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ABSTRACT Based on the strict requirements of industrial applications for network real-time and reliability,
this paper considers path performance correlation analysis using network delay parameters and evaluates the
performance reliability of distributed network control systems (NCSs). The cumulative distribution function
of the delay of each information transmission path in the system is constructed, and the reliability of the
cluster path is analyzed utilizing multivariate Archimedean Copula functions (ACFs), which describes the
path performance correlation, then the fitting effect of Copula function is evaluated by using the squared
Euclidean distance method. Finally then the reliabilities of each subsystem and the whole system are calcu-
lated full probability formula. To simulate the time delay data of each path in the system, an OPNET-based
distributed NCSs simulation platform is established. The reliability of distributed NCSswith 3 sub-systems is
evaluated, and the effectiveness of the time delay-based performance reliability evaluation of the distributed
NCSs is verified. The results is useful of network parameters optimization and improve the performance
reliability of distributed NCS.

INDEX TERMS Distributed networks, reliability, Copula functions, correlation.

I. INTRODUCTION
NCSs are extensively employed across various industries.
As the scale of industrial systems continues to grow, themeth-
ods for information transmission between nodes have become
increasingly intricate and diverse. Furthermore, owing to the
functional interdependence of the communication paths and
network performance parameters, the system’s paths are not
entirely independent; they exhibit a certain degree of cor-
relation [1], [2]. Assessing the reliability of such complex
distributed NCSs is of paramount importance to ensure their
smooth and safe operation.

Numerous scholars have proposed various research meth-
ods for the reliability assessment of NCSs. Winfree [3]
introduced a top-down approach to network reliability assess-
ment, focusing on flow path information. Rothemund and
Winfree [4] developed a method based on the dynamic
characteristics of the system, evaluating the probability of
operating parameters not exceeding a specific threshold over
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time. Adleman et al. [5] proposed a congestion-based net-
work performance reliability method. This method uses the
ratio of successfully sent packets to the sum of successfully
received packets and lost packets as an assessment indica-
tor. However, these methods assume that the performance
of each path in the network is entirely independent. Srini-
vasan et al. [6] were pioneers in confirming the presence
of significant correlations in the performance of wireless
network paths. These correlations stem from both the inherent
interconnections between network paths and the interplay of
network performance parameters. Such correlations can have
a substantial impact on the evaluation of network perfor-
mance reliability. As a result of these findings, researchers
have delved into the study of path performance correlations
within NCSs. Khreishah et al. [7] introduced a distributed
chance routing algorithm that incorporates network coding
and takes into account path correlations. This approach aims
to enhance path performance reliability, particularly in the
face of varying delay and packet loss rates within wireless
channels. In the realm of anomaly detection systems, where
the consequences of a single fault on other network compo-
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nents are not always considered, Haylett et al. [8] explored
the application of deep learning recurrent neural networks
and correlation analysis techniques for system-scale anomaly
detection. This approach addresses the need to detect anoma-
lies that might be masked by interdependencies within the
network. Recognizing the limitations of existing reliability
analysis methods in predicting the effects of changes in com-
ponent reliability on overall system reliability, Yang et al.
[9] proposed an active learning function called ‘Expected
System Improvement.’ This function is designed for system
reliability analysis and enables the prediction of how updates
in component reliability can impact the reliability of the entire
system.

Compared to traditional mechanical structures, network
structures exhibit a high degree of complexity and employ
various communication methods. This complexity poses
challenges in developing comprehensive reliability models
that accurately reflect path correlations in rigorous models.
In recent years, the use of data-driven system correlation
analysis has significantly advanced the field of network reli-
ability, with Copula functions emerging as a valuable tool for
assessing performance correlations. Copula functions offer
distinct advantages in terms of dimensional reduction and
nonlinear data representation for high-dimensional complex
datasets. Yuqin et al. [10] employed Copula functions in
combination with the non-parametric kernel density method
to predict grid reliability indicators. Meanwhile, Liu and
Chen [11] utilized the Copula function, employing both ker-
nel density estimation and maximum likelihood estimation,
to establish a dynamic reliability model for gearbox systems.
Subsequently, they conducted dynamic reliability evaluations
for the gearbox. Hai et al. [12] employed copula theory to
develop reliability models for mechanical systems, particu-
larly focusing on the intricate interdependencies within series
mechanical systems. In the context of NCSs, Zoppi et al. [13]
devised a delayed reliability model for NCSs that takes
into consideration factors such as network delay and packet
loss. Their approach evaluated the impact of loop infor-
mation transmission success probability on system quality.
For an in-depth analysis of network performance concern-
ing specific transmission time requirements, Jian et al. [14]
integrated network component reliability models, network
topology models, and network performance models. They
established a dynamic delay-based network reliability model.
Sheng et al. [15] employed a combination of theoretical
analysis and data-driven methods and introduced Copula
functions to describe the performance reliability of central-
ized NCSs.

As NCSs continue to expand in scale, evolving into dis-
tributed systems where there’s no longer a single processing
and control center, assessing operational reliability presents
new challenges. In this context, the paper proposes a novel
approach for evaluating the reliability of distributed NCSs.
This approach introduces multivariate ACFs to describe
paths, path families, subsystems, and the overall system cor-
relations step by step, all while considering path performance.

The network path delay is utilized as an index to evaluate
network performance.

II. BASIC THEORY OF THE MULTIVARIATE ACFs
To investigate the reliability calculation method for NCSs
based on path performance correlation from a data-driven
perspective, we introduce the Archimedes Copula function
[16]. Copula functions are a class of mathematical functions
that link the joint distribution function to their correspond-
ing marginal distribution functions. They are versatile tools
capable of describing various dependencies between ran-
dom variables, encompassing linear, nonlinear, normal, and
non-normal relationships [17]. Copula functions enable the
separate modeling of the marginal and joint distributions
of a variable. This property allows us to treat the marginal
distribution of each variable independently. As a result,
we can amalgamate themarginal distribution functions of link
delays using the Copula function link function. This, in turn,
facilitates the analysis of the reliability of link families, sub-
systems, and the entire system.

A. MODELING OF THE MULTIVARIATE ACFs
In distributed NCSs, the number of paths within different
path families varies, and a central node is often connected
to three or more target nodes. Constructing a multivariate
ACFs that best captures the correlation among all paths in
a multi-path scenario is of utmost importance. Sklar [18]
asserted that ACFs exhibits the following characteristics: the
ACFs for an N-element system can be effectively represented
by binary ACFs, meaning it can be decomposed into (N-1)
binary ACFs. For instance, in accordancewith the law of ACF
combination as described in eq. (1), the ternary ACF can be
deconstructed into two binary ACFs.

C (u1, u2, u3) = C (C (u1, u2) , u3) (1)

where u1, u2, u3 are edge distribution functions.

B. SELECTION OF ACFs
In this paper, the selected ACFs encompass the Gumbel
Copula function, the Clayton Copula function, and the Frank
Copula function. The accurate representation of the relation-
ship between random variables, achieved by selecting the
appropriate Copula function tailored to specific scenarios,
significantly impacts the final model of the ACF and the
subsequent reliability calculations. The binary distribution
functions for these ACFs are presented below. The distri-
bution function expression for the binary Gumbel Copula
function is detailed as follows.

CG (u, v, α) = e

(
−

[
(−lnu)

1
α +(−lnv)

1
α

]α)
(2)

where α ∈ (0, 1] is the related parameter and u, v are the
edge distribution functions.

The equation for the distribution function of the binary
Clayton Copula function as follows.

Ccl (u, v, θ) = max
(
u−θ

+ v−θ
− 1

)− 1
θ (3)
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where θ ∈ (0, ∞) and is the related parameters.
The equation for the distribution function of the binary

Frank Copula function as follows.

CF (u, v, γ ) = −
1
γ
ln

(
1 +

(
e−γ u

− 1
) (
e−γ v

− 1
)(

e−γ − 1
) )

(4)

where γ is the related parameter and γ ̸= 0.
This paper employs the squared Euclidean distance,

denoted as d_Gu, as an evaluation metric for the optimal
Archimedean Copula model. The squared Euclidean distance
serves as a fitting index that quantifies the disparity between
the empirical Copula function of the sample and the joint
distribution function [19]. To compare the fitting performance
of the three ACFs, we calculate their respective squared
Euclidean distances. The ACF with the smallest squared
Euclidean distance is considered to provide the best fit. The
following outlines the specific steps in this evaluation pro-
cess.

a) Estimation of the unknown parameters in the Cop-
ula model using the maximum likelihood estimation
method under the Copula functional model.

b) The definition of the empirical Copula function of the
sample is shown in eq. (5). The alternative Copula
function is squared with the empirical Copula function
for the squared Euclidean distance dGu, when dGu is
small, the Copula function fits better, and the model
with a minimum value of dGu is chosen as the optimal
Copula model.

Ĉ (ui, vi) =
1
n

n∑
i=1

I [F (xi) ≤ ui] · I [G (yi) ≤ vi] (5)

where F (xi) and G (yi) are marginal distribution func-
tions, I is an indicative function, I [F (xi) ≤ ui] = 1,and
I [F (xi) > ui] = 0. Assuming that the joint distribution cop-
ula function of ui and vi is C (ui, vi), the squared Euclidean
distance expression as follows.

dGu =

n∑
i=1

∣∣∣Ĉ (ui, vi) − C
(
ui,vi

)∣∣∣2 (6)

C. ESTIMATION OF THE PARAMETERS OF THE ACFs
After choosing the appropriate ACFs, it is also necessary
to choose the appropriate parameter estimation method. For
the N-element ACFs, since it is decomposed into N-1 binary
ACFs, the parameter estimation of the multivariate ACFs can
be transformed into the parameter estimation of the binary
ACFs. The parameter estimation of the binary ACFs usually
uses the maximum likelihood estimation (MLE) method,
assuming that the marginal distribution functions of the
variables x and y are F(x, θ1), G(y, θ2), and the density
functions of these two marginal distribution functions are
f (x, θ1), g(y, θ2), where θ1 and θ2 are two uncertain parame-
ters, and the Copula function chosen is of the formC(u, v, α),

and the corresponding density function as follows.

c (u, v, α) =
∂2C (u, v, α)

∂u∂v
(7)

The parameter α of the ACFs is indeterminate and the eq.
(8) for the joint distribution function of the variables x and y
as follows.

H (x, y, θ1, θ2, α) = C [F (x, θ1) ,G (y, θ2) , α] (8)

Its probability density function as follows.

h (x, y, θ1, θ2, α) =
∂2H
∂x∂y

=c[F (x, θ1) ,G (y, θ2) , α] f (x, θ1) g (y, θ2)

(9)

Therefore, for the sample (xi, yi) , i = 1, 2, . . . , n, the
likely-hood function as follows.

L (θ1, θ2, α) =

n∏
i=1

c [F (xi, θ1) ,G (yi, θ2) , α]

× f (xi, θ1) g (yi, θ2) (10)

The target parameter estimate is computed by initially
taking the logarithm of the aforementioned equation and
subsequently determining the parameter value that results in
a zero reciprocal, thereby yielding a maximum value.

θ =

(
θ̂1, θ̂2, α̂

)
= argmaxlnL (θ1, θ2, α) (11)

III. PATH PERFORMANCE DEPENDENT RELIABILITY
MODELS FOR DISTRIBUTED NETWORKS
A. DELAY-BASED NETWORK PATH RELIABILITY
DEFINITION
Following the path performance criteria developed by Profes-
sor Huang Ning [20], this paper places significant emphasis
on network performance evaluation parameter, ‘delay.’ To
achieve this, the delay data is first normalized and clustered,
and subsequently, the delay distribution functions for each
path are amalgamated into a collective distribution function
for a family of paths. This is accomplished by constructing
a delay-based distribution function using a multivariate com-
posite ACFs. For the n-th path, denoted as Ln, K sampling
points are taken within the time period t1 to t2, with a fixed
sampling interval. The time delay at the i-th sampling point
is recorded as τLn,i , and the K-means clustering algorithm
is employed through iterative processes until convergence
is reached in the time delay data. The resulting converged
point serves as the time delay threshold τ kLn (k indicates the
number of delay thresholds), used in the subsequent reliabil-
ity calculations. Consequently, the path performance failure
rate is determined as the probability that the sampled delay
value τLn,i acquired over all sampling cycles for the path
within the time period t1 to t2 is greater than or equal to the
delay threshold τ kLn . Eq. (12) provides the probability density
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function for the delay.

f
(
τLn,i ≥ τLnk

)
=

dF
(
τLn,i ≥ τ kLn

)
dτ

(12)

The path performance reliability is given by the cumulative
distribution function of the time delay as in eq. (13).

R
(
τLn
)

= 1 −

∫ max τLn,i

τLn,i

f
(
τLn,i ≥ τ kLn

)
= 1 − F

(
τLn,i ≥ τ kLn

)
(13)

wheremaxτLn,i refers to the maximum value of the path delay
data collected on path n during the time period t1 − t2.
Then at the i-th sampling period, for any path Ln, the path

unreliability is given by the cumulative distribution function
of the path delay as follows.

ULn,i = F
(
τLn,i ≥ τ kLn

)
(14)

B. PATH FAMILY RELIABILITY MODELING BASED ON
MULTIVARIATE ACFs
Two definitions for distributed path control systems are given
in the following:
Definition 1: A family of parent node paths refers to the

set of paths that send data from a particular parent node to
more than one child nodes as in Fig. 1.

FIGURE 1. Path family of the parent node.

Definition 2: A family of child node paths means a collec-
tion of paths that send data from a different parent node to the
same child node, as in Fig. 2.

In both of these sets of paths, the presence of a common
parent node for all child nodes, or conversely, a common child
node for all parent nodes, results in a scenario where interfer-
ence sources in proximity to the child (parent) node, or device
failures within the parent (child) node, can have a cascading
effect on all paths linked to that particular parent (child) node
due to the inherent correlation in path performance.

After introducing the Copula function, the cumulative dis-
tribution function of each path within the path family is
combined to establish the joint distribution function, and the

FIGURE 2. Path family of the child node.

unreliability of the parent node path family can be obtained
according to eq. (15).

Uparent = C
[
F
(
τL1,i ≥ τ kL1

)
, . . . ,F

(
τLM ,i ≥ τ kLM

)]
(15)

Thus, the delay-based reliability of the parent path family
is calculated as follows.

Rparent = 1 − Uparent

= 1 − C
[
F
(
τL1,i ≥ τ kL1

)
, . . . ,F

(
τLM ,i ≥ τ kLM

)]
(16)

Similarly, the unreliability of the family of sub-node paths
can be obtained according to eq. (17).

Uchild = C
[
F
(
τL1,i ≥ τ kL1

)
, . . . ,F

(
τLN ,i ≥ τ kLN

)]
(17)

The reliability of the sub-node path family as follows.

Rchild = 1 − Uchild

= 1 − C
[
F
(
τL1,i ≥ τ kL1

)
, . . . ,F

(
τLN ,i ≥ τ kLN

)]
(18)

C. RELIABILITY MODLING OF SUBSYSTEMS
A distributed NCS is shown in Fig. 3. A group of sensors such
as S11, S12 and S13 in the figure is called a sensor family (S1),
C1, C2 and C3 are controllers and A11 and A12 are actuators.

Taking subsystem S1 as an example, the specific informa-
tion transfer pattern within the entire system is as follows: S1
detects signals and transmits them to the controller node C1
via the network. C1 receives data from three sensors within
its domain and computes control signals for different target
actuator nodes. Subsequently, C1 dispatches the respective
control signals to actuator nodes A11 and A12, effectively
accomplishing the real-time control of the designated object.

In cases where the delay of the communication path from
S1 to C1 surpasses the predefined threshold, the path is con-
sidered unsuccessful. In such instances, the data is rerouted
to the controller with the next highest priority, according to
the routing protocol. In this scenario, it is forwarded to the
neighboring controller C2, which in turn communicates with
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FIGURE 3. Distributed network control system transmission paths.

actuator nodes A11 and A12. Should the delay of the path
from S1 to C2 similarly exceed the specified threshold, the
data is further forwarded to the adjacent controller C3, which
subsequently communicates with actuator nodes A11 and
A12. This sequential transmission process, encompassing the
lower sensors, intermediary controllers, and upper-level actu-
ators, collectively forms an autonomous subsystem referred
to as ‘subsystem C1’. The specific transmission path for this
subsystem is illustrated in Fig. 4.

FIGURE 4. Transmission path of subsystem C1.

This particular subsystem can be further dissected into two
distinct segments: a sub-node path family, encompassing the
route from the sensors transmitting signals to the controller,
and a parent path family, encapsulating the journey from the
controller relaying signals to the actuators. Among these, the
sensor-to-controller path family, depicted in Fig. 5, serves as
an illustrative example of the sub-node path family.

The reliability of the model can be obtained by eq. (19)
based on the multivariate composite ACFs for sub-nodes,
where the symbol (S → C) indicates the signal from the sen-
sor to the controller, the superscript k indicates the reliability

FIGURE 5. The sensor-controller path family of subsystem C1.

at the k-th delay threshold.

Rk(S→C) = 1 − C
[
F
(
τL1,i ≥ τ kL1

)
, . . . ,F

(
τL3,i ≥ τ kL3

)]
(19)

In contrast, the path family from the controller to the
actuator in subsystem C1 has a multi-hop transmission mech-
anism, i.e., an unsuccessful transmission of one path will be
transferred to another path for transmission, and its reliability
calculation is relatively more complicated, and can be divided
into nine different parent node path families. Fig. 6 shows
the nine different parent node path families in subsystem C1
for signals sent from the controller to actuators A11 and A12,
where Ln indicates the signal transmission path.

Since in actual production operation, different actuators
belonging to the same subsystem are in a relatively close
environment, which results in the impact of external noise
on the communication performance of the proximity path has
relevant characteristics, and these actuators share the same set
of network protocols and routing mechanisms at the network
level, making it very rare for different actuators to have het-
erogeneous multi-hop transmission, and the impact of these
cases on the reliability of the subsystem is very small, so they
are often ignored in the actual calculation and not discussed
specifically [21]. Therefore for the controller-to-actuator path
family in subsystem C1, the reliability calculation can be
simplified to consider only the coupling of the same multi-
hop, i.e. parent node path families I, IV and IX, according to
the full probability formula.

The reliability of each parent path family is denoted as
R(C→A)m,n , where (C→A) denotes the number of times the
signal is sent from the controller to the actuator, m denotes
the number of multi-hop transmissions the signal is sent to
the first actuator A11, and n denotes the number of multi-hop
transmissions the signal is sent to the second actuator A12.
The parent node path family I for controller C1 is sent

directly to actuator A11 and actuator A12 without multi-hop
transmission and its reliability is expressed using the binary
ACFs in eq. (20), where the subscript ‘00’ would represent
without multi-hop transmission and the superscript k indi-
cates the reliability at the k-th delay threshold.

Rk(C→A)00
= 1 − C

[
F
(
τL4,i ≥ τ kL4

)
,F
(
τL5,i ≥ τ kL5

)]
(20)

The parent node path family IV represents the path family
reliability of sensor C1 sent to actuators A11 and A12 after one
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FIGURE 6. Controller - actuator path family of subsystem C1.

multi-hop, which can be expressed using the binary ACFs as
follows.

Rk(C→A)11
= 1 − C

[
F
(
τL10,i ≥ τ kL10

)
,F
(
τL11,i ≥ τ kL11

)]
(21)

The parent node path family IX represents sensor C1 send-
ing packets to actuators A11 and A12 over two multi-hops,
whose path family reliability can be expressed using the
binary ACFs as follows.

Rk(C→A)22
= 1 − C

[
F
(
τL20,i ≥ τ kL20

)
,F
(
τL21,i ≥ τ kL21

)]
(22)

Then for the controller-to-actuator path family in subsys-
tem C1, the reliability can be calculated according to the full
probability formula as shown in eq. (23) when considering
only the path families with simultaneous multi-stage jumps.

Rk(C→A)

= Rk(C→A)00
+

(
1 − Rk(C→A)00

)
· Rk(C→A)11

+

[
1 − Rk(C→A)00

−

(
1 − Rk(C→A)00

)
Rk(C→A)11

]
·Rk(C→A)22

(23)

Therefore, the subsystemC1 reliability can be derived from
the two-level path reliability as follows.

RksubC1 = Rk(S→C) · Rk(C→A) (24)

D. RELIABILITY MODELING OF DISTRIBUTED NCSs
Based on the same principles, the reliability of the other
two subsystems C2 and C3 of the distributed NCS shown in
Fig. 3 can be obtained. For a distributed NCS, subsystems
are equal, i.e. the failure of any subsystem will cause fail of
whole system. Thus, for the distributed NCS shown in Fig. 3,
the reliability of whole system is shown in eq. (25), with
ndenoting the reliability of n-th subsystem (n=1,2,3).

Rksys = RksubC1 · RksubC2 · RksubC3 (25)
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Consequently, drawing upon the analyses presented in
Chapters 1 and 2, a novel approach is formulated. This
approach, implemented in the subsequent steps, leverages
ACFs to assess the reliability of a distributed networked
control system with respect to path performance.

Step 1: NCSs is segmented into multiple subsystems based
on distinct functional modules, illustrated in Fig. 4. Within
these subsystems, the two-level path families extending from
sensors to controllers and from controllers to actuators are
further divided into distinct parent node path families and
child node path families in accordance with the definitions
outlined in Chapter III, Section B. These path families are
constituted by a multitude of information transmission paths.

Step 2: During the sampling period from t1 to t2, the delay
data for each path Ln is collectedwith fixed sampling interval.
The delay at the i-th sampling period of the n-th path is
denoted as τLn,i . After noise reduction and standardization
of the delay data using K-means clustering algorithm, the
cohesion points τ kLn of pre-processed data are iteratively deter-
mined. The values serving as a delay threshold for reliability
evaluation is subsequently organized in ascending order.

Step 3: The pre-processed delay data for each path is
fitted to an appropriate cumulative distribution function. Sub-
sequently, the parameters of the distribution function are
estimated, enabling the calculation of path reliability using
eq. (13).

Step 4: The suitable ACF is selected by comparing the
squared Euclidean distance dGu using eq. (6). Subsequently,
the maximum likelihood estimation method, as defined in eq.
(11), is applied to determine the correlation parameter for
the selected ACF. Finally, the reliability of the parent and
child node path families for path performance correlation is
assessed based on eq. (16) and (18).
Step 5: Having determined the reliability for both the par-

ent and child node path families, the reliability for the two-tier
path families—spanning from sensors to controllers and from
controllers to actuators within each subsystem is computed
using the comprehensive probability eq. (23). Subsequently,
the reliability of each subsystem is ascertained using eq. (24).
Step 6: Finally, the reliability of the entire distributed NCS

is determined by multiplying the reliability of all subsys-
tems, with the assumption of independence of subsystem as
described in eq. (25).

IV. CASE STUDY OF RELIABILITY EVALUATION OF
DISTRIBUTED NCSs
In this thesis, a distributed NCS consisting of three sub-
systems is established using OPNET network simulation
software. This setup is employed to simulate random delay
data within the wireless NCS during the information trans-
mission process. The aim is to validate the reliability model
that relies on ACF.

A. SYSTEM MODELING
OPNET is a versatile tool designed for modeling, simulating,
and conducting performance analyses of computer networks.

It enables the simulation of NCSs under various network
environments and protocols. By gathering data that reflects
network conditions, such as delays and packet loss rates in
information transmission paths, it facilitates the evaluation
of network performance. The OPNET simulation model is
structured into three layers: the process layer, the node layer,
and the network layer. Initially, the network topology is con-
figured in the network layer, as illustrated in Fig. 7.

FIGURE 7. OPNET network layer model.

The model comprises three subsystems, with each sub-
system having a sensor denoted as Sij (j=1, 2, 3). These
sensors are tasked with gathering signals and subsequently
transmitting them to the respective controller Ci, within their
respective subsystems. These controllers process the received
signals and send computed control signals to the actuators, Aij
(j=1, 2), which are responsible for executing the necessary
control operations.

Secondly, in the node layer, attributes are defined for each
node within the network layer, representing various types
of network nodes found in real physical networks. These
nodes consist of different process modules used to replicate
the communication and data exchange processes between
devices in an actual network. For instance, let’s consider the
controller C1. Its node layer model is structured as depicted
in Fig. 8. In this model, the Source module is responsible for
generating data packets and transmitting them to the Router
module. The Router module, in turn, transmits signals to the
MAC module for tasks such as configuring time slot lengths,
encapsulating and dispatching frames, and more. Addition-
ally, the Sink module is tasked with recording and tallying
the delay information pertaining to data transmission.

Finally, the specific design and parameter configuration
for each module within the node layer are conducted in the
process layer individually. To illustrate, let’s consider the
network layer node C1. The process layer model for each
module of its node layer is established as follows.

a) Source module: the process layer model is drawn as
shown in Fig. 9, where Init is the initialization process,
used to obtain node-related attributes; off is the stop
state, indicating that no longer send data frames to the

b) outside world; on is the active state, in which the
node generates data packets according to the set
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FIGURE 8. Node level model for controller C1.

requirements. The time interval for generating packets
is set to 0.2 seconds, the size of each packet is 128bits,
and the specific parameters of the module are shown in
Table 1.

FIGURE 9. Process-level model of the source module.

TABLE 1. Source module parameters.

where Attribute denotes the variable name and Value
denotes the variable value. The first variable Interarrival Time
is set with a parameter of 1.0, indicating that the packet is sent
every second. The second variable Packet Size, the parameter
for packet size, is set to 1024bits, indicating that the size of
the packet sent by the sensor to the target actuator every time
is 1024bits.

c) Router Module: The process layer model for estab-
lishing the Router module is shown in Fig. 10, which
is responsible for receiving signals generated by the
Source module and then sending them to the actuator
nodes of the system via the MAC module.

FIGURE 10. Process level model of the router module.

The specific process is that the data is initialized in the
INIT region to obtain the relevant node attributes, and then
wait for other data processes to complete the initialization
through the Wait region, and then wait for interrupts to
arrive by the IDLE, APPL receives the packets generated
by the node layer Source and periodically sends the packets
to the node layer of theMACmodule, the PHY by identifying
the destination address of the received packets, and then
receives them when they match. and sends it to the Sink
module for delay statistics, otherwise it destroys the data.

d) Sink module: the process layer model of the Sink mod-
ule is shown in Fig. 11, which is mainly used to count
the latency information of the data.

FIGURE 11. Process layer model of the MAC module.

Specifically, when the Sink module receives a packet,
it will record the arrival timestamp, which indicates the arrival
time of the packet, and at the same time, the packet also
contains a send timestamp, which indicates the time when the
packet leaves the previous node, and the Sink module uses
the arrival timestamp to subtract the send timestamp to get
the packet’s transmission delay data.

e) MAC module: MAC module is known as the protocol
module, the establishment of the process layer model
is shown in Fig. 12.

The same INIT region is responsible for the initialization
of the data, Wait indicates that the waiting region, and then
IDLE wait for the interrupt to arrive, in this state nodes do
not send data, but will allow the PHYPacket to receive the
physical layer of the data packet and send it to the Router
Routing Module, when their own time slot arrives, the jump
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FIGURE 12. MAC module process level model.

to the ACTIVE state, in the ACTIVE state, indicating that the
node is in their own time slots, to take out packets for sending.

B. SETTING OF SYSTEM NODE PARAMETERS
1) PARAMETERIZATION OF SENSOR NODES
Taking the sensor S11 in Fig. 7 as an example, its specific
parameter settings are shown in Table 2.

TABLE 2. Parameters of sensor node S11.

The term ‘‘Address’’ denotes the network address of
sensor node S11, which has been configured to 11.
‘‘MAC.DataRate’’ signifies the data transmission rate of the
node, set at 64 kbps. ‘‘Start Time’’ indicates the initiation time
of the service process. When the value is set to 5.0, the sensor
node commences the service process five seconds after the
overall service begins. The ‘‘ON State Time’’ of 90 seconds
represents the duration during which the node remains in the
active ‘‘ON’’ state. Similarly, ‘‘OFF State Time’’ designates
the period for which the node remains in the ‘‘OFF’’ state,
which is set to 1 second. ‘‘Interarrival Time’’ signifies the
time interval for sending data packets, configured at 0.5 sec-

onds. Finally, ‘‘Packet Size’’ indicates that each data packet
has a size of 128 bits.

2) PARAMETERIZATION OF THE CONTROLLER
In the case of controller C1, as illustrated in Fig. 7, specific
parameter configurations are detailed in Table 3.

TABLE 3. Parameter setting for controller node C1.

Similar to the meaning of the parameter representation in
the sensor, where Adderss is the network address of C1, which
is set to 1; MAC.DataRate indicates the data transfer rate of
this node, which is also set to 64kbps. Router.DestAddress
refers to howmany execution nodes the controller node needs
to send data to. Start Time Indicates that the sensor node starts
its service process 5 seconds after services start.

Using the same method, the remaining nodes in the net-
work layer are designed for the node layer and process
layer models, and the setting of relevant parameters is also
completed, and then the system is simulated and delay data
are collected. The statistics of delay is completed by the
Sink module in the node layer, firstly, the end-to-end delay
statistics need to be sounded in the node layer, as shown in
orange in Table 4, and then it is added as a statistic variable
in the network layer, and then the delay data collected by the
system is exported at the end of the simulation.

TABLE 4. End-to-end delay statistics.

The delay data from the sensor to the controller of the
subsystems in the simulation model is shown in Fig. 13.
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FIGURE 13. Sensor-controller path time delay sampling values for
subsystem C1.

The simulation model comprises three subsystems. In con-
junction with the information transmission methods outlined
in the previous Section II-C, it becomes evident that the entire
network system encompasses a total of 45 information trans-
mission pathways. The transmission delays associated with
these 45 information transmission paths have been gathered,
using an experimental simulation duration of 1800 seconds
and a sampling interval of 3.6 seconds. This collection pro-
cess results in a total of 22,500 delay data points.

C. DATA PRE-PROCESSING
Firstly, it is essential to standardize the data as recommended
in [22]. This involves subtracting the original delay data from
the mean value of the delay data for each path and then
dividing the result by the standard deviation of the delay data
for that path. This process yields the standardized version of
the original data.

Secondly, the standardized data was subjected to clustering
using the K-means clustering algorithm, as described in [23]
and [24]. The number of clusters, denoted as ‘k’ was initially
set to 4, and four samples were chosen as the initial cluster
centroids, commonly referred to as clustering seeds. Specif-
ically, these seeds corresponded to the 100th, 200th, 300th,
and 400th time delay data points in each dataset.

Through multiple iterations of the algorithm, these cen-
troids were refined, and the resulting cluster centroids were
employed as the time delay thresholds for subsequent reli-
ability calculations. The four refined coalescence points for
each path were arranged in ascending order, yielding the four
time delay thresholds for each path, denoted as τ 1Ln , τ 2Ln , τ 3Ln
and τ 4Ln respectively. The delay thresholds for all paths within
subsystem C1 are presented in Table 5 as follows.

The presence of negative values in the table can be
attributed to the normalization process. After data normaliza-
tion, time delay data that fall below the mean are represented
as negative values. It’s important to note that the sign (positive

TABLE 5. Path delay thresholds for subsystem C1.

or negative) of these values doesn’t alter the intrinsic nature
of the data or impact the subsequent calculations.

D. PATH PERFORMANCE RELIABILITY
According to eq. (13), the path’s performance reliability is
expressed through the cumulative distribution function of the
delay. After preprocessing, the DISTRIBUTION FIT toolbox
in MATLAB is employed to identify an appropriate cumu-
lative distribution function and estimate its parameters. The
most fitting cumulative distribution function is determined
to be the first subtype of the Gumbel-type standard mini-
mal value distribution within the extreme value distribution
family, characterized by the cumulative distribution function
described as follows.

Fn (x) = 1 − e(−e)
x−µ
σ (26)

where µ, σ are the distribution parameters, µ is its location
parameter, which is essentially the plurality of the distri-
bution, and σ is the scale parameter, which is determined
by the dispersion of the distribution, and both distribution
parameters are unitless.

Table 6 lists the parameters of the Gumbel-type stan-
dard minimum value distribution for each path delay data in
subsys-tem C1.

E. CALCULATE THE PATH FAMILY RELIABILITY
Once the cumulative distribution function for the time delay
of each path is determined, we proceed to assess the reliability
of each path family using multivariate ACFs. The process
comprises two primary steps: first, the selection of appropri-
ate ACFs and the estimation of their parameters; second, the
computation of the path family’s reliability.

1) SELECTION OF ACFs
Taking the sub-node path family from the sensor to the con-
troller in subsystem C1 as an example, the edge distribution,
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TABLE 6. Distribution parameters of subsystem C1.

represented as a Copula function, encompasses the cumu-
lative distribution functions of time delay data from three
paths. Specifically, let the cumulative distribution function of
the S11 →C1 path delay be denoted as F1, the cumulative
distribution function of the S12 →C1 path delay as F2, and the
cumulative distribution function of the S13 →C1 path delay
as F3. To estimate the parameters of the binary distribution
functions F1 and F2, the COPULA FIT function in MATLAB
was employed, utilizing the maximum likelihood estimation
method described in eq. (11). The parameter calculation
results for these three commonly used ACFs are presented
in Table 7.

TABLE 7. The first archimedes copula parameters.

Upon determining the parameters for each ACF, sample
empirical functions were generated following eq. (5), and
subsequently, the squared Euclidean distances were com-
puted as per eq. (6), as illustrated in Table 8.

TABLE 8. The first fitted squared euclidean distance.

Following the principle that a smaller squared Euclidean
distance indicates a better fit for the Archimedes Copula
function, it becomes evident that the Clayton Copula should
be selected to model the cumulative distribution function
F1 for the S11 →C1 path and the cumulative distribution

function F2for the S12 →C1 path. The corresponding fitting
expression is presented in eq. (27).

C (F1,F2) =

(
F−288.5971
1 + F−288.5971

2

) 1
288.5971

(27)

According to the combination principle of ACFs shown in eq.
(1), we can obtain eq. (28).

C (F1,F2,F3) = C (C (F1,F2) ,F3) (28)

The second maximum likelihood parameter estimation was
performed for C(F1,F2) and F3 and the results are shown in
Table 9.

TABLE 9. The second archimedes copula parameters.

Following the computation of parameters for each ACF,
a sample empirical function was constructed in accordance
with eq. (5), and the squared Euclidean distance was subse-
quently calculated based on this sample empirical function,
as displayed in Table 10.

TABLE 10. The second fitted squared euclidean distance.

Adhering to the principle that a smaller squared Euclidean
distance signifies a superior fit for the ACFs, it is evident that
the Frank Copula should be selected for the fitting, as outlined
in eq. (29).

C (F1,F2,F2)

=
1

−10.3654

× ln

[
1 +

(
e−10.3654C(F1,F2) − 1

) (
e−10.3654F3−1

)
e−10.3654 − 1

]
(29)

Employing the algorithm described above, the parameters
of each path’s ACFs are derived throughmaximum likelihood
parameter estimation. Subsequently, the sample empirical
function is utilized to calculate the squared Euclidean dis-
tance, aiding in the identification of the optimal ACFs for
each path family. The preferred Archimedean function and
its associated parameter values within subsystem C1 are pre-
sented in Table 11.

The entry (S11, S12) →C1 in the table signifies the paths
taken by sensor S11 and sensor S12 to transmit data to
controller C1. On the other hand, ((S11, S12), S13) →C1
indicates that the data sent from sensor S11 and sensor S12 to
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TABLE 11. Subsystem C1 path family optimal ACFs and its parameters.

controller C1 are initially analyzed and combined into a joint
distribution function using a Copula function. Subsequently,
a second Copula function is chosen, and the corresponding
parameters are estimated, incorporating the path of sensor S13
transmitting data to C1.

2) PATH FAMILY RELIABILITY BASED ON MULTIVARIATE
ACFs
The reliability of all path families is computed for four dis-
tinct time delay thresholds using the parent and child path
family reliability formulas presented in eq. (16) and (18),
as depicted in Table 12 and Table 13.
Based on the results of path family reliability calcula-

tions in Table 12, it is evident that the reliability of each
path family exhibits an upward trend as the delay thresh-
old increases. This trend is particularly pronounced in the
fourth threshold level, where path family reliability surpasses
0.9. This observation underscores that the paths demon-
strate improved performance when suitable delay thresholds
are chosen.

TABLE 12. Sensor to controller path family reliability.

F. RELIABILITY CALCULATION OF SUBSYSTEMS
Following the determination of path family reliabilities
within the system, the subsequent step involves calculating
the reliability of each subsystem across four distinct delay
thresholds as per eq. (24). These results are presented in
Table 14, where the subscript n denotes the reliability of n-th
subsystem.

To facilitate observation of changes in subsystem reliabil-
ity at each time delay threshold, the data in table 10 are plotted
as a line graph as shown in Fig. 14.

TABLE 13. Controller to actuator path family reliability.

TABLE 14. Reliability of each subsystem.

FIGURE 14. Reliability of each subsystem.

G. CALCULATE THE RELIABILITY OF THE WHOLE SYSTEM
After calculating the subsystem reliability, the distributed
NCS reliability based on path performance correlation at
four delay threshold levels can be evaluated based on the
independence of subsystem actions. Bringing each subsystem
reliability value into eq. (25), the system reliability is shown
in Table 15.
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TABLE 15. Reliability of the whole system.

Similarly, the data from Table 15 are plotted as show in
Fig. 15.

FIGURE 15. Reliability of the whole system.

As evident from Table 14, among the three subsystems,
Subsystem C1 exhibits the highest reliability, whereas Sub-
system C3 demonstrates overall poor reliability performan-
ce. In practical operations, increased frequency of daily
inspections is advisable for Subsystem C3, given its sub-
optimal reliability. Real-time dynamic monitoring of the
reliability of these subsystems is crucial, enabling timely
maintenance actions when reliability warnings fall below the
threshold necessary for the system’s normal operation.

V. CONCLUSION
In this paper, time delay has been selected as the evaluation
metric for path performance. The paper presents a definition
of path performance reliability that is rooted in time delay and
offers a methodology for calculating the cumulative distribu-
tion function of time delay. Building upon this foundation,
the Archimedes Copula function is introduced as a means
to assess the influence of path performance correlations on
system reliability from a data-driven perspective.

Utilizing parameter estimation from the binary ACFs,
we developed the multivariate composite ACFs and their
corresponding parameter estimation method based on combi-
nation principles. Subsequently, a joint distribution function
model for path family time delays is established. This model
enables the development of a reliability calculation method
for both sub-node path families and parent node path families.
Furthermore, it facilitates the derivation of reliability assess-
ments for the subsystem and the entire system.

The primary challenge in this paper lies in developing a
comprehensive reliability evaluation model for distributed
NCSs with the consideration of path performance correla-
tions. This paper focuses only on time delay data as the source
of network performance evaluation to assess the reliability of
NCSs. By judiciously and effectively incorporating multiple
performance indicators, such as packet loss rate, bit error rate,
and others, into the evaluation framework, there is one sig-
nificant potential for establishing a comprehensive network
performance reliability assessment model, which would be a
valuable avenue for future research.

The architecture of networked control systems with a
multitude of diverse information transfer paths is inherently
complex. This complexity will further increase sharply when
it comes to the extension of network capacity, as well as
considers the influence of uncertain data and dynamic envi-
ronments at the same time. As demonstrated in this paper,
focusing solely on path-based modeling can lead to com-
putational challenges. Therefore, it is prudent to consider
alternative approaches, such as networkmodeling techniques,
which is specialized in dealing with the case of complex
netwo-rk. For example, leveraging Bayesian modeling to
construct a probabilistic system model and subsequently
ascer-taining model parameters for reliability analysis might
offer a promising avenue for future investigations.
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