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ABSTRACT Many image enhancement methods have been proposed to improve the visibility of backlit
images. Although these methods can effectively improve the visibility of the subject and background
compared to standard image enhancement methods, they may result in image quality degradation owing to
non-negligible artifacts. In many cases, such artifacts are caused by a significant change in the Lightness
Order Error (LOE) between the original and processed images. To address this problem, this paper
proposes a low-artifact and fast backlit image enhancement method to effectively improve the visibility
of images by suppressing the LOE. The proposed method uses adaptive luminance correction to generate
lightness-enhanced images of the dark and bright areas of the backlit image. These images are then fused
based on a weight map to calculate the lightness of the output image with a lower LOE. The final output,
i.e., the enhanced color image, is obtained by multiplying the input color image by the ratio of the lightness
component of the input image to the enhanced lightness component. The experimental results demonstrate
the superiority of the proposed method in terms of low artifacts, natural enhancement, and high processing
speed based on straightforward processing.

INDEX TERMS Backlit image, image enhancement, lightness order error, low-artifact image.

I. INTRODUCTION
In a video or a photograph taken under backlighting
conditions, i.e., a backlit image, the subject’s background is
affected by the light source, and the foreground subject is in
shadow, resulting in extremely dark and bright areas being
included in the same image. Digital cameras for general use
do not have a high dynamic range to represent the difference
between dark and bright patterns within each of extremely
dark and bright areas in a backlit image [1]. Owing to this
low dynamic range, the lightness values of many pixels in
backlit images are extremely low in dark areas and extremely
high in bright areas. Therefore, the visibility of the subject
and background in a backlit image is significantly reduced.
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The reduced visibility of the subject and background in
dark and bright areas in a backlit image may lead to the
overall performance degradation of outdoor surveillance and
in-vehicle camera systems, which often acquire images under
backlighting conditions. In recent years, such image process-
ing systems, especially for segmentation, object recognition,
and scene analysis, are often implemented on embedded
hardware using computational intelligence. Hence, as pre-
processing so that the computational intelligence for those
applications can see the images better, it is crucial to realize
a fast enhancement process that improves the visibility of
subjects and backgrounds by improving the contrast between
the dark and bright areas in backlit images.

To improve the visibility of subjects and backgrounds
in backlit images, various problems arise when general
image enhancement techniques are applied [2], [3], [4].
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When applying the gamma correction to backlit images,
enhancing the dark areas saturates the bright areas, and
enhancing the bright areas further darkens the dark areas.
Histogram equalization (HE) and contrast-limited adaptive
histogram equalization (CLAHE) [5] are the frequently used
contrast enhancement methods. However, when applied to
backlit images, these methods cause a significant degradation
of image quality owing to over-enhancement. Single-scale
retinex (SSR) [6] and Multiscale retinex with color restora-
tion (MSRCR) [7] are frequently used retinex theory-based
image enhancement methods. However, when applied to
backlit images, they often cause a significant degradation
of image quality owing to halos. Thus, these general
image enhancement methods cannot effectively improve the
visibility of backlit images.

In addition to the problems mentioned above, since
the lighting conditions at the time of image shooting are
not always sufficient and are often non-uniform, many
retinex-based methods have been proposed to enhance
images captured under various lighting conditions [8], [9],
[10]. Wang et al. proposed a method named ‘‘naturalness-
preserving enhancement algorithm (NPEA),’’ [8] which uses
a brightness-pass filter and bi-log transformation to deal
with non-uniform lighting conditions. Guo et al. proposed
a retinex-based image enhancement method for low-light
images named LIME [9]. The method creates an illumination
map for each pixel using the maximum value of the R, G, and
B channels and refines the map based on the structure prior
to achieving high-quality image enhancement. While these
methods can achieve high-quality enhancement for various
types of images, it cannot be ignored that retinex-based
methods may cause white skipping, blacking out, excessive
brightness enhancement, and color reproduction problems.

In contrast, Wang et al. [11], Fu et al. [12], and
Buades et al. [13] proposed enhancement methods suitable
for backlit images based on image fusion. The method of
Wang et al. generates three lightness-transformed images
from an input lightness image and uses the fusion method
in [14] to obtain the output image. The log function, gamma
correction, and unsharp masking [15] are used to generate
the three lightness-transformed images. This method can
effectively improve visibility in dark areas but may produce
roughness and artifacts in bright areas. Fu et al. proposed a
method that uses illumination estimation by morphological
closing, brightness enhancement by a sigmoid function, and
contrast enhancement by adaptive histogram equalization
to obtain relatively good enhancement results. The method
of Buades et al. generates multiple exposure images using
two types of global tone mapping curves: gamma correction
and logarithmic function. The output image is obtained by
fusing multiple-exposure images using a modified algorithm
in [16] and applying sharpening and chrominance correction.
This method improves visibility in dark areas but may
generate artifacts, roughness, and highlight clipping in bright
areas.

Li et al. [17], Vazquez-Corral et al. [18], and
Trongtirakul et al. [19] proposed segmentation-based backlit
image enhancement methods. The method of Li et al.
identifies underexposed and overexposed regions by soft
binary segmentation processing using a Gaussian mixture
model (GMM). Then, different tone mappings are applied
to each identified region to produce the output image. The
method of Vazquez-Corral et al. uses an iterative gradient
descent method to generate a set of weight maps. Then,
on the basis of weights, multiple tone-mapped images are
merged using the method in [20] to obtain the output image.
The method of Trongtirakul et al. divides the input lightness
image into three regions, namely, underexposed, mid-tone,
and overexposed regions, and stretches the contrast in the
underexposed and overexposed regions. The image with
stretched contrast is then enhanced by locally weighted
logarithmic bi-HE, and the images are fused on the basis
of a weight function. Li and Wu also proposed a method
based on a segmentation process performed by supervised
learning [21]. This method uses a segmentation process
to detect the subject and then fuse the output results
from two tone-mapped images to improve the visibility of
the subject and overexposed regions. This method tends
to produce artifacts not present in the original image.
Furthermore, as mentioned in Lv et al.’s report [22], these
segmentation-based methods have long processing times and
are unsuitable for high-resolution images.

Another approach, learning-based backlit image restora-
tion, has been proposed by Zhang et al. [23]. Their method
uses iterative learning to process the image without prior
learning. Specifically, image restoration is performed by
deriving a block-based loss function and estimating S-curves
for appropriate enhancement. In this method, the S-curve
may not be appropriately estimated, and visibility may not
be sufficiently improved. Although similar approaches for
low-light images have been studied in [24] and [25], the same
problem may occur. Furthermore, many large-scale deep-
learning-based low-light image enhancement methods [26],
[27], [28], [29], [30], [31], [32], [33] have recently been
proposed. However, the performance of these data-driven
methods depends on the dataset used for training, and they
may not be able to adequately cope with various scenes
or complex and non-uniform real-world low-light images
[34]. In addition, deep learning-based methods tend to have
large models, which can cause hardware resource issues,
particularly when implemented in real-world applications
such as embedded systems. Other new approaches have been
adopted in recent years, such as using raw images [35] and
tree search [36], but they pose similar resource problems.
Therefore, there is still a strong need for handcrafted and
straightforward image enhancement algorithms.

As explained above, many conventional enhancement
methods for backlit images may produce undesirable struc-
tures, such as artifacts and highlight clipping that were
not present in the original image. One reason for this
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FIGURE 1. Flow of lightness enhancement process.

phenomenon is that the order of lightness changes before and
after the enhancement process, resulting in the appearance of
dark or bright regions that were not present in the original
image. To address this problem, in this paper, we propose a
fast enhancement method for backlit images that suppresses
the change in the order of lightness in the original image and
reduces the occurrence of artifacts.

The remainder of this paper is organized as follows.
Section I shows the introduction. In Section II, we describe
the proposed algorithm in detail. In Section III, we describe
the comparative experiments between the proposed and
conventional methods. In the experiments, multiple backlit
images were used for qualitative evaluation by visual inspec-
tion. Furthermore, quantitative evaluation was conducted
using various evaluation indices to verify the effectiveness
of the proposed method in artifact reduction. The average
computation time and the effect of each parameter in the
proposed method were also verified. Finally, Section IV
shows the conclusions.

II. PROPOSED METHOD
The proposedmethod separately generates lightness-enhanced
images for the dark and bright areas in backlit images. Then,
the lightness of the output image is calculated by fusing
these images on the basis of a weight map. Figures 1 and 2
show the flow of the lightness enhancement process and the
example images and histograms obtained in the processing
flow, respectively. The final output, an enhanced color image
Oc, is obtained by multiplying the input color image Ic by the
ratio of the enhanced lightness component O to the lightness
component I of the input image. The enhancement for the
dark and bright areas is performed by lightness correction
using tone curves to suppress the Lightness Order Error
(LOE) [8], [9]. In the lightness correction for the bright
areas, a downward-convex adaptive gamma curve is applied
to the input lightness image I to obtain a lightness-improved
image Eb. For the dark areas, an upward-convex adaptive
gamma curve and an S-curve are applied to I to obtain images
G and Ed , which are improved in lightness and contrast.
In obtaining the weight map using a threshold determined by

FIGURE 2. Images and histograms in the backlit image enhancement
process. (a) Backlit image. (b) Lightness image of (a). (c) Lightness
histogram of image (b). (d) Image after lightness correction by the
adaptive gamma correction using an upward-convex tone curve.
(e) Histogram of image (d). (f) Lightness transformed image using an
S-shaped tone curve. (g) Histogram of image (f). (h) Image after lightness
correction by the adaptive gamma correction method using a
downward-convex tone curve. (i) Histogram of image(h). (j) Enhanced
lightness image by the proposed method. (k) Output color image.

Otsu’s discriminant analysis method [37], I is divided into
dark and bright areas. Then, a tentative weight mapW is first
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generated by weighting only for the dark areas. In this map,
the lower the lightness value, the greater the weight, with
values ranging from 0 to 1. On the other hand, all weights
in the bright areas are 0. To suppress the LOE, an edge-
preserving smoothing process is performed for W using a
modified version of the guided filter [38] with I as a guide
image, and the final weight map W̃ is obtained.
Now, let Ic(i, j) = (IR(i, j), IG(i, j), IB(i, j))⊤ (i =

1, 2, · · · ,M; j= 1, 2, · · · ,N ) be the pixel value represented
in column vector form at the coordinates (i, j) in anM×N size
24-bit full-color input backlit image. First, each pixel value of
the input color image Ic is divided by 255 and normalized to
the range [0, 1]. Next, each pixel value I (i, j) of the lightness
image of the input color image Ic is calculated as follows:

I (i, j) = max
c∈R,G,B

Ic(i, j). (1)

Figure 2(a), 2(b), and 2(c) show an example of a backlit
image, its lightness image, and its lightness histogram,
respectively. As shown in Fig. 2(c), usually, a backlit image
has a bimodal pixel distribution [39], and many pixels are
biased toward the lower and higher lightness values. This
tendency indicates that many pixels have low lightness values
in dark areas and high lightness values in bright areas. In such
dark and bright areas, the contrast is reduced by the slight
difference in lightness between adjacent pixels, significantly
reducing the subject and background visibility. Therefore, it is
necessary to sufficiently improve the visibility, especially in
dark areas with object information, such as the target subject.

A. GENERATION OF A WEIGHT MAP
In the proposed method, a weight map W̃ is generated to
fuse two enhanced lightness images Ed and Eb that improve
the visibility of dark and bright areas in the input lightness
image, respectively. As shown in the histogram in Fig. 2(c),
in general, the lightness histograms of backlit images tend
to be bimodal. Using this feature, we can determine the
threshold t that maximizes the separability between the
bimodal lightness distributions of pixels belonging to the dark
and bright classes by Otsu’s discriminant analysis method as
follows:

t = argmax
V

{ω1 (V ) ω2 (V ) (m1 (V ) − m2 (V ))2}, (2)

where V represents an arbitrary threshold for lightness;
ω1 (V ) and ω2 (V ) are the numbers of pixels in the dark and
bright classes, respectively. Moreover,m1 (V ) andm2 (V ) are
the average lightness values of the pixels belonging to the
dark and bright classes, respectively.

Using the determined threshold t , we can generate the
tentative weight map W from the input lightness image I as
follows:

W (i, j) =

 1 −
I (i, j)
t

, I (i, j) < t

0, otherwise.
(3)

Figure 3(a) shows the tentative weight map W for the image
shown in Fig. 2(a). In Fig. 3(a), some edge structures are

FIGURE 3. Effect of the weight map correction process using the modified
guided filter. (a) Tentative weight map before edge-preserving smoothing.
(b) Edge-preserving smoothed version of (a) obtained using the original
guided filter [38]. (c) Edge-preserving smoothed version of (a) obtained
using the modified guided filter.

FIGURE 4. Relationship between the local standard deviation and
parameter ε. (a) Local standard deviation map. (b) ε map.

visible in the area corresponding to the dark area in the input
image. In addition, an enormous edge structure that separates
the dark and bright areas in the input image appears at the
lower center of the map. This appearance is because Otsu’s
discriminant analysis method determines the threshold on the
basis of the entire lightness distribution in the image without
considering local lightness patterns in the input image. The
weight map containing many discontinuous pixel values
(i.e., edge structures in dark areas) can significantly cause
image quality degradation in image enhancement because it
significantly changes the lightness order during image fusion.

To address this problem, we apply a correction to the
tentative weight map W using a modified version of the
guided filter [38] with the input lightness image I as a guide
image. To apply the guided filter, I (i, j) and W (i, j) for each
pixel in I and W are first calculated as follows:

I (i, j) =
1
n2

∑
(k,l)∈�(i,j)

I (k, l), (4)

W (i, j) =
1
n2

∑
(k,l)∈�(i,j)

W (k, l), (5)

where �(i, j) is a square region of n× n pixels centered at
the coordinates (i, j) and (k, l) denotes the coordinates of the
pixels in the square region. Next, the filtering coefficients
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a(i, j) and b(i, j) are calculated as follows:

a(i, j) =

1
n2

∑
(k,l)∈�(i,j)

I (k, l) ·W (k, l) − I (i, j) ·W (i, j)

σ (i, j)2 + ε
,

(6)

σ (i, j) =
1
n

√ ∑
(k,l)∈�(i,j)

(
I (k, l) − I (i, j)

)2
, (7)

b(i, j) = W (i, j) − a(i, j) · I (i, j), (8)

where σ (i, j) is a local standard deviation of I and ε is a
parameter that controls the edge preservation performance;
the smaller the value of ε, the better the edge preservation
performance. Subsequently, the output of the filter, that is,
the final weight map W̃ , is calculated as follows:

W̃ (i, j) = a(i, j) · I (i, j) + b(i, j), (9)

a(i, j) =
1
n2

∑
(k,l)∈�(i,j)

a(k, l), (10)

b(i, j) =
1
n2

∑
(k,l)∈�(i,j)

b(k, l), (11)

where W̃ (i, j) is a pixel value of the edge-preserving
smoothed weight map W̃ at the coordinates (i, j).
Figure 3(b) shows the edge-preserving smoothed image in

Fig. 3(a) by the original guided filter. This image shows the
sufficiently smoothed-out edge structures that appeared in the
areas that correspond to the dark areas in the original image.
However, edge leaks occur in the boundary region separating
the dark and bright areas. During image fusion, edge leaks
can significantly change the lightness order. To suppress such
edge leakage, we introduce adaptive processing to determine
ε, which is usually a constant in Eq. (6), for each pixel using
σ (i, j) as follows:

ε(i, j) = −
εmax

σmax
· σ (i, j) + εmax, (12)

where ε(i, j) is the value of ε for the pixel at the coordinates
(i, j) in I ; σmax and εmax are the parameters with themaximum
values of σ (i, j) and ε(i, j), respectively. Figures 4(a) and 4(b)
show the values of σ and ε in grayscale images. In these
images, the brighter pixels have larger values of σ and ε.
In these figures, σ (i, j) values are larger and ε(i, j) values are
smaller in the border region between the dark and bright areas
in the original image. On the other hand, σ (i, j) is smaller and
ε(i, j) is larger in the region corresponding to the dark areas in
the original image. This tendency indicates the following: the
edge preservation performance of the guided filter is higher
in the dark and bright border region with high contrast and
lower in the other regions with low contrast.

Figure 3(c) shows the result of applying the modified
guided filter to W introducing Eq. (12). By comparing
Figs. 3(b) and 3(c), we can observe that the edge leakage is
suppressed. In the proposed method, the filter window width
n is set to np% of the number of pixels on the input image

FIGURE 5. Difference between the ordinary and adaptive gamma
correction methods with an upward-convex tone curve. (a) Tone curves.
(b) Slopes of the curves in (a).

FIGURE 6. Difference between the ordinary and adaptive gamma
correction methods using a downward-convex tone curves.

long side to stabilize the effect of the guided filter without
being affected by the image size. The correction process with
the guided filter is conducted using the fast arithmetic method
based on an integral image proposed by Viola and Jones [40].
This fast computing method can apply the correction in a
short computation time of O(N ).

B. GENERATION OF ENHANCED LIGHTNESS IMAGES FOR
EACH AREA
To improve the visibility of the dark and bright areas of a
backlit image, two lightness-enhanced images are generated
from the input lightness image I . In the proposed method,
only tone curves are used to generate the enhanced lightness
images, improving visibility while maintaining the lightness
order in the original image and speeding up the processing.

First, for the dark areas, an adaptive gamma correction
using an upward-convex tone curve is applied to generate a
lightness-enhanced image G as follows:

G(i, j) = (1 − Imin) ·

( I (i, j) − Imin
1 − Imin

)γd (i,j)
+ Imin, (13)

γd (i, j) = αd ·

(1 − I (i, j)
1 − Imin

)
, (14)

where Imin is the minimum lightness in I and αd is a
parameter.

The difference between the adaptive gamma correction
represented by Eq. (13) and the ordinary gamma correc-
tion with a constant γd value is explained using Fig. 5.
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Figures 5(a) and 5(b) show the tone curves and their
slopes, respectively. The blue line represents the identity
transformation; the green and magenta lines represent the
gamma correction with γd = 0.3 and γd = 0.2, respectively;
the red line represents the adaptive gamma correction with
αd = 0.3. In Fig. 5, the tone curves of the ordinary gamma
correction have slopes below 1 when the lightness value
ranges from 0.1 to 0.2. On the other hand, the slope of the
adaptive gamma correction falls below 1 when the lightness
value ranges from 0.2 to 0.3. That is, the adaptive gamma
transform can increase the lightness of the entire image while
amplifying the difference between darkness and lightness
over a broader range than the ordinary gamma transform.

Figures 2(d) and 2(e) show an example of a lightness-
transformed image G and its lightness histogram, respec-
tively. By comparing Figs. 2(c) and 2(e), we can observe that
the lightness differences between pixels with low lightness
values are amplified in Fig. 2(e) and the entire distribution
shifts to the bright region. On the other hand, there are only
a few pixels with lightness values from 0 to 0.2, with the
narrowing of the dynamic range remaining as a problem.
To address this problem, the S-shaped transformation is
applied to the image G to generate an enhanced lightness
image Ed as follows:

Ed (i, j) =

{
f 1−βd I (i, j)βd , 0 ≤ I (i, j)< f
1 − (1 − f )1−βd (1 − I (i, j))βd , otherwise,

(15)

f =
1
m

∑
{(i,j)|I (i,j)<t}

G(i, j), (16)

where f is the inflection point of the S-shaped tone curve; f is
the average ofm numbers of pixel values ofG(i, j) that satisfy
I (i, j) < t; βd is a parameter. Figures 2(f) and 2(g) show an
example of an enhanced lightness image for the dark areas
Ed and its lightness histogram, respectively. By comparing
Figs. 2(d) and 2(f), we can find that the contrast is enhanced
in the areas of the person and ground. The difference between
the dark and bright areas has increased owing to the broader
dynamic range, as shown in Figs. 2(e) and 2(g).

Next, an adaptive gamma transform using a downward-
convex tone curve is applied to the lightness image I to
generate an enhanced lightness image Eb for the bright areas
as follows:

Eb(i, j) = I (i, j)γb(i,j), (17)

γb(i, j) = (αb − 1) · I (i, j) + 1, (18)

where αb is a parameter. The curves shown in Fig. 6 illustrate
the input–output relationship of the gamma correction with a
constant value of γb and the adaptive gamma correction using
Eq. (17). The blue line shows the identity transformation;
the green line shows the ordinary gamma correction with
γb = 1.4; the red line shows the tone curve of the adaptive
gamma correction with αb = 1.4. Figures 2(h) and 2(i)
show the lightness image Eb and its lightness histogram

with the bright areas enhanced, respectively. These figures
show that the adaptive gamma correction amplifies the
difference between dark and bright areas with high lightness
values while suppressing the decrease in lightness in the
mid-range compared with the ordinary gamma correction.
This characteristic improves the visibility of the bright
areas while suppressing the inversion of the lightness order
between the dark and bright areas where the lightness
increases owing to the enhancement process. By comparing
Figs. 2(b) and 2(h) and focusing on the changes in both
the image and the histogram, we can see that the proposed
method amplifies the difference between the dark and bright
areas with high lightness values.

C. FUSION OF TWO ENHANCED LIGHTNESS IMAGES
BASED ON A WEIGHT MAP
The weighted sum of the pixel values at the coordinates (i, j)
of the enhanced lightness images Ed and Eb is calculated to
obtain the output lightness image O as follows:

O(i, j) = W̃ (i, j) · Ed (i, j) + (1 − W̃ (i, j)) · Eb(i, j). (19)

In Eq. (19), O(i, j) approaches Ed (i, j) in dark areas as
W̃ (i, j) approaches 1. That is, the enhancement effects
of the upward-convex adaptive gamma correction and the
S-shaped transformation are dominantly reflected in the
output image. On the other hand, O(i, j) approaches Eb(i, j)
when W̃ (i, j) approaches 0 in the bright areas. That is, the
enhancement effect of the adaptive gamma correction using
a downward-convex tone curve is dominantly reflected in the
output image.

D. CALCULATION OF OUTPUT COLOR IMAGE
After calculating the final output lightness imageO, the pixel
value at the coordinates (i, j) of the output color image Oc is
calculated as follows:

Oc(i, j)=Ic(i, j)·
O(i, j)
I (i, j)

. (20)

Figures 2(j) and 2(k) show the output lightness and color
images, respectively. These images show that the proposed
method effectively improves the visibility of the dark areas
without generating artifacts.

III. EXPERIMENTS
A. EXPERIMENTAL CONDITIONS
To demonstrate the effectiveness of the proposed method,
comparative experiments were performed using a set of
238 backlit images with bimodal distributions of lightness.
This image set contains Creative Commons Zero (CC0)
images published on StockSnap.io and flickr.com and the
dataset produced by Li [41]. The 238 images are in 24-bit
full color and range in size from 44,308 to 1,468,600 pixels.
As methods for comparison, CLAHE [5], those developed
by Wang et al. [11], Buades et al. [13], Li and Wu [21],
Zhang et al. [23], Wang et al. (NPEA) [8], Fu et al. [12],
and Guo et al. (LIME) [9] were used. The parameters in
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the compared methods were set according to each study.
Regarding the proposed method, preliminary experiments
were conducted by changing each parameter to determine
the best ones quantitatively and qualitatively. As a result,
the parameters were set to αd = 0.3, βd = 3.0, αb = 1.4,
np = 10, εmax = 0.5, and σmax = 0.5. In the qualitative
evaluation by visual inspection, the processing results were
compared for 3 of the 238 images showing the characteristics
of each method well. In the quantitative evaluation, the LOE
[8], [9], [42], Q value [43], and blind image quality measure
of enhanced images (BIQME) score [44] were used.
LOE is an index showing the change in the relationship of

lightness order between the original image and the processing
result. The LOE is calculated as follows:

LOE =
1

M · N

M∑
i=1

N∑
j=1

RD(i, j), (21)

RD(x, y) =

M∑
i=1

N∑
j=1

U (L(x, y), (L(i, j)) ⊕ U (Lr (x, y),Lr (i, j)),

(22)

U (p, q) =

{
1, p ≥ q
0, otherwise,

(23)

where M and N are the numbers of vertical and horizontal
pixels in the input image, respectively; ⊕ is the exclusive-or
operator; and L(x, y) and Lr (x, y) are the maximum values of
the RGB components at the coordinates (x, y) in the original
and processed images, respectively. The lower the LOE, the
better the method in that the lightness order is not disrupted.
If the relationship of lightness order between darkness and
brightness is disrupted during image enhancement, unnatural
light patterns (i.e., artifacts) that did not exist in the original
image may appear and cause image quality degradation. The
LOE tends to be higher as the number of pixels increases.
Therefore, in this experiment, the image size was set to
(M·100/min(M ,N ),N·100/min(M ,N )). This setting reduces
the variation in the number of pixels for each experimental
image while preserving the aspect ratio.

The Q value is an index used for evaluating the image
quality on the basis of lightness and contrast. In calculating
the Q value, first, the input image is divided into blocks of
50×50 pixels without overlap. Then, the overall average of
the standard deviations of the pixel values in each block σ

and the average lightness of the image I are calculated. The
Q value is calculated as follows:

Q = Iσ . (24)

In the proposed method, the original image is divided into
dark and bright areas, and enhancement is applied to each
area. Therefore, in this evaluation, the original image was
divided into dark and bright areas, and Q, I , and σ were
calculated for each area. Specifically, the original image was
divided into 50× 50 pixel blocks with no overlap, and the
average of pixel values within each block was calculated. The

blocks with the lower 10% of the average values were set as
the dark area. The blocks with the upper 10% of the average
values were set as the bright area.

The BIQME score is an index for calculating the nonref-
erence image quality score based on 17 features related to
contrast, sharpness, lightness, colorfulness, and naturalness
of the image. The larger the BIMQE score, the better the
image quality.

B. EXPERIMENTAL RESULTS AND QUALITATIVE
EVALUATION
Figure 7 shows the comparison for various scenes of
backlit images. The proposed method shows good enhance-
ment results for the backlit images of various scenes,
with no overall over-enhancement or unnatural artifacts.
Figures 8, 9, and 10 show three representative processing
results and their partially magnified images that show the
characteristics of each method well. These images were
selected from 238 backlit images, named Images 1, 2,
and 3. The details of the experimental results and qualitative
evaluation are as follows.

1) RESULTS FOR IMAGE 1
Figure 8 shows the processing results for Image 1. Regarding
CLAHE and the methods of Wang and Buades, the visibility
of the dark parts is improved without artifacts. However,
stripe artifacts occur in the bright areas, and the smoothness
of the gradations is impaired. Li’s method does not lose
smoothness in the brightness gradation in bright areas but
causes color smearing on the person and roads. LIME shows
a bright result with a slight over-enhancement. In contrast
to these methods, NPEA, Zhang’s, Fu’s, and the proposed
methods effectively improve visibility while suppressing
artifacts.

2) RESULTS FOR IMAGE 2
Figure 9 shows the processing results for Image 2. Regarding
CLAHE and the methods of Wang and Buades, the island
visibility at the image center is improved compared with
that in the original image. On the other hand, artifacts
occur in the bright gradation regions, and the smoothness
of the gradient is impaired. Li’s method significantly
improves the island visibility at the center of the image,
but the extreme enhancement of the island alone gives an
unnatural impression. Zhang’s method causes black clipping
in dark areas, resulting in reduced visibility. In contrast
to these methods, NPEA, LIME, Fu’s, and the proposed
methods effectively improve visibility without sacrificing the
smoothness of the brightness gradation in the bright areas.

3) RESULTS FOR IMAGE 3
Figure 10 shows the processing results for Image 3. CLAHE
and the methods of Wang and Buades significantly improve
visibility in dark and bright areas. On the other hand, artifacts
and roughness occur around the light source and in brightness
gradation in the bright areas. Li’s method improves the
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FIGURE 7. Comparison for various backlit images.

visibility of the person, plants, and trees compared with the
original image. On the other hand, the light source area in the
lower left of the image causes light-induced color smearing.
The visibility of the dark areas is hardly improved by Zhang’s
method. In contrast to thesemethods, NPEA, LIME, Fu’s, and
the proposed methods improve visibility in dark and bright
areas while suppressing artifacts and roughness.

C. EXPERIMENTAL RESULTS AND QUANTITATIVE
EVALUATION
Table 1 shows the averages and standard deviations of LOEs
of each method for the 238 images. This table shows the
lowest average and standard deviation in bold. The proposed

method has the lowest average and standard deviation
compared with the other methods. Therefore, the proposed
method best preserves the lightness order of the original
image and suppresses the occurrence of unnatural artifacts.

The images calculated using Eq. (22) for Images 1, 2,
and 3 and their partially magnified images are shown in
Figs. 11, 12, and 13, respectively. The closer each pixel is to
blue, the lower the RD value; the closer to yellow, the higher
the RD value. In CLAHE, Wang’s, and Buades’ methods, the
lightness order changes over a wide image area, including
artifacts generated in the bright areas. In Li’s method, the
lightness order changes markedly in the regions causing color
smearing. In Zhang’s method, the order of lightness changes
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FIGURE 8. Processing results for Image 1. The red rectangles indicate the magnified areas.

FIGURE 9. Processing results for Image 2. The red rectangles indicate the magnified areas.

over a broad region of bright areas. In LIME, it is evident
that the lightness order changes drastically in the bright areas.

On the other hand, NPEA, Fu’s, and the proposed methods
show a much smaller variation in lightness order in the entire
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FIGURE 10. Processing results for Image 3. The red rectangles indicate the magnified areas.

FIGURE 11. Comparison of lightness distortion (RD) in Image 1. The red rectangles indicate the magnified areas.

image than the other methods. Therefore, these methods are
less likely to produce unnatural dark and bright artifacts.

Table 2 shows the averages and standard deviations of
Q, I , and σ for the dark areas in the 238 test images.
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FIGURE 12. Comparison of lightness distortion (RD) in Image 2. The red rectangles indicate the magnified areas.

FIGURE 13. Comparison of lightness distortion (RD) in Image 3. The red rectangles indicate the magnified areas.

In Table 2, the highest average and lowest standard devi-
ation are shown in bold. The results show that I and σ

are significantly higher, and Q is slightly higher in the
proposed method than in the original image. The proposed
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FIGURE 14. Changes in processing results when parameters αd and βd are varied
(αb =1.5, np =10, εmax =0.5, and σmax =0.5).

TABLE 1. Comparison of LOEs.

method also has relatively higher σ than the compared
methods.

Table 3 shows the averages and standard deviations of Q,
I , and σ for the bright areas. In Table 3, the highest average
and lowest standard deviation are shown in bold. The results
show that Q is lower in NPEA, LIME, Li’s, Zhang’s, and
Fu’s methods owing to the decrease in σ than in the original
image. On the other hand, CLAHE, Wang’s, and Buades’,
and the proposed methods have higher Q values owing to the
increase in σ . These results show that the proposed method
has relatively high visibility improvement in both dark and
bright areas.

Table 4 shows the averages and standard deviations of
the BIQME scores for the methods. In Table 4, the highest
average and lowest standard deviation are shown in bold.
The calculation results show that the proposed method has
relatively higher values than the compared methods. The
BIQME scores show that the images processed by the
proposed method have relatively good quality.

TABLE 2. Comparison of Q, I , and σ for dark areas.

From the results of LOE, Q-value, and BIQME score,
it can be confirmed that the compared methods improve
visibility while markedly changing the orders of darkness and
lightness. On the other hand, the proposed method tends to
keep the orders of darkness and lightness in the original image
the same. It is highly effective in improving visibility while
suppressing the occurrence of artifacts.

Table 5 shows the average calculation times of the methods
for 238 experimental images. This table shows the shortest
average time and standard deviation in bold. In this regard,
because we used the online code in Buades’ method, there
is no measurement result. The execution environment is
as follows: CPU, Intel®CoreTM i9-13900KF 3.00 GHz;
memory, 64.0GB; OS, Windows 11 Pro; and programming
language, Python 3.10.11 (Zhang et al.) and MATLAB
R2023a (the others). Table 5 shows that although it is inferior
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FIGURE 15. Changes in processing results when parameter αb is varied (αd =0.5,
βd =2.0, np =10, εmax =0.5, σmax =0.5).

TABLE 3. Comparison of Q, I , and σ for bright areas.

TABLE 4. Comparison of BIQME scores.

to CLAHE and LIME, the proposed method is relatively
fast considering the image quality obtained in the qualitative
and quantitative evaluations. The analysis of the processing
revealed that the edge-preserving smoothing process was
the bottleneck. Therefore, further improvements in this
processing and implementation using a faster programming
language are needed to reduce the processing time in future
work.

As a result of the above experiments, it is confirmed that
the proposed method can suppress unnatural dark and bright
artifacts and sufficiently improve visibility in a relatively
short computation time.

D. BEHAVIOR OF THE PROPOSED METHOD FOR VARYING
PARAMETERS
Figure 14 shows the processing effect of the proposedmethod
for the parameters αd and βd . The other parameters were set
as follows: αb = 1.5, np = 10, εmax = 0.5, and σmax = 0.5.

TABLE 5. Comparison of average processing times (in sec).

Figure 14 shows that as αd decreases, the person and ground
at the bottom of the image become brighter. On the other
hand, as βd increases, the contrast between dark areas, such
as the person and ground, increases.

Figure 15 shows the processing effect of the proposed
method for the parameter αb. The other parameters were set
as follows: αd = 0.5, βd = 2.0, np = 10, εmax = 0.5,
and σmax = 0.5. Figure 15 shows that as αb increases, the
contrast of the clouds in the upper part of the image, which
corresponds to the bright area, increases.

IV. CONCLUSION
In this paper, we proposed a fast backlit image enhancement
method that can suppress the LOE and the generation of
artifacts. In the proposed method, two lightness images,
in which dark and bright areas are separately enhanced by
tone curve processing, are fused on the basis of a weight map,
and the output lightness is calculated. The weight map used
in the fusion process is generated using Otsu’s binarization
method and amodified guided filter with adaptive processing.
By weighting the dark areas using these methods, edge
leakage in the dark and bright boundary regions is suppressed
while considering the original image’s local dark and bright
patterns. The effect of this process is to suppress the LOE in
the enhancement process.

To verify the effectiveness of the proposed method,
we conducted experiments to compare our proposed method
with the conventional methods using multiple backlit images.
In the experiments, qualitative and quantitative evaluations
were conducted. The experimental results show that the
proposed method significantly improves the visibility of dark
and bright areas in backlit images while suppressing the
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generation of artifacts by reducing the LOE. Furthermore,
a comparison of the average computation time among the
methods confirms that the proposed method is relatively fast,
considering the resulting image quality.

One of the potential limitations is that the proposed
method assumes that the lightness histogram in backlit
images is bimodal; sufficient enhancement effects may not
be obtained in low-light images where this assumption
does not hold or only has weak bimodality. Furthermore,
although there are problemswith the implementationmethod,
environment, and programming language, it is necessary
to improve the proposed algorithm to an essentially faster
one that can process larger images in real time. Given
the potential limitations mentioned above, as future works,
we are considering developing an automatic and adaptive
parameter adjustment method and a faster backlit image
enhancement method specifically for movies.
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