IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 29 September 2023, accepted 20 October 2023, date of publication 30 October 2023, date of current version 6 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3328314

== RESEARCH ARTICLE

Android Ransomware Analysis Using
Convolutional Neural Network and Fuzzy
Hashing Features

HORACIO RODRIGUEZ-BAZAN -, GRIGORI SIDOROV™,
AND PONCIANO JORGE ESCAMILLA-AMBROSIO ", (Senior Member, IEEE)

Centro de Investigacién en Computacién (CIC), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico
Corresponding author: Ponciano Jorge Escamilla-Ambrosio (pescamilla@cic.ipn.mx)

This work was supported in part by the Mexican Government under Grant A1-S-47854; and in part by Secretaria de Investigacion y
Posgrado of Instituto Politécnico Nacional under Grant SIP-20230990, and Grant SIP-20232782.

ABSTRACT Most of the time, cybercriminals look for new ways to bypass security controls by improving
their attacks. In the 1980s, attackers developed malware to kidnap user data by requesting payments. Malware
is called a ransomware. Recently, they have demanded payment in Bitcoin or any other cryptocurrency.
Ransomware is one of the most dangerous threats on the Internet, and this type of malware could affect almost
all devices. Malware cipher device data, making them inaccessible to users. In this study, a new method for
Android ransomware classification was proposed. This method implements a Convolutional Neural Network
(CNN) for malware classification based on images. This paper presents a novel method for transforming an
Android Application Package (APK) into a grayscale image. The image creation relies on using Natural
Language Processing (NLP) techniques for text cleaning and Fuzzy Hashing to represent the decompiled
code from the APK in a set of hashes after preprocessing using NLP techniques. The image is composed of
n fuzzy hashes that represent the APK. The method was tested using a dataset of 7,765 Android ransomware
samples obtained from external researchers and public sources. The accuracy of the proposed method was
higher than that of other methods in the literature.

INDEX TERMS Android ransomware, convolutional neural network, deep learning, fuzzy hashing, malware
classification, ransomware.

I. INTRODUCTION
Since 2008 with the delivery of the first Android version, this
year marked before and after on mobile devices. Over time,
Android has become the most widely used mobile operating
system worldwide.

As a consequence of Android philosophy (“Android is
designed to be open.” “Android is designed for developers.”
and “Android is designed for users™). [1] is the primary
target of the attack. Cybercriminals develop and release
apps daily with malware, mainly in unofficial app stores
or websites, owing to a lack of security controls for
publishing apps. Therefore, the amount of malware released

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia

has increased. Although it was determined that more than
3 million malware could run on the Android operating
system in 2014, 279 thousand new malware were released
every month [2]. According to the Kaspersky Security
Network [3], in Q3 2022, over 5.5 million mobile malware
were blocked, which shows an exponential increase in mobile
malware.

Ransomware is a type of malware that encrypts user data.
The first ransomware variants were created during the late
1980s. This class of malware is potentially malicious because
the files are encrypted with unknown keys, making them
inaccessible, and recovery is a complex task unless the user
pays the required payment, mainly in cryptocurrencies such
as Bitcoin. It is difficult to prevent or detect ransomware
before it encrypts data on a mobile device.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

121724

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-7382-9202
https://orcid.org/0000-0003-3901-3522
https://orcid.org/0000-0003-3772-3651
https://orcid.org/0000-0002-7565-5963

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

IEEE Access

Recently, Android malware has been studied as an
emergency, and several researchers have focused on dealing
with this type of threat by developing models to detect and
classify malware using Artificial Intelligence (AI). On the
other hand, cybercriminals continuously seek new ways to
bypass security controls to achieve their goals, improve
their techniques, and make malware more sophisticated and
complex to detect using traditional methods, for instance,
based on signatures.

Researchers have proposed various approaches to detect
and/or classify Android malware. Researchers have proposed
using n-grams, API calls, sandbox outputs, and other features
in combination with Machine Learning (ML) and Deep
Learning (DL) algorithms. Recently, a new method of
malware analysis was explored, in which samples were
converted to images, and ML and DL algorithms were
trained for malware classification and/or detection using
these images.

The motivation behind this research is to make a
meaningful contribution to the field of Android malware
analysis by explicitly focusing on ransomware. Ransomware
is widely regarded as one of the most severe threats to the
internet. To address this issue, we employed model-based
Al and Natural Language Processing (NLP) techniques to
bolster defense against cybercriminals. This paper proposes
a new method for Android ransomware classification that
transforms an Android Application Package (APK) sample
into a grayscale image composed of fuzzy hashing of
decompiled and preprocessed code. The main contributions
of this study are as follows.

« A novel method for transforming an Android application
into a grayscale image composed of fuzzy hashes
was presented. First, decompiled code is preprocessed
using Natural Language Processing (NLP) techniques.
Subsequently, a fuzzy hashing technique was used to
calculate the hashes per block of code, considerably
reducing the image size. The image size is important
because variations in the size of the images can affect
feature extraction.

« For the first time, using Natural Language Techniques
(NLP) for text cleaning and extraction was introduced as
per our state-of-the-art research. These techniques help
maintain and standardize the data and remove useless
information that could add noise to the images, thereby
reducing the accuracy.

« An experimental evaluation of the proposed approach on
a ransomware dataset was performed to demonstrate the
feasibility of our approach in comparison to those found
in the literature.

The remainder of this paper is organized as follows.
Section II describes the concepts related to this investiga-
tion. Section III presents an analysis of the state-of-the-
art methods. Section IV presents the proposed method.
Section V provides details of the experimental evaluation
and results. Section VI presents limitations, future work, and
conclusions.

VOLUME 11, 2023

Il. RELATED CONCEPTS

A. FUZZY HASHING

Fuzzy Hashing (FH), also known as Context Triggered Piece-
wise Hashing (CTPH), is a combination of Cryptographic
Hashes (CH), Rolling Hashes (RH), and Piecewise Hashes
(PH). This can be expressed as FH = CTPH = PH + RH.
Unlike traditional hashes, in which the hashes (checksum)
can be seen more as right or wrong and as black or white,
CTPH is more like the gray hash type, as it can identify two
files that may be near copies of one another that generally
may not be located using traditional hashing methods. Fuzzy
hashing allows two arbitrary blobs of data to be compared
for similarity based on common strings of binary data using
a score percentage between 0 and 100, where 0 indicates low
similarity and 100 indicates high similarity [4].

File comparison tools, such as MDS5, SHA1, and SHA256,
are commonly utilized to determine whether two files are
identical. However, it is essential to determine whether they
are the same or different and understand their similarities.
To accomplish this, fuzzy hashing tools, such as SSDEEP or
SDHASH, can be employed.

SSDEEP and SDHASH are fuzzy hashing algorithms
used to compare files for similarity. Other fuzzy algorithms,
including SimHash, TLSH, and LZJD, were utilized to
measure similarities. An evaluation of these fuzzy hashing
algorithms was conducted by Daojing et al. [5].

The SSDEEP algorithm sequentially divides a file into
equal groups of bytes and calculates the hash for each group.
A new hash is calculated to represent the entire file. The
generated hash can be utilized to determine the similarity
between the file and others.

The similarity digest hash (SDHASH) fuzzy hashing
method finds common and rare features in a file and matches
the rare features in another file to determine the similarity
between the two files [6]. Generally, a feature is a 64-byte
string determined using entropy calculations [7]. It employs
the cryptographic hash function SHA-1 and Bloom filters to
calculate the SDHASH fuzzy hash value [8].

The SDHASH is a robust algorithm for fuzzy hashing.
This algorithm provides high accuracy compared to its
predecessor, SSDEEP. The algorithm can compute SDHASH
using options that generate different SDHASH lengths, and
the results can be compared. Two or more SDHASH strings
can be compared, even if their lengths differ.

Bloom filters have predictable probabilistic properties that
allow for directly comparing two filters using a Hamming
distance-based measure D(.). The result estimates the fraction
of features the two filters have in common that are not due to
chance. To compare the two digests for each filter in the first
digest, the maximum match among the filters of the second
digest is found. The resulting matches are averaged [7].

Formally, the similarity distance SD(F, G) for digests F' =
fifa.. . fnand G = g182...8m, n < m, is defined as:

1 n
SD(F. G) = §j3§§mDm, g, (1

121725

IEEE Access

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

An important point to consider is that directly estimating
the empirical probability of encountering a 64-byte feature
is not feasible, nor is it practical to store and retrieve such
observations. SDHASH calculates a normalized Shannon
entropy measure and assigns features to 1,000 equivalence
classes to address this. Statistics are gathered using the
approximation method.

The similarity between two files has a threshold ranging
from O to 100, with 100 being the highest similarity detected.

The significance in the range is the confidence value
that the two data objects have non-trivial amounts of
commonality. Strong (range:21-100) these are reliable results
with very few false positives. Marginal (range:11-20), the
significance of resemblance comparisons in this range
depends substantially on the underlying data. Weak results
(range: 1-10) are generally weak; typically, most would be
false positives. Negative (range:0), the correlation between
the targets is statistically comparable to that of the two blobs
of random data. Unknown (range:-1) is a rare occurrence for
files above 4KB unless they contain large regions of low-
entropy data. However, in all cases, the significance depends
on the amount and type of the data [9].

SSDEEP and SDHASH differ because the hash length
is always the same for SSDEEP. In SDHASH, the hash
length depends on the input (amount of data). As mentioned
previously, SDHASH is more robust and yields options that
can be used during computation. For instance, the segment
size by default is 128MB, but this setting can be changed.

B. APK FILE STRUCTURE

An APK file is a compiled application for the Android
operating system. The package contains all files needed for
a single application and is organized in a particular structure.
Figure 1 shows the APK file structure and list of the most
prominent files and directories.

o META-INF/: Directory with the APK metadata, such as
its signature.

o lib/: Directory with compiled native libraries used by the
application. The folder contained multiple directories,
one for each supported CPU architecture (armeabi-v7a,
x86, etc.).

o res/: Directory with resources not compiled into
resources.arsc. This directory contains all resources
except files in the res/values. The resource files are in
a binary XML format, and all image files are optimized
(crunched) to save space and improve the run-time
performance when inflating these files.

« assets/: The directory with application assets can be
retrieved by AssetManager.

o AndroidManifest.xml: The application manifests in
binary XML file format. It contains application metadata
such as app name, version, permissions, and the
minimum SDK version.

o classes.dex: The classes are compiled in Java language
that will be executed on the device by the virtual
machine.

121726

o resources.arsc: This contains metadata about resources.
The ARSC file is an Android resource table file that
contains a list of application resources in table format.

a.srnali
SMALI B b.smaii
RES N.smuli
RES |
META-INF
ORIGINAL
ASSESTS ' j
Decompiling
& — [= ASSESTS
APK — |clasess.dex
N
— ‘Q’ AndroidManifest.xml
= |resnurces.arsc —
@ AndroidManifest.xml

FIGURE 1. APK structure before and after decompiling.

There are multiple tools available for decompiling the
APK. APKTool [10] was used in this study. In the decom-
piling process, multiple types of files are generated. All
the APKs have Java code compiled into a classes.dex file.
On the other hand, the application properties are declared
in AndroidManifest.xml, both compiled in a binary format.
Additional resources are included in the APK structure, such
as images, app signatures, and Cascading Style Sheets (CSS).
The most essential part of an APK is the source code and
its properties. Therefore, these essential files were chosen to
analyze the applications.

This investigation focuses on two types of files: smali
files, which are generated after decompiling classes.dex, and
AndroidManifest.xml which contains the properties of the
application in XML format.

C. NLP TECHNIQUES

In Natural Language Processing, many techniques can be
used for text cleaning and extraction. This section describes
the techniques employed in this study.

1) PUNCTUATION

In Natural Language Processing (NLP), punctuation refers
to using marks or symbols in text analysis to identify
and structure sentences, paragraphs, and other text units.
Punctuation can be used as a feature in various NLP tasks,
such as part-of-speech tagging, sentence boundary detection,
and sentiment analysis.

For example, in part-of-speech tagging, punctuation marks
can be used as context clues to help determine the correct
part of the speech of a word. In sentence boundary detection,
punctuation marks such as periods, question marks, and
exclamation points can be used to identify the boundaries
between sentences. In sentiment analysis, punctuation can be

VOLUME 11, 2023

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

IEEE Access

used as a feature to help identify the tone and emotions of a
text.

Moreover, punctuation can pose challenges in NLP, such
as dealing with informal or unstructured text data on
social media posts or chat messages that may contain
unconventional or inconsistent punctuation. Therefore, it is
essential to consider the specific context and characteristics
of text data when using punctuation in NLP.

2) TOKENIZATION

Tokenization is the process of breaking down a text document
or string of text into smaller units called “tokens.” In natural
language processing (NLP), these tokens usually correspond
to words but can also be phrases, symbols, or characters.

Tokenization is essential in many NLP tasks, such as text
classification, sentiment analysis, and language translation.
It allows machine learning algorithms to better understand the
structure and meaning of text data by breaking it down into
smaller, more manageable pieces.

There are different approaches to tokenization, depending
on the specific task needs and characteristics of the data text.
Common methods include whitespace tokenization, which
splits text into tokens based on spaces or other whitespace
characters, and word-level tokenization, which breaks the text
into individual words.

3) LEMMATIZATION

Lemmatization is the process of reducing a word to its base
or dictionary form, known as the “lemma.” In other words,
it is the process of converting words into canonical forms.
For example, the lemma of the word “running” is ‘“‘run,”
the lemma of “went” is “go” and the lemma of “better” is
“good.”

The main goal of lemmatization is to reduce inflectional
forms and sometimes derivationally related forms of a word
to a common base form. This helps group the different
inflected forms of a word to be analyzed as a single item.

Lemmatization is often used in natural language pro-
cessing (NLP) and text analysis tasks such as language
translation, information retrieval, and sentiment analysis.
Search engines also use these to improve the accuracy
of search results by reducing search queries and indexing
documents to their base forms before matching them.

4) STEMMING

Stemming is the process of reducing a word to its root or stem
form by removing its suffixes or prefixes. The resulting stem
may not necessarily be a valid word in the language, but it
still captures the essential meaning of the original word.

For example, the stem of the word ““‘jumping” is “jump,”
the stem of ““cats” is ““cat,” and the stem of “happiness” is
“happi.” Note that in this example, “happi” is not a valid
English word, but it still captures the essential meaning of
“happiness.”

Stemming is a simpler and faster approach to normalizing
words than lemmatization. It is often used in information

VOLUME 11, 2023

retrieval and search engines, where speed is essential, and
the exact meaning of the words is less critical. However,
stemming can also lead to errors or the loss of meaning,
particularly in languages with complex word forms and
irregular verbs.

5) KEYWORD EXTRACTION

Term Frequency (TF) is a metric used in Natural Language
Processing (NLP) and information retrieval to quantify the
importance or frequency of a term within a document or
corpus. It measures the frequency with which a specific term
appears in a document or text.

TF is calculated by dividing the number of times a term
occurs in a document by the total number of terms in the
document. This is often normalized to prevent bias towards
longer documents. One common normalization approach is
to divide the raw term frequency by the maximum term
frequency in the document, which results in a value between
zero and one.

Term frequency is a technique used to determine the
significance or relevance of a term in a document. Generally,
words or phrases that appear more frequently are considered
more important or relevant to the content of the document.

TF measures the frequency of a term within a document,
tf (term frequency). This indicates how often a term appears
in a document relative to the total number of words. A higher
TF value indicates that a term is more significant within a
document. More specifically, it is denoted by #f};, the number
of times word i appears in document j [11].

Ill. RELATED WORK

Traditionally, there are two approaches to malware analysis:
static and dynamic [12]. The main difference is that the
sample was executed in a controlled environment during
dynamic analysis. The resulting features were used to train
Machine Learning (ML) and Deep Learning (DL) algorithms
to build classification and detection models.

A. IMAGE VISUALIZATION

This section reviews studies related to ML and DL for
malware analysis using image visualization. The reviewed
works used the approach of converting samples into images,
regardless of the platform. Moreover, Android-related studies
were used for comparison purposes.

Geremias et al. [13] presented a method for Android
malware analysis that first extracts the features in feature
vectors, and PCA is applied to generate a matrix of M x M
size. Then, three grayscale images were generated using
different data types (API calls, OPCodes, and Dex). The final
image was composed of three images as layers to build a
colored image (multi-view), and the resulting images were
used to train a CNN model. The method was evaluated using
the CICMalDroid dataset, which contained 11,598 samples
and achieved an accuracy of 98.70%.

121727

IEEE Access

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

Shiva et al. [14] proposed a Windows malware detection
method based on CNN. A Portable Executable (PE) was
executed on the Cuckoo Sandbox. The CAT-API features
were extracted from Malware Instruction Set (MIST) files to
generate n-grams. Subsequently, the n-gram was transformed
into a grayscale image to feed the CNN. The experimen-
tal results showed that the proposed approach effectively
uncovered malware PE files by utilizing the significant
behavioral features suggested by the Relief Feature Selection
Technique. The method was evaluated using the Malheur
dataset containing 3,282 benign and 4,151 malware. The
method achieved a detection accuracy of 97.96%.

Gulmez et al. [15] investigated a method for Windows
malware that, without the need for unpacking or dynamic
analysis, consists of creating a graph or sub-graph based on
Opcode Sequences (opcode) obtained from the disassembly
process. An opcode sequence contains crucial information
about the executable file action without running it. These
images (graph) were used in machine learning models
for classification, achieving the highest accuracy with the
Random Forest algorithm of up to 97.00%. The dataset
consists of 7,500 malware samples from VX-Heaven and
7,500 benign samples from Download.com.

Kural et al. [2] presented a framework called
Apk2Img4AndMal. The tool directly transforms the APK
into a grayscale image without any preprocessing or reverse
engineering process. No feature extraction from the static or
dynamic analysis was required. The images were generated
by reading the APK as binary and transforming them
into grayscale images. The images were analyzed using
a CNN model, achieving an accuracy of up to 94.00%.
The framework was tested using 24,588 Android malware
applications and 3,000 benign applications.

Jaiteg et al. [16] proposed a method that combines
features from the decompiled APK file, searching for the
optimal combination (Android manifest (AM), certificate
(CR), classes.dex (CL), and resource (RS)), and handcrafted
features were extracted from the image sections using
multiple algorithms such as Gray Level Co-occurrence
Matrix-based (GLCM), Global Image deScripTors (GIST),
and Local Binary Pattern (LBP). The authors generated
15 sets of images using different combinations of files as
input data for image generation. The resulting images are
used to feed the CNN. This method was evaluated using
the DREBIN dataset, which contains multiple classes. This
method achieved a high accuracy of 93.24% for the malware
image combination CR + AM using the Feature Fusion-SVM
classifier.

Xu et al. [17] presented a method for analyzing Android
malware using DEX (bytecode) files. DEX files were
transformed into grayscale images using an interpolation
algorithm to generate uniform-sized images. During the
detection process, CNN was improved to extract and normal-
ize the features using the GIST algorithm (lightGBM+LR)
used to extract texture features. This study selected 5,000

121728

Android apps, including 2,500 benign and 2,500 malicious
applications. The research attained a high accuracy of 98.7%.

Li et al. [18] presented a method for Windows binary that
combines image segmentation and a deep learning residual
network (ResNet) based on image segmentation using the
watershed algorithm to address the issue of malware families
sharing similarities. The original gray image was transformed
into more distinctive sample data using image segmentation
technology, which makes the dataset increase the distance
between classes and reduces the distance within classes.
The training was performed on the residual network. The
results showed an increase in accuracy compared to those
without segmentation preprocessing. An unbalanced dataset
comprising 9,339 samples was used in this study. The
accuracy was improved by up to 98.94% in detection and up
to 81.48% in detecting similar families.

Radifa et al. [19] proposed converting Windows binary
into grayscale images and then using a CNN (ResNet-
50) in the classification process. Preprocessing was not
required in this study. The samples were directly converted
into grayscale images to feed the neural network. They
used a binary file conversion process by converting it to
an 8-bit vector and finally producing a grayscale image
with dimensions [0, 255]. The Mallmg dataset, consisting
of 25 malware classes and 9,435 samples, was used.
Additionally, 295 samples without malware were used, and
an accuracy of up to 94.03% was achieved.

Xiang et al. [20] investigated an Android malware
detection model based on deep learning using autoencoders
to detect malware. This study aims to determine whether
autoencoders can reconstruct malware images with low loss
and detect malware by determining the error value and
reducing the risk of data confusion and redundant API
injection (NOP no-operation instruction). They proposed
using a neural network model to exclusively learn the features
of malware instead of malware and benign features. The
Andro-dumpsys dataset used contains 906 malicious binaries
from 13 different malware families and 1,776 benign files
downloaded from the Google Play store. An accuracy of up
to 93.00% was achieved.

Jinrong et al. [21] proposed a classification method for
Windows malware that uses a sequence of assembly instruc-
tions to generate RGB images, combined with the instruction
part of the Intel manual and the malware dataset (BIG2015)
provided by Microsoft. The RGB images preserve as much
information as possible by removing the machine code
corresponding to each instruction. Subsequently, a CNN for
malware classification was tested. The experimental dataset
was obtained from the Malware Classification Challenge
on Kaggle in Microsoft 2015. It contains 10,868 malware
samples and includes nine large malware families with binary
and disassembly files. The research attained a high accuracy
of 97.73%.

Jun-Seob et al. [22] presented a method for analyzing Win-
dows malware based on icon similarities. The authors tested

VOLUME 11, 2023

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

IEEE Access

their hypothesis using four types of Hamming distances
(aHash, pHash, dHash, and wHash), and the results were
documented based on icon distance. However, the authors did
not document any evaluation metric. They collected a dataset
of 15,400 samples and filtered 7,312 samples containing
icons for a total of 2,572 unique icons.

Nait-Abdesselam et al. [23], [24] proposed transforming
the APK into an RGB by leveraging the three channels to
store different data on them (Green Channel: Conversion
of Permissions and app components from AndroidMani-
fest.xml, Red Channel: Conversion of API calls and unique
opcode sequences from DEX file, Blue Channel: Conversion
of protected strings, suspected permissions, app components,
and API calls) images to use them in a CNN and ResNet for
classification of malware. The method was evaluated using
the AndroZoo dataset, which increases the number of samples
over time. The authors chose n samples per time-frame, and
the method attained a detection accuracy of up to 99.37%.

Yong et al. [25] presented a new method for analyzing
Android malware based on DEX files. They proposed
converting DEX files into RGB images and then applying
text and color features. In addition, plain text was filtered
from the DEX file to obtain text features, GIST was used
to obtain texture features, and color moments were used to
feed multiple kernels as input data for malware classification.
The resulting images show that the samples from the same
family have similar colors and textures. The authors used a
Support Vector Machine (SVM) in the classification phase
by applying multiple kernels for testing. The AMD dataset
contains 24,553 samples, categorized into 135 varieties
among 71 malware families from 2010 to 2016, with a
classification accuracy of up to 96.00%.

Peng et al. [26] presented a method for Android malware
classification based on traffic generated (PCAP). The traffic
was filtered by removing third-party traffic, and the resulting
flows (malicious traffic) were split into sessions. The first
part of the session was used to generate a grayscale
image representing the traffic characteristics of each session.
Finally, the images were analyzed using a deep learning
model (1.5D-CNN). The CICAndMal2017 dataset contains
over 1,700 benign and 400 malware samples. The proposed
model achieved an accuracy of up to 98.5%.

Jianguo et al. [27] focused on Android malware analyses.
The authors transformed the APK data into nodes and edges
combining features from static and dynamic analysis (for
instance: code region-invoke-sensitive API, sensitive API-
invoked by-code region, code region-belongs to-package,
package-contains-code region, code region-included in-
signature MD35, signature md5-includes-code region). This
transformation is called a heterogeneous graph, which is
represented as a matrix to feed the HG-CNN classifier. The
dataset was collected from diverse sources and used a known
dataset, such as Drebin. In total, using 11,423 benign and
14,546 malware samples, the authors achieved an accuracy
of over 97%.

VOLUME 11, 2023

Yoo et al. [28] presented a method for detecting exploit
kits by using images. The exploit was directly transformed
into a grayscale image without preprocessing. For the
detection phase, the images were processed using a Recursive
Convolutional Neural Network (RCNN). The model was
tested using 36,863 real-world datasets provided by an
antivirus company, achieving 98.2% accuracy in exploit kit
detection and family classification.

Baptista et al. [29] proposed a method that uses binary
visualization with colored RGB images (red if the character
is extended, green if the character is controlled, and blue
if the character is printable). The method focuses on two
types of files: pdf and doc files infected with malware.
Other types of files were collected and analyzed using
the same technique. Documents were collected from the
VirusShared website. The corpus contains 2,000 benign
and 2,000 malware samples. For malware detection, up to
94.1% was achieved using self-organizing incremental neural
networks (SOINN).

Peng et al. [30] converted Windows malware into RGB
malware using a PE file structure, thereby enhancing the
traditional grayscale image model. In each color channel,
the researchers added specific data from the extraction
process (Red: malware binary data, Green: malware ASCII
character data, and Blue: malware PE structure data). In the
classification phase, a CNN was applied. Documents were
collected from the Cyberspace Security Institute of the
Beijing University of Posts and Telecommunications. The
corpus contained 10,000 malware samples. In malware
detection, up to 87.75% was achieved using a neural network
(Spp-Net).

Shaojie et al. [31] investigated malware-infected Microsoft
documents. The researchers converted the document into a
grayscale image using data and table sections. The corpus
contained 1,796 unique documents, including 978 malicious
files collected from VirusTotal and 818 benign files. In a
detection study, the authors tested the method using three
CNN models. VGG obtained the best results, and the
experimental results showed that the detection accuracy rate
for the test dataset reached 94.09%. In the simulated zero-day
malware detection experiment, the average accuracy rate
reached 94.70% (8 malware and 12 benign samples).

O’Shaughnessy [32] proposed a novel method for visual-
izing and classifying Windows malware using Space-Filling
Curves (SFCs). The binary image was converted using SFC,
and the images were trained using the KNN-HOG and GIST
algorithms. This research is different from the rest because
they applied this type of algorithm to generate images. The
dataset comprises 9,235 Windows 32-bit executable samples
from 28 families. The results showed that KNN-HOG
obtained better results than the GIST. The detection accuracy
rates in the validation phase reached 83.00% and 91.30%
during the training phase, respectively.

Yang et al. [33] presented an algorithm that transforms
APK into a grayscale image based on a Portable Executable

121729

IEEE Access

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

(PE) file format. The images had APK data (CERT.RSA,
AndroidManifest.xml, resources.arsc, classes.dex) converted
directly without preprocessing. In this investigation, the
researchers used the Drebin corpus, which contained 5,560
samples from 178 classes. The images were used in different
machine learning algorithms for testing. Random Decision
Forest (RDF) is the algorithm with the highest accuracy,
reaching up to 95.51% in accuracy.

Tingting et al. [34] in their research proposed binary
malware detection by converting opcode sequences into
images in combination with PCA to extract the features,
and SVM was used for malware classification by applying
multiple kernel functions to increase the accuracy. The
highest accuracy achieved was 97.62% using the SVM and
RBF kernel functions. The dataset contained 9,168 malware
samples and 8,640 benign programs.

Ajit et al. [35] presented a method without feature
extraction, decompiling, preprocessing, and static or dynamic
analysis output. They converted the APK sample directly
into four image formats (grayscale, RGB, CMYK, and HSL)
to test which format worked better in combination with
machine learning algorithms (Decision Tree, Random Forest,
KNN) for the classification task. They proved that grayscale
achieved the highest accuracy of 91.00% using a Random
Forest.

Yajamanam et al. [36] presented a method for Windows
malware analysis that transforms a sample into a grayscale
image. The samples were classified based on their GIST
features. Unlike previous related works, the researchers tested
the robustness of GIST features by adding noise to the
images. Based on the results, as expected, the accuracy of
classifying images with noise decreased compared to images
without noise. Two datasets were used in this research:
Malimg data consists of more than 9,000 malware samples
belonging to 25 families, and Malicia data contains 11,363
malware samples, primarily composed of three types of
malware.

Huang et al. [37] presented a method for robust hash-
ing by treating samples as two-dimensional images. The
authors performed multiple tests to compare the SVM
with robust hashing techniques. They found that some
classes were correctly classified by robust hashing, and
the results were comparable with those of the SVM.
The Malimg dataset, which consists of more than 9,000
malware samples belonging to 25 families, was used in this
investigation.

On the other hand, other researchers have proposed
Android malware analysis based on static features such as
permission [38]. However, without transforming the features
into an image format, the permissions were represented as
a vector in a binary sequence, and the analysis was based
on a feature vector to train a machine learning model. The
accuracy was 96%.

The studies listed presented malware detection and classifi-
cation methods by transforming the samples into images. The
proposed method highlights that the sample is transformed

121730

into a grayscale image. Unlike the studies reviewed, a new
way of converting the sample into an image is presented.
The image is composed of fuzzy hashes generated by the
decompiled code and preprocessed. A summary of the related
work is presented in Table 1.

IV. PROPOSED METHOD

This study aims to determine whether converting a sample
into a grayscale image composed of fuzzy hashes of decom-
piled and preprocessed code can be used in a deep learning
model (CNN) for ransomware classification. Therefore, our
malware classification method was divided into two stages:
data preprocessing (APK to a grayscale image) and malware
classification (ransomware family). Figure 2 shows the
proposed workflow at a high level, and its architecture is
detailed in Figure 3.

VirusTotal [1@
Malware . Results Homologate the
APK —— VirusTotal Querys Labels

Decompile APK
Group the Images per
[,—‘ Class
*.smali and 2] (5] o
Classificat
AndroidManifest.xml Convert SDHASH to assification
extraction Image
CNN - For Image
[l Analysis
Remove unuseful Fuzzy Hashing
data SDHASH
Malware
Family

FIGURE 2. Workflow for APKs analysis.

First, it performs a novel transformation of the APK file
into a lightweight grayscale image using fuzzy hashing of the
decompiled smali code and the manifest file. Second, it trains
a Convolutional Neural Network (CNN) on the obtained
images for ransomware family classification. Furthermore,
VirusTotal [39] was used to label the corpus, as described in
Section V-B.

A. ANDROID PACKAGE TO IMAGE

The scope of this phase is to transform Android malware
samples into image data that the classification model can
handle, as shown in Figure 3.

The substeps transform the APK file into a grayscale image
during this phase. The first step is decompiling the APK,
as described in Section II-B. Multiple files are generated
once the sample is decompiled (An APK has n smali files
and one AndroidManifest.xml). At this point, only the smali
and AndroidManifest.xml files were selected. It is feasible
to determine the family of the sample by analyzing the smali
code and application property file.

The second step consists of preprocessing the smali files
generated by each APK using NLP techniques for text
cleaning to remove useless information using in Equation (2)

TCsmali = [PR, TKa ST7 LM]a (2)

VOLUME 11, 2023

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

IEEE Access

TABLE 1. Summary of the related work. DT - Decision Tree, GIST - Global Image descriptors, GLCM - Gray Level Co-occurrence Matrix-based, KNN -
k-Nearest Neighbors, LBP - Local Binary Pattern, RF - Random Forest, NLP - Natural Language Processing, PCA - Principal Component Analysis, RCNN -
Recursive Convolutional Neural Network, SFC - Space-Filling Curves, SVM - Support Vector Machine.

Ref./Year Type of Samples Typeof = CNN Other Other Accuracy
Malware Images Algorithm Features

[13], 2022 Android APK RGB Yes PCA Multi-view image 98.70%

[2], 2021 Android APK Grayscale Yes - APK read as binary 94.00% - CNN

[16], 2021 Android APK Grayscale Yes GLCM, GIST LBP Feature fusion 93.24% - SVM

[17], 2021 Android APK Grayscale Yes GIST dex file read as binary 98.70% - GIST

[20], 2020 Android APK Grayscale Yes Auto-enconders Reconstruction error 93.00%

[23], 2020 Android APK RGB Yes ResNet Decompiled data to RGB 99.37% - ResNet

[271, 2020 Android APK RGB Yes SVM, KNN, RF, HS-resNet, Static and dynamic features 97.00%

[26], 2020 Android APK Grayscale Yes 1.5D-CNN Network traffic as image 98.50%

[25], 2020 Android APK RGB No SVM, GIST, Multiple Kernels dex as image and plain text 96.00% - SVM

[24], 2020 Android APK RGB Yes ResNet Decompiled data to RGB 99.37% - ResNet

Proposal Android APK Grayscale Yes NLP Techniques Fuzzy Hashing as image 98.97%

Compute

Fuzzy Hashing
SDHASH

Extract
AndroidManifest.xml
*smali

Decompile APK

Grayscale Image

TrojanSMS

CNN

Fully Connected

Resizing

" Conv2d + RelLu
MaxPooling2D

Conv2d + RelLu
Conv2d + ReLu

R

APK

Ransomware
Family

MaxPooling2D

Feature Extractor- Classifier-

% -APK to Imag > <4<

Image Classification P>

FIGURE 3. Proposed method: (A) APK to image conversion. This step transforms the APK into a grayscale image, (B) Grayscale images are analyzed in

CNN for Android ransomware classification.

where Text Cleaning (TC) is the sequence of Punctuation
Removal (PR), Tokenization (TK), Stemming (ST), and
Lemmatization (LM) techniques applied to smali files.

AndroidManifest.xml was also preprocessed at this stage.
Furthermore, unlike the smali file, helpful information is
extracted from the manifest file, such as app components
(which include all activities, services, broadcast receivers,
and content providers), permissions, and hardware and soft-
ware features. The app requires discarding XML tags [40],
using Equation (3)

TEAndmidMamfest = [PR, TK, IR], 3)

where Text Extraction (TE) is the sequence of Punctuation
Removal (PR), Tokenization (TK), and Information Retrieval
(IR) techniques applied to the AndroidManifest.xml file. For
information retrieval, Term Frequency (TF) was applied.

Unlike related studies, the significance of the NLP
techniques applied in this research lies in their ability to
preprocess decompiled data, remove useless information, and
standardize the data. This is essential because the fuzzy
hashing technique measures similarity, and standardized data
enhances these similarities. Furthermore, it helps avoid noise
in the images and reduces the image size, which is beneficial
during training.

VOLUME 11, 2023

—
F e — / Al Concatenate all the
— Hasht
| Segment2) Hash2 ashes
» A 4 - A
— X C—)Fuzzy Hash
I Segment3 [) Hash3
\ FH =Hash 1 + Hash 2 +... + Hash N
SegmentN [M Hash N
Split File in Hash per

Segments segment

FIGURE 4. Fuzzy hashing description.

During the second stage, fuzzy hashing is computed from
the smali and AndroidManifest.xml files using the same
amount of data to force the same hash length in the output.
The size of the input data (grayscale) is a matrix of N x M,
where N is the length of the SDHASH (fuzzy hash), which
is 344 (344 pixels), and M, depends on the number of fuzzy
hashes plus AndriodManifest data. No standard image size
can be defined because each APK is different. The resize
was performed in the CNN. The grayscale image structure
has AndroidManifest data at the top and all the fuzzy hashes
after. At this stage, each malware sample has n fuzzy hashes,
as shown in Figure 4, which is a graphical description of how
a fuzzy hash is computed. SDHASH is a string encoded in
Base64, and each byte of the fuzzy hash is converted to a scale
from O to 255, corresponding to one pixel in the grayscale

121731

IEEE Access

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

()

0AOC881A01EA942DC052CA560198D82B

0AOC881A01EAS42DC052CA560198D82B

] AndroidManifest.xm!

1.smali

J 2.smali

0AO0C881A01EA942DCO52CAS60198DE2E

FIGURE 5. Android sample MD5 “0A0C881A01EA942DC052CA560198D82B" converted in a grayscale image using three different input
data after decompiled sample: (A) Image created after decompiling process without any preprocessing, (B) Image created after
preprocessing decompiled code using NLP, (C) Image created using fuzzy hashing technique after preprocessing with NLP.

image. Figure 5 shows three grayscale images generated by
applying SDHASH to different input data obtained from the
same APK sample.

B. CONVOLUTIONAL NEURAL NETWORK

An image itself has specific properties. Convolutional Neural
Networks (CNN) have been widely used for image analysis.
Researchers have transformed the input data into images
(grayscale or RGB). However, it is not common for them
to preprocess the data before generating the images. In the
architecture depicted in Figure 3, the APK is transformed into
a grayscale image at the first stage after preprocessing the
decompiled data. CNN is suitable for image classification at
the second stage.

The CNN model was built with three convolution
layers, three pooling layers, a ReLU activation function,
an Adam optimizer, and varying epoch values in the
experimental phase to increase the accuracy at the learning
stage.

Therefore, the neural network uses a rectified linear unit
(ReLu) as an activation function and a ’sigmoid’ as an
activation function in the output layer. Figure 6 summarizes
the CNN model.

The CNN model split the corpus using 80% of the data
as the training set (and K-fold validation was used to split the
training dataset. In this case, K = 10, 10 — fold validation),
and 20% of the data were selected as the validation set.
A corpus description is presented in Section V-B.

V. EXPERIMENTS

This section will conduct experiments to evaluate the
proposed malware classification approach using CNN (Con-
volutional Neural Network). The primary purpose of these
experiments was to prove the hypothesis that a malware
classification model (deep learning) using grayscale images
based on fuzzy hashing (similarities) can help classify
malware samples into the right family. This section details
the experimental setup, dataset description, experimental
evaluation, and results.

121732

Model: "sequential”

Layer (type) OQutput Shape Param #
rescaling 1 (Rescaling) (None, 224, 224, 3)]
convzd (Conv2D) (None, 224, 224, 16) 448
max_pooling2d (MaxPooling2D (None, 112, 112, 16)]

)

conv2d_1 (Conv2D) (None, 112, 112, 32) 4640
max pooling2d 1 (MaxPooling (None, 56, 56, 32)]

2D)

conv2d_2 (Conv2D) (None, 56, 56, 64) 18496
max_pooling2d_2 (MaxPooling (None, 28, 28, 64) 0]

2D)

flatten (Flatten) (None, 50176)]

dense (Dense) (None, 128) 6422656
dense_1 (Dense) (None, 4) 516

Total params: 6,446,756
Trainable params: 6,446,756
Non-trainable params: ©

FIGURE 6. CNN model summary.

A. EXPERIMENTAL SETUP

As described above, the method was tested on a ransomware
corpus (7,765 samples from multiple ransomware families).
The algorithm was programmed in Python 3 (Jupyter Note-
book), Shell-Scripting, and running Linux on DELL XPS
15 9550 natively (Ubuntu 18.02, CPU Intel(R) Core(TM)
i7-6700HQ CPU @ 2.60GHz, 8 Core Processors, 32GB
RAM, 300GB SSD, and GPU NVIDIA GeForce GTX
960M).

B. CORPUS DESCRIPTION

The corpus (database) comprises 2,288 Android ransomware
samples shared by Wuhan University for research purposes
[41], along with an additional 5,477 ransomware samples
sourced from publicly available datasets, including CIC-
AndMal2017 [42], CCCS-CIC-AndMal-2020 [43], [44], and
Androzoo [45]. The dataset was labeled using VirusTotal [39]
considering the results from the most popular antiviruses such

VOLUME 11, 2023

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

IEEE Access

as AhnLab-V3, McAfee, CrowdStrike, Symantec Mobile
Insight, F-Secure, and others. For instance, the sample with
MDS5 hash “0A0C881A01EA942DC052CA560198D82B”
has multiple labels, per the VirusTotal report, as shown in
Table 2.

TABLE 2. Sample MD5 “0A0C881A01EA942DC052CA560198D82B", partial

results from VirusTotal.

AntiVirus Malware

AegisLab Trojan.AndroidOS.Generic.Clc
AhnLab-V3 Android-Trojan/Koler.b45b

Alibaba Trojan:Android/Koler.729¢cc57f
ESET-NOD32 A Variant Of Android/Koler.O

F-Secure Malware. ANDROID/Koler.O.Gen

Kaspersky HEUR:Trojan-Ransom.AndroidOS.Svpeng.af
MaxSecure Android.Svpeng.b

McAfee-GW-Edition
Symantec Mobile Insight
BitDefender

Artemis!Trojan
Trojan:Lockdroid.E
Undetected

The reports were standardized for the remaining samples
because each antivirus had labels. Some were similar, but
others were very different. Moreover, some antiviruses do
not have labels per malware family. In other words, the
number of samples is the number of families. Table 3
shows the distribution of Android ransomware families after
standardization.

TABLE 3. Ransomware malware dataset, labels simplified after VirusTotal
results.

No. Class Class Name No. Samples Percentage
1 Jitsu 2,790 3593 %
2 SMForw 1,156 14.88 %
3 SMSSpy 759 9.77 %
4 LockScreen 739 9.51 %
5 Locker 704 9.06 %
6 Koler 478 6.15 %
7 Simplocker 407 5.24 %
8 Torec 392 5.04 %
9 Congur 340 4.37 %

Total 7,765 100 %

C. CLASSIFICATION ACCURACY

The accuracy of the method was evaluated using F1-scores
for each ransomware family, the formula of which requires
true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) to measure the effectiveness of the
proposed method in Equation (4)-(7).

- TP
Precision = ——, “4)
TP + FP
TP
Recall = ——, (®)]
TP + FN
TN + TP
Accuracy =) (©)
TP+ FP+TN + FN
2 X precision X recall
Fl= (7

precision + recall

VOLUME 11, 2023

A confusion matrix (CM) is a graphical representation of
the performance of the classification model. The CM uses
TP, FP, TN, and FN; hence, they can be used to calculate
precision, recall, and accuracy metrics per class as well as
global metrics in Equation (4)-(7).

D. EXPERIMENTAL RESULTS

This section describes the tests performed to demonstrate the
feasibility of Android ransomware classification using fuzzy
hashing converted to a grayscale image in combination with
the CNN model.

The first stage of the proposal involves transforming the
APK into grayscale images. In the image analysis field, there
is a problem that must be adequately addressed, which is the
image size. In this case, as the malware samples are different,
they have different sizes. Table 4 shows the distribution
using three different input data after generating grayscale
images. The fuzzy hashing approach reduced the image size
compared with the other two input data. Figure 7 presents
a set of samples from the ransomware families converted
to grayscale images using fuzzy hashing and normalized in
terms of height and width.

The tests were designed mainly in two ways: the first used
all the classes in the dataset, although some classes did not
have the same number of members, and the second selected
only classes with a high number of samples.

TABLE 4. Image size after conversion in grayscale format using three
different input data: (a) SDBF - Image generated using fuzzy hashing
technique after preprocessing with NLP, (b) Src NLP - Image created after
preprocessing decompiled code using NLP, (c) All Src - Image generated
after decompiling process without any preprocessing.

File Size SDBF SrcNLP All Src
O0KB - 20KB 4,587 1,826 1,020
20KB - 40KB 1,029 2,393 622
40KB - 60KB 276 201 2
60KB — 80KB 851 320 667
80KB - 100KB 223 137 1,142
101KB - 500KB 413 1,134 960
500KB - IMB 298 389 678
IMB - 2MB 78 620 2,238
2MB - 3MB 10 601 271
3MB - 4MB 0 102 98
> 4MB 0 42 67
Total 7,765 7,765 7,765

The CNN was evaluated using three generated images to
prove that the fuzzy hashing approach is more accurate than
the other images. Section I'V-B describes the CNN settings as
part of the second stage of the proposal.

Table 5 summarizes the 12 scenarios tested. The parame-
ters were varied during the evaluation of CNN to determine
the optimal values. Moreover, because of the dataset
described in Table 3, the classes did not have the same number
of samples, and the learning process was impacted. Based
on the distribution shown in Table 3, the top five comprised
hold 79.17% (6,148 samples) of the dataset. Meanwhile, the

121733

IEEE Access

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

SM Fo rw

FIGURE 7. Grid of ransomware families converted to grayscale images
using fuzzy hashing.

Training & Validation Accuracy Training & Validation Loss

—=— Training Loss
—=— Validation Loss

10| T [

175
0.9

0.8

0.7

ACCURACY
LOSS

0.6

0.5

—— Training Accuracy
—=— Validation Accuracy

0.4

o 25 50 75 100 125 150

EPOCH EPOCH
(a)
Training & Validation Accuracy Training & Validation Loss
2.00
1.0 o~ —=— Training Loss
1.75 —=— Validation Loss
0.9
150 ‘
. 08 125 ‘
<
»
< 071 | w100
=} o
o pl
o
< 0.6 075
0.50
0.5
0.25
04 —— Training Accuracy
) —— Validation Accuracy 0.00 -
o 20 40 60 80 100 0 20 40 60 80 100
EPOCH EPOCH

FIGURE 8. Experimental metrics using grayscale images based on fuzzy
hashing, the graphs show the accuracy and loss during training and
evaluation. (a) CNN training and validation results using all the classes in
the dataset with 150 epochs, accuracy 95.62% (b) CNN training and
validation results using the top 5 classes in the dataset with 100 epochs,
accuracy 98.97%.

other four classes provided 20.83% (1,617 samples) of the
dataset.

121734

The experimental results presented in Table 5 summarize
the metrics of the CNN model using different types of
images and CNN parameters. Each experiment was executed
ten times (training and evaluation), and the results were
averaged. For instance, using the entire dataset (nine classes),
the accuracy was 94.37%, and 98.16% using the five most
representative classes. There was an increase in the model
accuracy by leaving out the non-significant classes from
the dataset. In both cases, using the fuzzy hashing dataset
(images).

Figure 8 describes training and validation curves for loss
and accuracy for the best test results shown in Table 5.
The curves represent one execution using all the classes
and the most representative. The learning curves represent a
compelling performance in classifying Android ransomware.

To verify the accuracy of the method, actual and predicted
labels were compared using a confusion matrix (CM), which
is a commonly used metric for evaluating the performance of
classification models.

Figure 9 shows the results of the evaluation using the
nine classes, which achieve an overall accuracy of 95.62%.
It should be noted that the five classes with the most samples
achieved good accuracy at 98.97%, which is expected
because larger samples usually result in better accuracy,
as shown in Figure 10. However, the test using all classes with
few members in some affected the accuracy of the model.
This indicates that the performance of the model was affected
by an imbalance in the distribution of samples across different
classes.

Model Accuracy Score: 95.62%

Congur 63 0 0 0 0 0 2 0 0
Jitsu 0 556 0 0 2 1 " 1 0
400
Koler 0 4 99 0 0 0 0 0 0
1 LockScreen 0 4 0 148 0 0 3 0 0
w
< 300
3
) Locker 0 1 0 1 125 0 6 0 0
S
s
o
< SMForw 0 0 0 [0 21 3 0 1
-200
SMSSpy 0 7 0 0 3 2 134 2 0
Simplocker 0 3 0 0 0 1 10 70 0
-100
Torec 0 0 0 0 0 0 0 0 79
5 5 - . > = o
El 2 ko] 7] S 2 7] 8
g 5 ¢ T 2 83 3 e
o - H = o
2] E
E

IS
5
o
S
%]
%
el
<1
3
PREDICTED LABEL

FIGURE 9. Confusion matrix using nine classes.

The metrics per class are described in Table 6 and Table 7
for the nine and five classes, respectively, for one of the ten
executions.

VOLUME 11, 2023

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

IEEE Access

TABLE 5. Metrics summary of the test performed using all the classes and using the top classes, each experiment was executed ten times, and the results

represent the average.

No. Test Image Type Precision Recall Fl-score Accuracy No.Classes Epochs
1 Fuzzy Hashing 0.94 0.96 0.94 95.62 9 150
2 Fuzzy Hashing 0.93 0.95 0.94 94.51 9 100
3 Source Code - NLP 0.95 0.92 0.94 94.01 9 150
4 Source Code - NLP 0.93 0.93 0.93 93.18 9 100
5 All Source Code 0.95 0.95 0.92 94.42 9 150
6 All Source Code 0.89 0.90 0.91 91.33 9 100
7 Fuzzy Hashing 0.98 0.98 0.96 97.28 5 150
8 Fuzzy Hashing 0.98 0.98 0.98 98.97 5 100
9 Source Code - NLP 0.97 0.97 0.96 95.33 5 150
10 Source Code - NLP 0.95 0.95 0.95 95.17 5 100
11 All Source Code 0.94 0.94 0.96 95.02 5 150
12 All Source Code 0.94 0.94 0.94 94.41 5 100
Hiodel Acsuracy Score: SB.ET% TABLE 7. Metrics summary of the test performed using the top classes.
500
Class Precision Recall Fl-score Support
Jitsu 542 1 0 1 4 Jitsu 0.9592 0.9872 0.9730 548
LockScreen 0.9930 0.9342 0.9627 152
400 Locker 0.9650 0.9262 0.9452 149
SMForw 0.9907 0.9725 0.9815 218
LockScreen 10 137 0 1 4 SMSSpy 0.9791 0.9659 0.9874 162
g accuracy 0.9897 1229
g 0 macroavg 09734 09692 0.9860 1229
S lecker 4 0 139 1 5 weightedavg ~ 0.9831 09826 0.9825 1229
-200
SMForw 2 0 1 212 3
KNN, and RF are some of the most commonly used
algorithms in image classification.
swsspy 13 2 g 2 2 1% Deep learning and machine learning algorithms were
tested in the evaluation stage using different input data.
N 8 3 é g The tests were designed using images and decompiled
(%} - =
% ® ®

PREDICTED LABEL

FIGURE 10. Confusion matrix using the top five classes.

TABLE 6. Metrics summary of the test performed using all the classes.

Class Precision Recall Fl-score Support
Congur 1.0000 0.9692 0.9844 65
Jitsu 0.9670 0.9737 0.9703 571

Koler 1.0000 0.9612 0.9802 103
LockScreen 0.9933 0.9548 0.9737 155
Locker 0.9615 0.9398 0.9506 133
SMForw 0.9814 0.9814 0.9814 215
SMSSpy 0.7929 0.9054 0.8454 148
Simplocker 0.9589 0.8333 0.8917 84
Torec 0.9875 1.0000 0.9937 79
accuracy 0.9562 1553
macro avg 0.9603 0.9465 0.9524 1553
weighted avg 0.9587 0.9562 0.9568 1553

Researchers used multiple algorithms for Android malware
classification in a state-of-the-art review. For example, SVM,

VOLUME 11, 2023

data (smali and AndroidManifest code) for a reasonable
comparison.

A deep learning model (CNN) was trained for image-
based classification. As discussed, the principal approach of
this research is malware image-based classification using a
CNN. The CNN model achieved up to 98.97% accuracy with
an average of 98.16% (10 executions). It is expected that
CNN will work well with images. Additional neural network
models were evaluated using the images generated in those
tests ResNet50 and VGG16, achieving 96.21% and 93.68%
during the validation executed ten times, respectively. The
three CNN models achieved nearly the same accuracy during
the evaluation phase.

However, an additional machine learning model was
trained with the same images, and the Support Vector
Machine (SVM) achieved an average of 95.24%. Sub-
sequently, the K-NN classification scheme was tested.
However, no explicit training phase is required because
the classification is computed based solely on the nearest
neighbor in the training set [36]. The K-nearest neighbor
(k-NN) algorithm with & = 1 using the generated images
achieved an accuracy of 92.09%. The comparison shows an

121735

IEEE Access

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

increase in the accuracy metric of CNN over SVM and k-NN
using the same input data (grayscale images).

Other tests were performed using decompiled data (smali
and AndroidManifest) in machine learning models such as
k-NN, Random Forest (RF), Multilayer Perceptron (MLP),
and SVM. In NLP, text is a document that can be used for
text classification. Documents were used in the classifiers
mentioned to classify malware. The accuracy obtained using
k-NN, RF, MLP, and SVM are 89.78%, 92.63%, 92.76%, and
95.33%, respectively.

The cited works focused on malware analysis for Android
and Microsoft Windows platforms for context in the field
of malware analysis based on image visualization. Table 1
shows the studies related to Android malware analysis for
comparison purposes. Table 8 shows the results obtained
with the ML and DL algorithms tested using the data
generated in the research versus the works documented in the
state-of-the-art.

For the comparison tests, the models that required training
and validation steps were executed ten times (CNN, SVM,
RF, and MLP). Meanwhile, the k-NN was run once.
Additional tests proved that the CNN model works well
with images achieving up to 98.97% in accuracy metric
and an average of 98.16%, which shows an accuracy over
the other classifiers, also demonstrating that the method
used to generate the images composed of fuzzy hashes
was also accurate. Furthermore, k-NN and SVM attained
an accuracy of over 90%, using the same images, although
these algorithms are not effective in image classification.
Moreover, the algorithms tested for text classification showed
an increase in accuracy compared with SVM and k-NN using
images but were not closer to the results obtained with CNN.

The comparison shows an increase in the accuracy metric
of the CNN over the SVM and KNN using the same
input data. Regarding state-of-the-art papers, the results
reveal an increase in the classification task using the fuzzy
hashing approach, converting fuzzy hashing into grayscale
images.

Moreover, once the CNN is trained, the average time
required to classify a new sample is 40 seconds. The
decompiling process is time-consuming, which takes 50%
(20 seconds), and text cleaning and text extraction take 10%
(4 seconds). Data to grayscale image: 10% (4 seconds). The
CNN used for the classification was 30% (12 seconds).

VI. DISCUSSION
A. CONCLUSION
This research presented a malware classification mechanism
that converts malware files into images and uses CNN to
distinguish between ransomware families. A new method
for malware classification was proposed by computing the
fuzzy hashing of decompiled source code into images.
Images based on fuzzy hashing show good performance in
ransomware classification.

This study tested whether ransomware families could be
found by focusing on the features extracted from the visual

121736

TABLE 8. Comparison: proposal vs. state-of-the-art. It includes the tests
performed using ML and DL algorithms with images and text.

Algorithm Data Training (%) Validation (%) SD (o)
CNN Images 97.32 98.97 1.56
ResNet50 Images 97.02 96.21 3.23
VGG16 Images 93.12 93.68 3.92
KNN Images 92.09 — —
SVM Images 95.45 95.24 291
KNN Code/Text 89.78 — —
RF Code/Tex 96.88 92.63 2.27
MLP Code/Tex 95.27 92.76 2.19
SVM Code/Tex 94.17 95.33 3.61
CNN [2] Images 94.00 — —
SVM [16] Images 93.24 — —
SVM [27] Images 97.00 — —
SVM [25] Images 96.00 — —
ResNet [19] Images 94.03 — —
VGGI16[31] Images 94.09 — —

representation. Experimental tests were performed using
different ransomware families and revealed that the proposed
method, whose accuracy is improved with the available
samples, can be successfully used for malware classification.
The algorithm achieved an overall average classification rate
of 98.97% using five representative classes.

B. LIMITATIONS AND FUTURE WORK

1) DATASET

Due to the experimental conditions (corpus), a small dataset
of just over 7,700 ransomware samples was used, a significant
drawback of our project to find ransomware samples. More
complex datasets with almost the same amount of samples
per class will be applied for multiclass malware in future
work.

2) SAMPLES

The method works with decompiled data if the samples
are incomplete (not including all the files required by the
application) or at least classes.dex and AndroidManifest.xml,
the method will not work. On the other hand, the method
has the limitation that corrupted or broken samples cannot
be processed.

3) ROBUSTNESS

The proposed method achieved promising results by convert-
ing the APK into a grayscale image based on fuzzy hashing.
Future work will perform perturbation in the images to prove
the robustness of the method and whether the CNN can
classify the samples correctly despite the noise.

ACKNOWLEDGMENT
The authors would like to thank Wuhan University for sharing
the dataset used for research.

REFERENCES

[1] Google. Secure an Android Device | Android Open Source Project.
Accessed: Mar. 2, 2023. [Online]. Available: https://source.android.com/
docs/security/overview

VOLUME 11, 2023

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

IEEE Access

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

0. E. Kural, D. O. Sahin, S. Akleylek, E. Kilic, and M. Omiiral,
“Apk2Img4AndMal: Android malware detection framework based on
convolutional neural network,” in Proc. 6th Int. Conf. Comput. Sci. Eng.
(UBMK), Sep. 2021, pp. 731-734.

It Threat Evolution in Q3 2022. Mobile Statistics Securelist. Accessed:
Jun. 3, 2023. [Online]. Available: https://securelist.com/it-threat-
evolution-in-q3-2022-mobile-statistics/107978/

N. Sarantinos, C. Benzaid, O. Arabiat, and A. Al-Nemrat, ‘Forensic
malware analysis: The value of fuzzy hashing algorithms in identifying
similarities,” in Proc. IEEE Trustcom/BigDataSE/ISPA, Aug. 2016,
pp. 1782-1787.

D. He, X. Yu, S. Zhu, S. Chan, and M. Guizani, “Fuzzy hashing on
firmwares images: A comparative analysis,” IEEE Internet Comput.,
vol. 27, no. 2, pp. 45-50, Mar. 2023.

V. Roussev, “Data fingerprinting with similarity digests,” in Advances in
Digital Forensics VI, K.-P. Chow and S. Shenoi, Eds. Berlin, Germany:
Springer, 2010, pp. 207-226.

V. Roussev, “An evaluation of forensic similarity hashes,” Digital
Investigation, vol. 8, pp. S34-S41, Aug. 2011.

N. Naik, P. Jenkins, N. Savage, L. Yang, T. Boongoen, and N. Iam-On,
“Fuzzy-import hashing: A malware analysis approach,” in Proc. IEEE Int.
Conf. Fuzzy Syst. (FUZZ-IEEE), Jul. 2020, pp. 1-8.

V. Roussev and C. Quates. (2013). The Sdhash Tutorial. New Orleans,
LA, USA, Accessed: May 20, 2023. [Online]. Available: http://roussev.
net/sdhash/tutorial/sdhash-tutorial.html

B. Valosek. (2010). Apktool. [Online]. Available: https://ibotpeaches.
github.io/Apktool/

G. Sidorov, Vector Space Model for Texts and the TF-IDF Measure. Cham,
Switzerland: Springer, 2019, pp. 11-15.

A.Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp, “A
comparison of static, dynamic, and hybrid analysis for malware detection,”
J. Comput. Virol. Hacking Techn., vol. 13, no. 1, pp. 1-12, Dec. 2015.

J. Geremias, E. K. Viegas, A. O. Santin, A. Britto, and P. Horchulhack,
“Towards multi-view Android malware detection through image-based
deep learning,” in Proc. Int. Wireless Commun. Mobile Comput. (IWCMC),
May 2022, pp. 572-577.

S. L. S. Darshan and C. D. Jaidhar, “Windows malware detector using
convolutional neural network based on visualization images,” IEEE Trans.
Emerg. Topics Comput., vol. 9, no. 2, pp. 1057-1069, Apr. 2021.

S. Giilmez and I. Sogukpinar, “Graph-based malware detection using
opcode sequences,” in Proc. 9th Int. Symp. Digit. Forensics Secur. (ISDFS),
Jun. 2021, pp. 1-5.

J. Singh, D. Thakur, T. Gera, B. Shah, T. Abuhmed, and F. Alj,
“Classification and analysis of Android malware images using feature
fusion technique,” IEEE Access, vol. 9, pp. 90102-90117, 2021.

X. Ke and Y. X. Hui, “Android malware detection based on image
analysis,” in Proc. IEEE 2nd Int. Conf. Inf. Technol., Big Data Artif. Intell.
(ICIBA), vol. 2, Dec. 2021, pp. 295-300.

L. Xin, L. Chao, and L. He, “Malicious code detection method based on
image segmentation and deep residual network RESNET,” in Proc. Int.
Conf. Comput. Eng. Appl. (ICCEA), Jun. 2021, pp. 473-480.

R. A. Abhesa, Hendrawan, and S. J. I. Ismail, “Classification of malware
using machine learning based on image processing,” in Proc. 15th Int.
Conf. Telecommun. Syst., Services, Appl. (TSSA), Nov. 2021, pp. 1-4.

X. Jin, X. Xing, H. Elahi, G. Wang, and H. Jiang, “A malware
detection approach using malware images and autoencoders,” in Proc.
IEEE 17th Int. Conf. Mobile Ad Hoc Sensor Syst. (MASS), Dec. 2020,
pp. 1-6.

J. Chen, X. Jia, C. Zhao, W. Zhang, and Q. Huang, ““Using the RGB image
of machine code to classify the malware,” in Proc. IEEE 5th Int. Conf.
Cloud Comput. Big Data Analytics (ICCCBDA), Apr. 2020, pp. 542-549.
J.-S. Kim, W. Jung, S. Kim, S. Lee, and E. T. Kim, “Evaluation of image
similarity algorithms for malware fake-icon detection,” in Proc. Int. Conf.
Inf. Commun. Technol. Converg. (ICTC), Oct. 2020, pp. 1638-1640.

F. Nait-Abdesselam, A. Darwaish, and C. Titouna, “‘An intelligent malware
detection and classification system using apps-to-images transformations
and convolutional neural networks,” in Proc. 16th Int. Conf. Wireless
Mobile Comput., Netw. Commun. (WiMob), Oct. 2020, pp. 1-6.

A. Darwaish and F. Nait-Abdesselam, “RGB-based Android mal-
ware detection and classification using convolutional neural network,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020,
pp. 1-6.

VOLUME 11, 2023

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(371

(38]
(39]

(40]

(41]

(42]

[43]

[44]

(45]

Y. Fang, Y. Gao, F. Jing, and L. Zhang, “Android malware familial
classification based on DEX file section features,” IEEE Access, vol. 8,
pp. 1061410627, 2020.

P. Yujie, N. Weina, Z. Xiaosong, Z. Jie, H. Wu, and C. Ruidong, “End-
To-end Android malware classification based on pure traffic images,” in
Proc. 17th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process.
(ICCWAMTIP), Dec. 2020, pp. 240-245.

J. Jiang, Z. Liu, M. Yu, G. Li, S. Li, C. Liu, and W. Huang,
“HeterSupervise: Package-level Android malware analysis based on
heterogeneous graph,” in Proc. IEEE 22nd Int. Conf. High Perform.
Comput. Communications; IEEE 18th Int. Conf. Smart City, IEEE 6th Int.
Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Dec. 2020, pp. 328-335.
S. Yoo, S. Kim, and B. B. Kang, “The image game: Exploit kit detection
based on recursive convolutional neural networks,” IEEE Access, vol. 8,
pp. 18808-18821, 2020.

1. Baptista, S. Shiaeles, and N. Kolokotronis, “A novel malware detection
system based on machine learning and binary visualization,” in Proc. IEEE
Int. Conf. Commun. Workshops (ICC Workshops), May 2019, pp. 1-6.

P. Zhang, B. Sun, R. Ma, and A. Li, “A novel visualization malware
detection method based on SPP-net,” in Proc. IEEE 5th Int. Conf. Comput.
Commun. (ICCC), Dec. 2019, pp. 510-514.

S. Yang, W. Chen, S. Li, and Q. Xu, “Approach using transforming
structural data into image for detection of malicious MS-DOC files based
on deep learning models,” in Proc. Asia—Pacific Signal Inf. Process. Assoc.
Annu. Summit Conf. (APSIPA ASC), Nov. 2019, pp. 28-32.

S. O’Shaughnessy, ‘“Image-based malware classification: A space filling
curve approach,” in Proc. IEEE Symp. Visualizat. Cyber Secur. (VizSec),
Oct. 2019, pp. 1-10.

M. Yang and Q. Wen, ‘“Detecting Android malware by applying
classification techniques on images patterns,” in Proc. IEEE 2nd Int. Conf.
Cloud Comput. Big Data Anal. (ICCCBDA), Apr. 2017, pp. 344-347.

T. Wang and N. Xu, “Malware variants detection based on opcode
image recognition in small training set,” in Proc. IEEE 2nd Int.
Conf. Cloud Comput. Big Data Anal. (ICCCBDA), Apr. 2017,
pp. 328-332.

A. Kumar, K. P. Sagar, K. S. Kuppusamy, and G. Aghila, ‘“Machine
learning based malware classification for Android applications using
multimodal image representations,” in Proc. 10th Int. Conf. Intell. Syst.
Control (ISCO), Jan. 2016, pp. 1-6.

S. Yajamanam, V. R. S. Selvin, F. Di Troia, and M. Stamp, “‘Deep learning
versus gist descriptors for image-based malware classification,” in Proc.
4th Int. Conf. Inf. Syst. Secur. Privacy, 2018, pp. 553-561.

W.-C. Huang, F. D. Troia, and M. Stamp, “Robust hashing for image-
based malware classification,” in Proc. 15th Int. Joint Conf. e-Business
Telecommun., 2018, pp. 451-459.

N. Chavan, F. D. Troia, and M. Stamp, ““A comparative analysis of Android
malware,” 2019, arXiv:1904.00735.

Virustotal. Virustotal. Accessed: Oct. 31, 2023. [Online]. Available:
https://www.virustotal.com/gui/home/upload

App Manifest Overview | Android Developers. Accessed:
Mar. 15, 2023. [Online]. Available: https://developer.android.com/guide/
topics/manifest/manifest-intro

J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G.-J. Ahn, “Uncovering
the face of Android ransomware: Characterization and real-time detec-
tion,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1286-1300,
May 2018.

A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark Android malware
datasets and classification,” in Proc. Int. Carnahan Conf. Secur. Technol.
(ICCST), Oct. 2018, pp. 1-7.

D. S. Keyes, B. Li, G. Kaur, A. H. Lashkari, F. Gagnon, and F. Massicotte,
“EntropLyzer: Android malware classification and characterization using
entropy analysis of dynamic characteristics,” in Proc. Reconciling Data
Analytics, Autom., Privacy, Secur, Big Data Challenge (RDAAPS),
May 2021, pp. 1-12.

A.Rahali, A. H. Lashkari, G. Kaur, L. Taheri, F. Gagnon, and F. Massicotte,
“DIDroid: Android malware classification and characterization using
deep image learning,” in Proc. 10th Int. Conf. Commun. Netw. Secur.
New York, NY, USA: Association for Computing Machinery, Nov. 2020,
pp. 70-82.

K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, “AndroZoo: Collecting
millions of Android apps for the research community,” in Proc. IEEE/ACM
13th Work. Conf. Mining Softw. Repositories (MSR). New York, NY, USA:
ACM, May 2016, pp. 468—471.

121737

IEEE Access

H. Rodriguez-Bazan et al.: Android Ransomware Analysis Using CNN and FH Features

HORACIO RODRIGUEZ-BAZAN received the
B.Sc. degree in computer engineering and the
Master of Science (M.Sc.) degree (Hons.) in
computer engineering from Instituto Politécnico
Nacional (IPN), Mexico City, Mexico, in 2008 and
2019, respectively. He is currently pursuing the
Ph.D. degree with Centro de Investigacién en
Computacién (CIC), IPN. His research interests
include artificial intelligence (AI) applied to cyber-
sciences, mainly in android malware analysis and
computer forensics.

GRIGORI SIDOROV is currently a Full Pro-
fessor and a Researcher with Centro de Investi-
gacion en Computacién (CIC), Instituto Politéc-
nico Nacional (IPN), Mexico City, Mexico. He has
coauthored more than 190 scientific publications
with an H-index of 30. His research interests
include computational linguistics, automatic word
processing, and the application of machine learn-
ing methods to natural language processing tasks.
- In addition, he is a regular member of the Mexican
Academy of Sciences and the National Researcher of Mexico (SNI)
Level 3 (highest). He is the Editor-in-Chief of Computacion y Sistemas
(ISI-Thomson Web of Science [SciElo and CORE Collection (Emerging
Sources)], Scopus, DBLP, and the Index of Excellence of CONAHCYT).

.

121738

PONCIANO JORGE ESCAMILLA-AMBROSIO
(Senior Member, IEEE) received the B.Sc. degree
in mechanical electrical engineering and the M.Sc.
degree (Hons.) in electrical engineering from
the National Autonomous University of Mexico
(UNAM), in 1995 and 2000, respectively, and the
Ph.D. degree from the University of Sheffield,
U.K., in January 2004. From 2003 to 2010, he was
a Research Associate with the Aerospace Engi-
neering Department and the Computer Science
Department University of Bristol, U.K. From 2010 to 2011, he was a
Research Associate with the Department of Electronics, National Institute
of Astrophysics Optics and Electronics, Mexico. From 2011 to 2013,
he was the General Director of Innovation and Development with the
Scientific Division, Secretariat of the Interior, Mexico. He is currently
a Researcher with the Computing Research Centre, National Polytechnic
Institute, Mexico. He has published more than 100 publications in journals,
conference proceedings, and book chapters. His research interests include
the Internet of Things, smart cities, sensors/data fusion, wireless sensor
networks, cybersecurity, neuro-fuzzy networks, and intelligent control.

VOLUME 11, 2023

