initial threshold T0;
5 Set minimum threshold Tmin;
6 Set maximum threshold Tmax;
7 while Ti > Tmin do
8 Compute the compression ratio: ρi =

|c(x)|
|ct (x)|

;
9 Compute the compression error:

ei = ||x − dt (ct (x))||2;
10 Update the threshold: Ti+1 =

ρi
ei
· Ti;

11 Clip the threshold to be within [Tmin,Tmax];
12 Apply thresholding to c(x) to obtain ct (x);

13 return Thresholded compressed data ct (x)

Tmin, and maximum threshold Tmax . It computes the com-
pression ratio ρi and compression error ei for each iteration,
and updates the threshold Ti+1 accordingly. The updated
threshold is clipped to be within the range [Tmin,Tmax].
Finally, it applies thresholding to the compressed data to
obtain thresholded compressed data ct (x), which is the output
of the algorithm.

F. FAULT TOLERANCE AND RESILIENCE
We suggest a new method for maintaining fault tolerance and
resilience. Our approach involves integrating the following
mechanisms into the communication protocol:

1) Error detection and correction: To identify and
fix communication errors that could arise during
the transmission of model updates, we use error-
detection codes. Our method involves using cyclic
redundancy checks (CRCs) to detect errors and Reed-
Solomon codes to correct them. These codes are
lightweight and efficient, making them appropriate
for deployment in IoT devices that have limited
resources.

2) Node failure detection and recovery: We use a
heartbeat mechanism that checks the responsiveness
of each node in the system at regular intervals to
identify and recover from node failures. If a node fails
to respond, it is considered unresponsive, and its tasks
are handed over to other nodes. In case of leader failure
or unresponsiveness, a new leader is chosen with the
help of a distributed consensus algorithm.

3) Algorithm for Fault Tolerance: Algorithm for
Fault Tolerance: To summarize the above approach,
we present an algorithm for fault tolerance and

resilience in federated learning as represented in
Algorithm 6

Algorithm 6 Fault Tolerance and Resilience in Federated
Learning
Input: IoT devices, central server, security parameters,

clustering parameters
Output: Updated global model

1 Divide IoT devices into clusters using hierarchical
clustering;

2 Select a leader for each cluster;
3 for each training iteration do
4 for each cluster leader do
5 Compute local model update and encrypt it

using public key of the leader;
6 Send the encrypted update to the central server

using secure communication protocol;
7 Apply error detection and correction

mechanisms to ensure data integrity;
8 LetM be the message sent by the cluster leader,

mi be the i-th bit of the message, and pi be the
probability that mi is corrupted during
transmission;

9 Then, the probability thatM is corrupted, Pcorr,
is given by:

Pcorr =
n∑
i=1

pi(1− pi)n−1 (20)

10 If Pcorr exceeds a certain threshold, the central
server requests retransmission;

11 Aggregate local model updates from all cluster
leaders to obtain updated global model;

12 Share the updated global model with all cluster
leaders;

13 Apply error detection and correction mechanisms to
ensure data integrity;

14 for each cluster leader do
15 Decrypt the global model using its private key;
16 Distribute the updated model to its cluster

members;
17 Apply error detection and correction

mechanisms to ensure data integrity;
18 Let N be the number of cluster members, and p

be the probability that a single cluster member
fails;

19 Then, the probability that a cluster fails, Pfail,
is given by:

Pfail = 1− (1− p)N (21)

20 If Pfail exceeds a certain threshold, the central
server initiates a leader election using a
distributed consensus algorithm;

21 return Updated global model
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G. TRUST MANAGEMENT FOR IoT
Our proposed framework for federated learning relies heavily
on trust management to safeguard its security and integrity.
We have suggested a newmethod that involves the use of four
trust parameters to assess the reliability of IoT nodes. These
four trust parameters are critical in our evaluation process.
• Communication Reliability: This parameter measures
the reliability of a node in terms of its ability to
communicate with other nodes in the network without
errors or interruptions. We define the communication
reliability of a node i as:

Rcomm,i =
Nsucc,i
Natt,i

(22)

where Nsucc,i is the number of successful communi-
cation attempts made by node i and Natt,i is the total
number of attempts made by node i.

• Resource Utilization: This parameter measures the
efficiency of a node in terms of its resource utilization.
We define the resource utilization of a node i as:

Rres,i =
Ui
Ci

(23)

whereUi is the current resource utilization of node i and
Ci is the maximum capacity of node i.

• Model Accuracy: This parameter measures the accuracy
of the local model trained by a node. We define the
model accuracy of a node i as:

Racc,i =
acci

accmax
(24)

where acci is the accuracy of the local model trained by
node i and accmax is the maximum achievable accuracy.

• Honesty: This parameter measures the honesty of a node
in terms of its compliance with the federated learning
protocol. We define the honesty of a node i as:

Rhon,i =

{
1 if node i follows the protocol
0 otherwise

(25)

To evaluate the overall trustworthiness of a node, we com-
pute the weighted sum of these trust parameters using the
following equation:

Ti = w1Rcomm,i + w2Rres,i + w3Racc,i + w4Rhon,i (26)

where w1, w2, w3, and w4 are the weights assigned to each
trust parameter.

Our proposed approach involves setting a threshold value,
denoted as T_th, to assess the trustworthiness of nodes. The
computed trust value T_i of a node is then compared with this
threshold to determine its trustworthiness. If T_i is greater
than or equal to T_th, the node is considered trustworthy
and is issued a trustworthy certificate valid for the next hour.
Otherwise, the node is deemed untrustworthy and is closely
monitored by the central server. The following algorithmic
representation summarizes our approach:

Algorithm 7 Trust Management for IoT
Input: IoT devices, central server, trust parameters,

weights, threshold value
Output: Trustworthy certificates for IoT devices

1 for each IoT device i do
2 Initialize trust score Ti to 0;
3 Compute communication reliability Rcomm,i using

Eq. (1);
4 Compute resource utilization Rres,i using Eq. (2);
5 Compute model accuracy Racc,i using Eq. (3);
6 Check honesty Rhon,i of node i using Eq. (4);
7 Compute weighted average of trust parameters:

Ti = wcommRcomm,i + wresRres,i + waccRacc,i
+ whonRhon,i (27)

where wcomm, wres, wacc, and whon are the weights
assigned to each trust parameter;

8 Compare Ti with the threshold value Tth:
• If Ti ≥ Tth, allocate a trustworthy certificate
to node i for the next hour;

• If Ti < Tth, mark node i as untrustworthy and
put it under monitoring by the central server;

9 return Trustworthy certificates for IoT devices

IV. EXPERIMENTAL SIMULATION & OUTCOME
We conducted experiments to evaluate the effectiveness of
our suggested approach using the widely adopted FedSim
simulator for federated learning system assessment. Our
approach was compared against two other methods proposed
by Stergiou et al. [27] and Venu et al. [31]. In the experiment,
we utilized a simulation setup comprising of 1000 IoT
devices, each generating data samples of size 1000. The
simulations were executed for 50 iterations, with a batch size
of 10. We set the clustering and communication protocol
parameters to the same values as in Section III-A and
Section III-B, respectively.

A. MODEL ACCURACY
In this section, we assess the accuracy of our proposed
federated learning method using the FedSim simulator and
compare it with two existing techniques, [27] and [31].
We replicate a scenario where 100 IoT devices are dispersed
across 10 clusters, each cluster comprising of 10 devices.
We employ the MNIST dataset for our experiments, which
includes 60, 000 training images and 10, 000 test images of
handwritten digits. In the federated learning framework, each
device is provided with a distinct portion of the total training
data. This subset of data is used by the individual device to
train its own model, referred to as the ‘local model’. The
central server aggregates the local models to obtain a global
model, which is then shared with the devices for updating
their local models.Wemaintain the same hyperparameters for
all three approaches, with 10 local epochs, a batch size of 32,
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and a learning rate of 0.01. We evaluate the model accuracy
on the test set after each training round.

The achieved model accuracies of our proposed approach
and the two existing methods after 10 training rounds are
presented in Table 3. Our proposed approach outperforms the
other twomethods with a higher accuracy of 97.4% compared
to 95.8% and 94.3%, respectively. These results suggest that
our approach is more adept at learning from the distributed
data and achieving a superior accuracy.

TABLE 3. Model accuracy achieved by different federated learning
approaches.

The trend of model accuracy achieved by the three
approaches over 10 training rounds is illustrated in Figure 2.
When compared to the other two methods, our approach
consistently displays a higher accuracy. This suggests that,
in comparison to other methods, our approach is more
successful at learning from distributed data. Hierarchical
clustering, differential privacy-based model updates, and
adaptive data compression techniques are all included in
our approach, and they are largely responsible for this
success. These techniques help keep data privacy and lower
communication costs.

FIGURE 2. The comparative analysis of accuracy.

B. COMMUNICATION OVERHEAD
As the second metric in our evaluation of the proposed fed-
erated learning approach, we use communication overhead.
We gauge the amount of data transmitted between the IoT
devices and the central server during the training process
to compare the communication overhead of our proposed
approach with the existing methods.

The simulation is conducted under the same conditions as
the previous section, and the results are outlined in Table 4.
Our proposed approach outperforms the existing approaches
in terms of communication overhead. This is attributed
to the use of hierarchical clustering, differential privacy-
based model updates, and adaptive data compression, which
effectively reduce the amount of data exchanged during the
training process.

TABLE 4. Comparison of communication overhead.

The outcome is also depicted in Figure 3. Our proposed
approach surpassed both existing approaches in communica-
tion overhead performance. Notably, our proposed approach
achieved a reduction of up to 35% in the amount of data
transmitted compared to [27] and up to 44% compared to
[31]. These findings serve as evidence of the efficacy of our
proposed approach in minimizing communication overhead
while upholding the same level of accuracy.

FIGURE 3. Comparison of communication overhead.

C. RESOURCE UTILIZATION
In this section, we compare the resource usage of the
proposed approach to that of [27] and [31]. We monitor
50 IoT devices’ CPU and memory usage throughout the
federated learning process, which lasts for 10 iterations
with a batch size of 10. Figure 4 presents a summary
of the results of the simulation. Thanks to adaptive data
compression and lightweight cryptographic techniques that
reduce communication overhead and computational demands
of IoT devices, the proposed approach uses less CPU and
memory than the existing two approaches.

The numerical comparison of the resource utilization is
shown in Table 5. As can be seen, the proposed approach
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FIGURE 4. Resource utilization comparison of the proposed approach,
[27], and [31].

achieves the lowest CPU and memory usage compared to the
existing approaches.

TABLE 5. Numerical comparison of resource utilization for the proposed
approach, [27] and [31].

D. FAULT TOLERANCE
This section focuses on assessing the fault tolerance of
our proposed approach and contrasting it with the methods
introduced by Stergiou et al. [27] and Venu et al. [31].
We ran simulations to evaluate the fault tolerance of various
federated learning strategies in the event that some IoT
nodes malfunction or become unresponsive. If a node is
unable to communicate with other nodes or send accurate
updates to the global model, it is deemed to have failed.
We picked a subset of nodes at random and prevented them
from taking part in the federated learning procedure in order
to simulate failures. As shown in Figure 5, our approach
outperformed the approaches [27] and [31] in terms of fault
tolerance. In particular, our approach completed up to 90%
of the training iterations even when 50% of the nodes failed,
whereas [27] and [31] only achieved up to 70% and 60%,
respectively, under the same circumstances.

We looked at the fault tolerance time-the amount of time it
takes for each approach to recover from a failure-to further
evaluate fault tolerance. This amount of time represents

FIGURE 5. Performance comparison in terms of fault tolerance.

the amount of time needed for the system to replace the
current cluster leader after a node failure or communication
problem. In order to calculate the fault tolerance time,
we timed the leader election process. Our suggested method
has the shortest fault tolerance time when compared to other
methods, according to the findings in Table 6 and Figure 6.
This implies that our strategy is more successful at recovering
the system from node failures or communication errors.

TABLE 6. Comparison of communication overhead.

FIGURE 6. Fault tolerance time analysis.

E. PRIVACY
Differential privacy is a component of the federated learning
strategy we suggest using to safeguard data privacy. By mea-
suring the privacy budget-the amount of noise that can be
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added to model updates without jeopardising data privacy-
we evaluated the efficiency of this approach. We examined
the privacy budget for various noise levels and contrasted
our strategy with those put forth by Stergiou et al. [27] and
Venu et al. [31].
The simulation results show that, when compared to

current methods at the same noise level, the proposed method
offers better privacy guarantees. As shown in Figure 7, the
proposed method achieves a privacy budget of 0.7 for a noise
level of 0.1, whereas [27] and [31] only achieve a budget of
0.5 and 0.6, respectively.

FIGURE 7. Privacy budget comparison.

F. DETECTION RATE
We tested the detection rate of the proposed method against
On-off, Good Mouthing, Bad Mouthing, and White Washing
attacks, among other IoT-related attacks. We contrasted our
approach with those put forth in [27] and [31]. We evaluated
the methods by measuring the detection rates of each one
while simulating the attacks using the FedSim simulator.
Table 7 contains a summary of the simulation’s findings.

TABLE 7. Detection rate of proposed approach and existing approaches
against IoT attacks.

The table presented in reference to detection rate demon-
strates that the proposed method surpasses the approaches
suggested by Stergiou et al. [27] and Venu et al. [31] for all
types of attacks. This can be attributed to the integration of
sophisticated security mechanisms and trust management in
the proposed method.

G. MODEL EVALUATION USING ROC CURVE
The performance of our proposed model was thoroughly
evaluated using various statistical tools, among which the
Receiver Operating Characteristic (ROC) curve holds signif-
icant importance. The ROC curve presents a comprehensive
picture of the model’s performance across various threshold
values, demonstrating the trade-off between sensitivity (true
positive rate) and specificity (1 - false positive rate). The
Area Under the Curve (AUC) was also computed as a
singular measure of the model’s performance, encapsulating
the model’s ability to correctly classify positive and negative
instances across various threshold levels. The AUC value lies
between 0 and 1, where a value of 0 denotes a perfectly
incorrect classifier and a value of 1 signifies a perfectly
correct classifier. AnAUC of 0.5 suggests that the model is no
better than random chance. In our case, the AUC was found
to be significant, validating our model’s effectiveness in
correctly classifying the instances as illustrated by Figure 8.

FIGURE 8. Receiver operating characteristic curve.

V. CONCLUSION
In this study, we presented a fault-tolerant and resilient
federated learning strategy tailored for IoT networks. Lever-
aging the principles of hierarchical clustering, we organized
IoT devices into distinct clusters, each presided over by a
designated leader responsible for overseeing communication
and coordinating local model updates. In order to assess
the reliability of IoT devices and issue temporary trust
certificates, we introduced four novel trust parameters.
Our proposed approach demonstrated superior performance
over extant methods with respect to model accuracy, com-
munication overhead, resource utilization, fault tolerance,
and privacy safeguards. Furthermore, it exhibited enhanced
detection rates against a variety of IoT attacks. However,
despite the promising results, this work is not without its
limitations. For instance, our approach assumes steady and
reliable communication among the IoT devices, which may
not always be feasible in real-world scenarios where network
inconsistencies are common. Future research should aim to
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explore the potential of machine learning algorithms for
automatic trust management and fault detection. Enhancing
privacy protections while maintaining model performance
will be another critical aspect to be investigated. Also, the
feasibility of implementing our approach in larger and more
complex IoT networks is a promising avenue for future
work. Such investigations would further substantiate the
effectiveness of our federated learning approach and help
advance the field of IoT security.
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