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ABSTRACT The electrocardiogram (ECG) serves as a valuable diagnostic tool, providing crucial
information about life-threatening cardiac conditions such as atrial fibrillation and myocardial infarction.
A prompt and efficient assessment of ECG exams in environments such as Emergency Rooms (ERs) can
significantly enhance the chances of survival for high-risk patients. Despite the presence of numerous works
on ECG classification, most of these studies have concentrated on one-dimensional ECG signals, which are
commonly found in publicly available ECG datasets. Nevertheless, the practical relevance of suchmethods is
limited in hospital settings, where ECG exams are usually stored as images. In this study, we have developed
an artificial intelligence-driven screening system specifically designed to analyze 12-lead ECG images. Our
proposed method has been trained on an extensive dataset comprising 99,746 12-lead ECG exams collected
from the ambulatory section of a tertiary hospital. The primary goal was to precisely classify the exams
into three classes: Normal (N), Atrial Fibrillation (AFib), and Other (O). The evaluation of our approach
yielded AUROC scores of 93.2%, 99.2%, and 93.1% for N, AFib, and O, respectively. To further validate our
approach, we conducted evaluations using the 2018 China Physiological Signal Challenge (CPSC) database.
In this evaluation, we achieved AUROC scores of 91.8%, 97.5%, and 70.4% for the classes N, AFib, and
O, respectively. Additionally, we assessed our method using 1,074 exams acquired in the ER and obtained
AUROC values of 98.3%, 98.0%, and 97.7% for the classes N, AFib, and O, respectively. Furthermore,
we developed and deployed a system with a trained model within the ER of a tertiary hospital for research
purposes. This system automatically retrieves newly captured ECG chart images from the Picture Archiving
and Communication System (PACS)within the ER. These images undergo necessary preprocessing steps and
serve as input for our proposed classification method. This comprehensive approach established an efficient
and versatile end-to-end framework for ECG classification. The results of our study highlight the potential of
leveraging artificial intelligence in the screening of ECG exams, offering a promising solution for the rapid
assessment and prioritization of patients in the ER.

INDEX TERMS Artificial intelligence, atrial fibrillation, ECG, ECG image, 12-lead electrocardiogram,
emergency room.
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I. INTRODUCTION
Cardiovascular diseases (CVDs) are the leading cause of
death worldwide [1], particularly in low- and middle-income
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countries, accounting for approximately 80% of these fatali-
ties [2]. Furthermore, CVDs impose a significant economic
burden, encompassing both direct costs (e.g., hospitaliza-
tions) and indirect costs (e.g., loss of productivity due to
incapacity to work) [3]. Therefore, there is a pressing need
to develop new approaches for the prevention and early
treatment of these diseases.

In this regard, the electrocardiogram (ECG) plays a crucial
role in accurately identifying various cardiac conditions,
including myocardial infarction and atrial fibrillation (AFib).
Moreover, ECGs are readily accessible, non-invasive, and
cost-effective. Particularly in Emergency Rooms (ER), their
significance is amplified, as prompt screening and diagnosis
can significantly enhance the chances of patient survival.
Thus, the automated classification of ECG exams in such
environments holds the potential to optimize clinical work-
flow by prioritizing patients in critical conditions.

AFib is the most common form of chronic sustained
cardiac arrhythmia [4], [5], [6], affecting nearly one percent
of the global population [7]. Its prevalence increases with
age [1], and individuals over 65 years old have a fourfold
higher prevalence. Moreover, untreated AFib significantly
increases the risk of other cardiac conditions, including stroke
[8], [9]. Early detection and intervention of AFib, thereby
preventing potential harm, can have a significant impact on
healthcare outcomes and associated costs [10].

The 12-lead ECG, interpreted by a trained physician, is the
definitive exam for diagnosing AFib [9], [11]. Physicians
typically extract key characteristics from ECG signals, such
as P-wave duration and irregular electrical activity, to identify
irregularities. However, visually inspecting the 12-lead ECG
to detect irregularities is time-consuming. Over the past
60 years, there have been several attempts to develop com-
puterized ECG interpretation methods [12]. These methods
utilize rule-based expert systems that rely on well-known
patterns of AFib to provide classification. However, these
methods have significant drawbacks. First, the classification
algorithms are vendor-specific, which means they can only
be used with equipment from the vendor that developed
the algorithm. Second, accurately identifying certain key
ECG features, such as the QT interval, is challenging [13].
Additionally, the classification accuracy, especially regarding
arrhythmias, is limited [14].
On the other hand, the use of deep learning-based tools to

enhance the diagnostic capabilities of cardiac arrhythmias in
both inpatient and outpatient settings has shown remarkable
growth in recent years [15]. These methods offer advantages
by eliminating the need for specialist-defined features for
classification. Instead, they adopt an end-to-end approach
where features are automatically extracted from the ECG
exam and employed for classification. These algorithms
have substantially enhanced the detection of AFib and
other cardiac conditions. Nevertheless, the majority of these
systems rely on digital one-dimensional signals [16].

In hospital settings, ECG exams are typically stored
as images or PDF files in the Picture Archiving and

Communication System (PACS) [17]. Therefore, applying
one-dimensional ECG classification methods is not feasible
in hospital environments. Although some recent studies
have proposed 12-lead classification systems with good
performance [18], [19], there is still a literature gap regarding
the deployment of such methods in clinical environments
with an appropriate validation.

In summary, research studies have a limited impact
on clinical practice due to several factors. Firstly, most
studies primarily focus on one-dimensional ECG signals,
limiting their applicability. Secondly, algorithms that are
tailored to specific equipment and training datasets further
hinder generalizability. Lastly, the current research landscape
prioritizes enhancing machine learning model performance
while overlooking critical aspects of practical applicability
within clinical settings.

In this study, we introduce a new deep learning-based tool
for classifying ECG exams using images from a dataset of
99,746 exams acquired from ambulatory patients at a tertiary
referral hospital. The classification system encompasses three
classes: Normal (N), Atrial Fibrillation (AFib), and Other
cardiac condition (O). To validate the system, we conducted
an assessment using both an internal test set and an external
validation set. Furthermore, to demonstrate the practical
feasibility of our approach in clinical settings, we have
developed a screening system specifically designed for
implementation in Emergency Rooms (ER). This system
has been seamlessly integrated into the PACS of a tertiary
referral hospital, enabling the automatic detection of newly
acquired ECG exams within the ER. Following detection,
the ECG image exams, along with relevant demographic
information (age, gender, and ethnicity), are processed by our
classification algorithm. We further validate the effectiveness
of our method by comparing the algorithm’s classification
with assessments by a panel of experts using exams obtained
through this system. Currently, for research purposes, physi-
cians can access this application through a dedicated screen
located in the ER. Additionally, we conducted an evaluation
to assess the impact of including demographic information in
the classification system [14].
The main contributions of our work include:
• Development of a robust deep learning system designed
for the automatic classification of 12-lead ECG exam
images into three distinct classes: Normal (N), Atrial
Fibrillation (Afib), and Other cardiac condition (O);

• Training and assessment of the proposed system con-
ducted on images of ambulatory ECG examinations
acquired from a specialized tertiary referral hospital with
a distinct focus on cardiology.

• Rigorous validation of our system’s performance
through evaluation on an external dataset, extending the
reach of our research beyond the initial training dataset;

• Deployment of the proposed ECG classification system
into a real clinical setting (ER) and evaluation of the
system by comparing its results against a committee of
experts (cardiologists);
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• Detailed investigation into the significance of demo-
graphic information in the classification of N, AFib, and
O classes.

II. RELATED WORK
ECG classification is a research topic that dates back 60 years,
with pioneering works like Caceres et al. [20], which relied
on designing features based on clinical knowledge of the
ECG. Subsequently, the advent of openly accessible datasets,
such as the MIT-BIH dataset [21], provided an opportunity
for various research groups to delve deeper into this area.
However, a notable limitation of the MIT-BIH dataset is
that it contains only 2 ECG leads, whereas typical ECG
exams are recorded with 12 leads. Additionally, it contains
a limited number of patients (48). Using a dataset with
a limited number of leads and patients may hinder the
full generalization of the research findings to real-world
scenarios.

Despite the limitations of this dataset, numerous recent
studies have proposed various approaches for ECG clas-
sification. In this context, Marinho et al. [22] presented
a feature extraction-based approach for ECG heartbeat
classification. They evaluated various feature extraction tech-
niques, including Fourier, Goertzel, Higher-Order Statistics,
and Structural Co-Occurrence Matrix. The study employed
four different classifiers: Support Vector Machine, Multi-
Layer Perceptron, Bayesian, and Optimum-Path Forest. The
authors reported achieving accuracies above 90% with low
computational complexity. Additionally, in a recent study by
Houssein et al. [23], signal descriptors were extracted based
on one-dimensional local binary pattern (LBP), wavelet,
higher-order statistical, andmorphological information. They
employed a support vector machine classifier to categorize
ECG heartbeats into five classes, achieving an accuracy rate
exceeding 98%.

The availability of large-scale 12-lead ECG datasets,
such as the 2018 China Physiological Signal Challenge
(CPSC) dataset [24], has enabled the exploration of data-
hungry approaches like deep learning. In this context,
Ribeiro et al. [18] introduced a convolutional neural network
(CNN) inspired by the ResNet architecture to classify
12-lead ECGs. Their study employed the most extensive
ECG exam dataset to date (CODE dataset), comprising six
classes: 1st-degree AV block (1DAVB), Right bundle branch
block (RBBB), Left bundle branch block (LBBB), Sinus
bradycardia (SBC), AFib, and Sinus tachycardia (STC). Their
model outperformed cardiology resident physicians, achiev-
ing F1 scores exceeding 80% for all classes. Additionally,
Che et al. [25] introduced a hybrid approach that combines
a transformer network with a CNN architecture. Through the
utilization of a link constraint to enhance the discriminative
power of ECG embedding vectors, they achieved favorable
classification results. Their research used the CPSC dataset
[24] and focused on classifying ECG exams into nine
different classes, including AFib, 1DAVB, LBBB, RBBB,
Premature atrial contraction (PAC), Premature ventricular

contraction (PVC), ST-segment depression (STSD), and ST-
segment elevation (STSE), obtaining a mean F1 score of
78.6%. Similarly, Dong et al. [26] used a depth-wise sepa-
rable convolutional network, along with vision transforms,
for ECG classification, also using the CPSC dataset. Their
approach demonstrated even higher effectiveness, achieving
a mean F1 score of 82.9%.

ECG classification based on 12-lead ECG signals has
demonstrated practicability and clinical relevance, making
it a preferred choice over approaches relying on the
MIT-BIH dataset. Nonetheless, it is essential to take into
account that a substantial number of medical facilities
store 12-lead ECG examinations in image format within
their data repositories [17]. Consequently, the feasibility of
employing signal-centric ECG techniques within hospital
settings becomes constrained. Recent works have addressed
this limitation by proposingmethods that classify ECG exams
using their image representations as input. For instance,
Gliner et al. [27] introduced both one-dimensional and image-
based ECG classification systems employing CNNs in both
approaches. They achieved accuracies exceeding 90% for
all cardiac conditions considered, with a 98% accuracy for
detecting AFib. For image-based ECG classification, they
mapped the ECG signals to a blank ECG chart. Using the
CPSC 2018 dataset, they obtained an AUC of 96% for AFib
classification, similar to the performance obtained using one-
dimensional signals (98%). Similarly, Sangha et al. [28]
also proposed an image-based ECG classification system.
They trained their model with the CODE data [18] using
an EfficientNet architecture and demonstrated that models
using ECG images perform comparably to those using one-
dimensional ECG signal models. The approach proposed
in [29], on the other hand, used a very small dataset for
training, so the generalization power is also compromised.

Table 1 presents a summary of recent studies on ECG
classification.

III. METHODS
A. DATA SOURCE
We employed 12-lead ECG exams collected between
2017 and 2020 from ambulatory patients visiting a spe-
cialized tertiary referral hospital in Brazil, with a primary
focus on cardiology. These examinations were acquired from
MORTARA™ ELI 250c electrocardiograph systems, which
digitally recorded the ECG signals. Additionally, the system
applied a series of filters to each recorded ECG signal to
ensure the retrieval of high-quality data. The process involves
applying a low-pass filter with adjustable cut-off frequencies
(40Hz, 150Hz, and 300Hz) along with a baseline filter.
This filtering procedure effectively eliminates both baseline
wander and high-frequency noise, including high-frequency
electromagnetic interference. Moreover, to mitigate the
impact of powerline interference, the MORTARA™ ELI 250c
electrocardiograph system incorporates a notch filter tuned
to the power line frequency. This notch filter effectively
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TABLE 1. Overview of recent ECG classification studies.

attenuates powerline noise, thereby contributing to the
reduction of signal artifacts and enhancing the overall quality
of the recorded ECG data.

The ECG signals are transmitted to the hospital’s PACS
through a dedicated gateway, ensuring integration and acces-
sibility of the recorded data within the medical facility. The
gateway seamlessly converts the ECG signals into 2D images
in the widely used Digital Imaging and Communications
in Medicine (DICOM) format, with dimensions of 3,320
× 2,219 pixels, facilitating easy storage, retrieval, and
analysis of the data within the medical system. The resultant
image is displayed in the form of an A4-format chart,
featuring a reference grid with time axis resolution of
25 mm/s and a voltage axis resolution of 10 mm/mV. For
the specific objectives of this investigation, these images
were transformed into the Portable Network Graphics (PNG)
format. Furthermore, an automated cropping process was
applied, resulting in the dimensions of 3,122 × 1,671 pixels.
This cropping step was designed to eliminate any sensitive
or confidential information located at the upper section of
the image as illustrated in Figure S1 of the Supplementary
Material.

Each ECG exam was accompanied by a diagnostic report
in structured text format. Exams with the same diagnosis
shared the same diagnostic text. The dataset consisted
of 52 different diagnoses, which were categorized into
three classes: N, AFib, and O. To construct the dataset,
we integrated patient demographic details, including age,
ethnicity, and gender. Patients with pacemakers or under
18 years of age were excluded from the study due to different
diagnostic criteria used for evaluating their ECG exams.
Additionally, exams without an associated diagnosis or with
ambiguous diagnoses, such as ‘‘ECG may present first-
degree atrioventricular block’’ were disregarded to ensure
the CNN learning process was not influenced by diagnostic
uncertainty. After implementing these exclusion criteria, the
resulting dataset, which we refer to as InCorDB, comprised
a total of 99,746 ECG exams collected from 64,192 unique
patients. It included anonymized 2D image ECG exams,
de-identified patient demographic information, and their
diagnostic reports (N, AFib, and O). This private dataset
complied with all pertinent ethical regulations and received
approval from the Institutional Review Board (IRB) under
registration number CAAE 45070821.3.0000.0068.

To demonstrate the generalizability of our proposed
method, we conducted testing on an external database
(CPSC) [24]. This dataset comprised 6,877 12-lead one-
dimensional ECG signals with durations ranging from 6 to
60 seconds. These signals were classified into nine different
classes: N, AFib, 1DAVB, LBBB, RBBB, PAC, PVC, STSD,
and STSE. Similar to the approach taken with InCor-DB,
we regrouped these nine classes into the categories N, AFib,
and O. Furthermore, patients under 18 years of age were
excluded from this dataset. Table 2 summarizes the datasets
utilized in our study.

B. DEPLOYMENT OF THE MODEL IN THE
EMERGENCY ROOM
We deployed our model in the ER of a tertiary referral
hospital system for research purposes. We established a
system to assess each newly acquired ECG exam within the
ER and generated a prioritized list of exams for the attending
physicians. Exams classified as AFib are given a higher
priority within this system.

The ER also employsMORTARA™ELI 250 electrocardio-
graph systems that are seamlessly integrated into the PACS.
Similarly to the InCorDB, the ECG exams obtained within
the ER underwent cropping to the dimensions 3,122 × 1,671
to safeguard patient information from exposure.

To deploy our model, we first developed a service that
processes each new ECG exam from the ER sent to the
PACS. It classifies the ECG and saves the information in a
database. This information is then exposed through a REST
service to a web client, which provides visual feedback to
the clinical staff in the ER. The web page is displayed on
a monitor in the ER. Patients are listed following a pri-
oritization protocol: exams classified as Atrial Fibrillation
(AFib) have the highest priority, followed by Other diseases
(O), and then Normal (N). Additionally, within the same
classification, more recent exams have lower priority. On the
web page, higher priority results in a higher position in the
spreadsheet.

Figure 1 shows our model deployment pipeline in a
hospital setting, seamlessly integrated into the hospital’s
dataflow infrastructure. The web application depicted in this
figure presents the actual interface accessible to doctors in the
emergency room for research purposes.
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TABLE 2. Demographic information of patients in our employed datasets.

To validate our model in the ER, we gathered ECG exams
from this unit over a period of one month. Subsequently,
our model was employed to predict the classification of each
ECG exam. To provide the ground-truth for the ECGs, two
cardiologists were provided with the same set of exams,
along with relevant information such as gender, age, and
ethnicity. Each cardiologist independently assigned each
exam to the following classes: N, AFib, or O. In cases
where the two cardiologists disagreed on the diagnosis of
an exam, a third cardiologist was consulted to determine
the final label. During our analysis, we excluded exams
conducted on patients below 18 years of age. However, due
to the unavailability of reports for the exams conducted in
the ER, we were unable to exclude exams from patients with
pacemakers. Consequently, we requested the cardiologists
to determine whether each exam belonged to a pacemaker
user or not. It is worth mentioning that the cardiologists are
board-certified with a minimum of 5 years of experience.
Throughout the one-month evaluation, a total of 1,074 valid
exams were collected.

C. DATA PREPROCESSING
We used images of ECG exams as input for our model
(Figure S1 of the Supplemental Material). A significant
portion of the information in an ECG image, such as color
information, holds limited relevance for diagnostic purposes.
Additionally, considering the consistent grid scale used in
our ECG exams (25 mm/s on the x-axis and 0.5 mV/mm on
the y-axis), the grid-related information is non-informative.
Therefore, our primary goal during the preprocessing stage
was to optimize the efficiency of our CNN by removing all
nonessential information.

The initial step involved converting the 2D ECG images
into grayscale. Subsequently, a threshold filter was applied
to remove the reference grid, but this process introduced
noise. To eliminate the noise, a morphological erosion
operation followed by dilation was performed. Afterward,
each lead, including the 10-second DII lead, was individually
cropped from the ECG image. To decrease the computational
complexity, the images were resized to 30% of their original
size. Consequently, the short-lead images (DI, DII, DIII,
avR, avL, avF, V1, V2, V3, V4, V5, and V6) were resized
to dimensions of 144 × 224 pixels, while the long-lead
image (10-second DII) was adjusted to dimensions of
141 × 898 pixels. The short-lead images were combined to
form a 3D volume, which, along with the long-lead image,

constituted the input for our proposed CNN architecture.
Figure 2 outlines the preprocessing steps involved in our
methodology: 1) ECG image input, 2) Transformation to
grayscale and grid removal, 3) Individual lead cropping and
resizing, 4) Preprocessing output: 3D stack of short leads and
the 10-second DII lead.

To test the network using the CPSC dataset, it was
necessary to transform the one-dimensional signals into cor-
responding image representations. To achieve this, a MOR-
TARA ECG image template without any signal was used as
the background, onto which the signals were superimposed.
This image-based representation required leads with a
minimum length of 10 seconds. However, some signals in
the CPSC dataset did not meet this requirement. To address
this challenge, the insufficiently long signals were padded by
replicating the initial segment until they reached a duration of
10 seconds.

The demographic information data also underwent pre-
processing procedures. Gender information was mapped,
designating male and female patients as 1 and 0, respectively.
A similar approach was taken for ethnicity, assigning a value
of 0 to patients identified as African American or mixed, and
a value of 1 to others. To normalize age, the actual age was
divided by 100.

D. PROPOSED NETWORK ARCHITECTURE
The proposed approach is a CNN with three branches: a
stack of short leads (DI, DII, DIII, avR, avL, avF, V1,
V2, V3, V4, V5, and V6), a long lead (10-second DII),
and demographic information (age, gender, and ethnicity).
Every lead is independently extracted through cropping
from the preprocessed ECG images. Subsequently, the short
leads are assembled into a 3D volume with dimensions of
144 × 224 × 12, which is then input into a series
of 3D convolution layers. In parallel, the long lead
undergoes processing through a set of 2D convolution
layers. The outputs of these two branches are concatenated
with the demographic information and connected to a
fully connected layer, followed by a classification output
layer.

In the 2D branch, we employ four consecutive convo-
lutional blocks. Each block consists of a 2D convolution
layer with 16 filters of size 3 × 3, followed by a batch
normalization layer. Another 2D convolution layer with the
same configuration is added, followed by another batch
normalization layer, and finally, a max-pooling layer with a
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FIGURE 1. Diagram of the integration of the proposed method within the hospital dataflow infrastructure.

FIGURE 2. Diagram with the preprocessing steps.

pool size of 2 × 3. Two additional convolutional blocks with
the same layout are stacked. However, the pool size of the
max-pooling layer in these blocks is reduced to 2 × 2. This
2D branch was built upon previous work [30].

Table 3 provides an overview of the layers within the
2D branch, including the employed number of filters, kernel
sizes, and the parameter count for each layer. In total, the
number of parameters of this branch amounts to 26,448.

The 3D branch consists of six convolutional blocks. Each
block contains a 3D convolutional layer, followed by a batch
normalization layer, another 3D convolutional layer, another
batch normalization layer, and finally a max-pooling layer.
Each 3D convolutional layer uses 16 filters of size 3× 3× 3.
The pool size of the max-pooling layers in the first two blocks
is 2 × 2 × 2, in the third block it is 3 × 2 × 2, and in the last
three blocks it is 1 × 2 × 2.

Table 4 presents the layers in the 3D branch, along with
the number of filters, kernel sizes, and the corresponding

number of parameters for each layer. In total, the number of
parameters for this branch amounts to 77,424.

The outputs of the 2D and 3D branches are concatenated
with the demographic information, and this concatenated data
is subsequently fed through a dense layer featuring 16 units.
Finally, a dense layer with 3 units and a sigmoid activation
function is employed for classification into three classes: N,
AFib, and O using a multi-label classification setup, i.e., two
classes can be classified as true simultaneously. Gender, age,
and ethnicity information are significant factors in clinical
practice for the diagnosis of cardiovascular diseases [31].
Therefore, this information is incorporated into the network.
Table 5 summarizes the proposed model, demonstrating the
concatenation of the outputs from the 2D and 3D branches
with the demographic information (age, gender, ethnicity).
In total, our model contains 106,547 parameters. The
proposed architecture for ECG classification is illustrated in
Figure 3.
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Our proposed deep learning model presents a novel multi-
branch approach to ECG classification, offering several
distinct advantages. Firstly, in the 2D branch, we leverage
the DII lead as input, which is usually used for arrhythmia
classification. By focusing on this lead, this branch achieves
better performance in detecting and classifying arrhythmia,
enhancing its diagnostic capabilities for these specific dis-
eases. Moreover, our model incorporates a 3D branch, where
we utilize a stack of all ECG leads. This integration allows us
to capture inter-lead information and morphological changes
occurring in multiple leads simultaneously. This improved
ability to analyze inter-lead dynamics empowers our model
to achieve accurate and robust predictions, making it highly
suitable for diagnosing conditions that are characterized
by intricate multi-lead patterns. Also, we have integrated
demographic information (age, gender, and ethnicity) that
have been identified in the literature as important factors
in ECG classification [14]. Lastly, our model’s compact
size is a significant advantage compared to conventional
image classification architectures, such as ResNet and
VGG, which usually have millions of parameters. With just
106,547 parameters, our model ensures faster training and
more efficient inference. Furthermore, the reduced parameter
count mitigates the risk of overfitting, enhancing the model’s
generalization capabilities.

TABLE 3. Summary of the 2D branch of the proposed model.

TABLE 4. Summary of the 3D branch of the proposed model.

E. DATA SPLIT
The InCor-DB dataset was employed both for the training
and comprehensive evaluation of our proposed methodology.

TABLE 5. Summary of the proposed CNN model.

As an initial step, a subset comprising 20% of the dataset was
isolated to serve as a test set, meticulously safeguarded from
any involvement during the entirety of the training phase.
This test set was solely used to evaluate the performance
of our system and was not involved in any decision-making
process during training. To avoid any patient overlap between
different data splits, we took great care during the separation
process, ensuring that exams from a patient could not appear
in both the test set and any other splits. This critical step aims
to prevent over-optimistic results that may not accurately
represent real-world scenarios, as previous studies have
highlighted [32].

For the remaining 80% of the dataset (referred to as the
‘‘work dataset’’), we employed two distinct data splitting
strategies. Firstly, to train our ECG classification system
for N, AFib, and O classes, we used a train-validation
split, allocating 75% of the work dataset for training and
25% for validation. Secondly, to assess the significance of
demographic information on the performance of the ECG
classification system, we adopted an 8-fold cross-validation
approach. We chose the K-fold strategy because it allows
for better comparison between different CNN setups, with
eight different setups being compared in this case. In both
strategies, we ensured that exams from the same patient
remained within the same split, guaranteeing that no patient’s
data was spread across multiple splits.

F. NETWORK TRAINING
We conducted the network training process in the following
manner. Firstly, we pre-processed each image in our dataset
as explained in Section III-C. These pre-processed images
and the demographic information (age, gender, ethnicity),
were stored as HDF5 and CSV files, respectively. The
diagnostic reports for each ECG exam were mapped to the
three classes considered in this work: N, AFib, and O. It is
worth noting that an ECG exam could belong to both the
AFib and O classes, making it a multi-label problem. Next,
we performed our data split, as described in Section III-E,
where 20% of the dataset was reserved as an internal test
set, while the remaining 80% was used for training and
validation of the model. The proposed network, as outlined
in Section III-D, consists of three branches: a 2D branch
(receiving the DII long lead), a 3D branch (receiving a
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FIGURE 3. Proposed network architecture.

stack of the 12 short leads), and a demographic branch
(receiving age, gender, and ethnicity information). The
demographic information was also preprocessed as described
in Section III-C. For the training process, we utilized
the Adam optimizer [33] with a learning rate of 0.001,
set 30 epochs for training and used a batch size of 64.
Additionally, we implemented an early stopping callback
with patience of 9, which automatically halts the training if
the validation loss does not decrease within 9 epochs, thus
preventing overfitting to the training dataset. Other employed
hyperparameters can be found in Table 6. The model was
trained using binary cross-entropy loss, and we applied
weights to samples from minority classes to address the
imbalanced dataset issue. Once the training was completed,
we evaluated the model on the internal test set.

We built our CNN using the Keras API (version 2.4.3)
with the TensorFlow backend (version 2.3.0) in Python
(version 3.6.8). The training was conducted on a computer
server equipped with four 16 GB V100 GPUs, 128 GB of
RAM, and 16 4 GHz CPUs. The entire training dataset,
approximately 4 GB in size, was directly transferred to
the computer RAM through a dedicated partition. This step
accelerates batch construction during training and reduces
training time. Training and evaluation on the InCor-Db
dataset took approximately 4 hours.

G. EXPERIMENTAL SETUP
Internal and external validation procedures were executed
utilizing the InCor-DB and CPSC datasets, respectively.
Furthermore, the validation of our method encompassed the
utilization of 1,074 examinations acquired over a duration
of one month within the ER setting of a tertiary referral
hospital. Across all datasets, a classification scheme was

TABLE 6. Hyperparameters employed in the experiments.

employed, encompassing the categories of N, AFib, and O.
To facilitate a comprehensive benchmarking against prior
research, five essential classification metrics were adopted,
including Sensitivity (Se), Specificity (Spe), F1-score (F1),
Area Under the Receiving Operating Curve (AUROC), and
Accuracy (Acc).

In the upcoming sections, we will discuss the results
from analyzing the test sets in the InCor-DB and CPSC
datasets, along with evaluating our method’s effectiveness in
the Emergency Room of a tertiary hospital over a month.
In this case, we compared our method’s results with those of
three experienced cardiologists, each with at least five years
of experience. We also investigated the impact of including
demographic variables on our model’s performance.

IV. RESULTS
A. PERFORMANCE ON INCOR-DB DATASET
Using 20% of the InCor-DB dataset for testing, we achieved
the following results for theAFib class: Se 94.5%, Spe 98.4%,
F1 90.3%, AUROC 99.1%, and Acc 98.0%. Notably, our
model exhibited a high sensitivity value for detecting AFib,
providing compelling evidence for its successful applicability
for screening purposes. Additionally, commendable results
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were obtained for the Normal and Other classes, with an AUC
exceeding 90%. For a comprehensive overview of the results
obtained on this dataset, please refer to Table 7. Also, in the
Supplemental Material, we provide the confusion matrices
and Receiving Operating Curves for the three considered
classes in Figures S2 and S3, respectively.

We employed the Gradient-weighted Class Activation
Mapping (Grad-CAM) technique [34] to provide insights
regarding the interpretability of our network’s predictions.
To do this, we applied Grad-CAM to one ECG sample from
each of the three classes. Since our model has multiple
inputs, we performed this interpretability analysis separately
for each input branch (2D and 3D). Afterward, we combined
the results into a single image for each example. The
interpretability findings for ECG samples in the Normal (N),
Atrial Fibrillation (AFib), and Other (O) classes can be found
in Figures S4, S5, and S6 in Section IV of the Supplementary
Material.

TABLE 7. Performance of ECG classification in the InCor-Db dataset
test set.

Figure 4 displays the training progress of our network,
presenting the loss value and mean AUROC value over the
epochs for both training and validation sets.

FIGURE 4. Loss and ROC obtained during training for both the train and
validation datasets.

B. EXTERNAL VALIDATION ON CPSC DATASET
It is important to consider that all ECG exams in the
InCor-DB dataset were captured using the same equipment,
which introduces the possibility of potential bias. To demon-
strate the generalizability of our results, we applied our

trained network to the ECG data from the CPSC dataset.
For Atrial Fibrillation, our method achieved the following
performance metrics on the CPSC dataset: Se of 88.6%,
Spe of 97.8%, F1 of 89.2%, AUROC of 97.5%, and Acc of
96.2%. Despite the CPSC dataset comprising patients from a
different hospital, country, equipment, and using 1D signals
instead, our method still achieved comparable results to our
internal dataset (InCor-DB). Table 8 provides a summary of
the results obtained for the CPSC dataset. The Supplemental
Material provides additional results regarding the confusion
matrices and Receiving Operating Curves obtained in this
dataset in Figure S2 and S3, respectively.

TABLE 8. Performance of ECG classification on the external validation set
in the CPSC dataset.

Table 9 presents a comparison of our achieved results for
AFib classification in the CPSC dataset with other relevant
recent studies from the literature. Regardless of whether they
used image or signal inputs, these works have been evaluated
on the same CPSC dataset.

C. MODEL DEPLOYMENT INTO THE EMERGENCY ROOM
We also evaluated our models using the 1,074 ECG exams
obtained from the ER during a one-month period. Our
model’s predictions were compared to the label obtained
through a committee of cardiologists. The results obtained
from this evaluation are presented in Table 10. Figures S2
and S3 of the Supplemental Material show, respectively, the
confusion matrices and Receiving Operating Curves for the
classes N, AFib, and O obtained in this dataset.

D. ANALYSIS OF DEMOGRAPHIC VARIABLES
We conducted an analysis to investigate whether the inclusion
of demographic variables, namely gender, age, and ethnicity,
would enhance the performance of the model. We employed
an 8-fold cross-validation approach, training the model with
various configurations: (0) No demographic variable; (1) All
demographic variables; (2) Gender and Age; (3) Gender
and Ethnicity; (4) Age and Ethnicity; (5) Gender; (6) Age;
and (7) Ethnicity. However, our findings, presented in
Tables 11, 12, and 13, indicate that the inclusion of these
demographic variables did not improve the performance of
our classification model.

V. DISCUSSION
We have successfully developed an externally validated auto-
mated diagnosis tool that accurately detects rhythm disorders
from ECG images. This tool displayed strong discriminatory
capabilities across various test sets, effectively discerning
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TABLE 9. Comparison with the literature regarding AFib classification in the CPSC dataset.

TABLE 10. Performance of ECG classification on the ER.

between the specified classes. Furthermore, it demonstrated
resilient generalization when applied to an external dataset.

The use of ECG images instead of ECG one-dimensional
signals offers several advantages, particularly in hospital
environments where ECG devices commonly store signals
as images. This compatibility simplifies the integration of
image-based methods into clinical practice, making them
more practical for real-world applications. However, it is
important to note that ECG images come with larger input
sizes, which can lead to an increase in the computational
complexity of CNNs. Additionally, to accommodate these
larger inputs, ECG images often require resizing before
being used as inputs to the CNN. This resizing process may
introduce the risk of information loss.

Although ECG images typically require larger CNNs for
accurate classification due to their size, we introduced a
relatively compact network with just 106,547 parameters in
this study. In contrast to other image-based ECG studies
that employ multi-million parameter networks, such as VGG,
our approach employs a notably smaller neural network.
This provides better generalizability and faster inference
times. Furthermore, the visualization of abnormal changes
in various leads simultaneously by physicians plays a crucial
role in identifying several diseases during ECG examinations.
For example, left ventricle enlargement can be identified by
specific indicators, including an elevated amplitude of the
QRS complex in leads V1 and V6, among others. In an effort
to replicate the methodology of physicians and investigate the
interplay between leads, our proposed network architecture
integrates a 3D stack comprising the short leads. This
design allows for the detection of abnormalities. Furthermore,
the isolated use of the 2D network on the 10-second DII
lead aids in identifying irregularities in heart rhythm. Such
an architecture enhances the adaptability of the proposed
model, making it suitable for deployment across various ECG
configurations.

The test set is designed to represent data from a variety of
situations, aiming to ensure its relevance in future scenarios.

Yet, many recognize that models can underperform on new
datasets [35], [36]. Nonetheless, when applying automated
classification systems in medical settings, they must be
consistently reliable. Therefore, to validate our model in a
different setting, we tested it with the CPSC dataset, derived
from ECG tests in Chinese hospitals. Our model obtained
good results, emphasizing its strong capability to adapt to
different datasets.

The results we obtained from the CPSC dataset allow us to
assess the effectiveness of our proposed approach concerning
previous studies in the field. The comparison is particularly
centered on the AFib class and is presented comprehensively
in Table 9. Our approach, utilizing two-dimensional data (2D
Images), demonstrated metrics that are slightly lower but
still comparable to those achieved by [26] and [27], both of
which use one-dimensional ECG signals as input. Notably,
our F1-score surpasses that of [25], even though our AUROC
and Acc are slightly lower. Furthermore, we conducted a
comparative analysis of our method with the image-based
ECG classification approach proposed by [27], and ourmodel
achieved a higher AUROC score. It’s important to note that
the models we compared against were trained on the CPSC
dataset, whereas our model underwent exclusive external
testing, without any exposure to ECG examples from the
CPSC dataset during training. In summary, despite external
evaluation on the CPSC dataset, our approach delivers results
comparable to the literature employing one-dimensional ECG
signals while also outperforming other existing image-based
ECG classification approaches.

Nonetheless, while there is an extensive body of literature
on ECG classification, the implementation of such systems
in hospital settings to improve medical care remains limited.
Despite numerous studies reporting exceptional results, the
clinical validation and real-world impact on healthcare are
still unknown. To address this gap, in addition to proposing
a new method for ECG classification, we integrated and
evaluated our methodology into the ER of a tertiary
referral hospital for research purposes. The primary goal
of this system is not to replace physicians or provide
definitive diagnoses for patients, but rather to serve as a
classification/prioritization assistant tool. Its purpose is to
assist in identifying patients who require immediate care.
By implementing this system, the efficiency of screening
services in ERs can be significantly enhanced, given the high
volume of daily patients. Given the increased cardiovascular
risk associated with AFib, prioritizing patients with this
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TABLE 11. Demographic variable analysis for Atrial Fibrillation class.

TABLE 12. Demographic variable analysis for Normal class.

TABLE 13. Demographic variable analysis for Others class.

condition in ERs is highly desirable. Therefore, we developed
a system that utilizes our ECG classification methodology to
provide physicians in the ER with a prioritized list of exams,
giving higher priority to exams classified as AFib.

An inherent limitation of current AFib detection algo-
rithms is their primary focus on distinguishing AFib from
normal rhythms, disregarding other types of arrhythmias or
cardiac conditions within different categories. In this study,
we specifically defined three classes: Normal, AFib, and
Others. As a result, our investigation solely revolves around
identifying these three classes.We are building a curated ECG
data set to expand the scope by including a larger number
of classes. Furthermore, CNNs tailored for image inputs
often require larger computational resources. To manage
complexity, we resized ECG exam images before inputting
them into our network, though this could potentially lead to
data loss affecting classification. Our approach’s advantages
and drawbacks are summarized in Table 14, offering a
comprehensive overview of our methodology.

In the domain of one-dimensional signals, the SHAP
method was employed by [37] to visualize significant
segments of ECG signals. This approach proved beneficial
in identifying AFib and other cardiac conditions, aligning
with standard ECG interpretation. Additionally, the Grad-
CAM method has also been utilized for image-based ECG

classification in [28]. Unfortunately, the latter study failed to
establish clear connections between the interpretations and
specific cardiac conditions. Given the increasing concerns
surrounding the use of black-box systems in critical domains
like medicine [38], [39], concerns regarding interpretability
are particularly noteworthy.

We attempted to apply the Grad-CAM technique to gain
insights into the decision process of our CNN using three
ECG image examples, one for each class (N, AFib, and O).
We present our obtained results in Section IV of the
SupplementalMaterial (Figures S4, S5, and S6). In Figure S4,
which showcases the Grad-CAM results for an ECG exam
classified as class N, it is evident that the CNN primarily
directs its attention to the P waves of the ECG heartbeats,
with a particular focus on the DII long lead (the bottom lead).
The presence or absence of the P-wave is a crucial marker for
atrial fibrillation detection, suggesting that the network might
be leveraging this information to rule out the possibility of
AFib. However, the interpretability on the short leads does
not reveal a specific pattern that can be precisely correlated
with clinical information. For the ECG exam with AFib in
Figure S5, it seems that the network is focusing its attention
on the QRS complex, especially in the short leads. This
could indicate that the network is detecting irregular rhythms,
another marker of AFib. However, the interpretability on the
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TABLE 14. Advantages and drawbacks of the proposed method.

DII long lead does not provide any interpretable information
regarding AFib detection. In Figure S6, which represents an
ECG exam diagnosed as class O, the network’s attention
appears to be on the QRS complex of the short leads,
particularly leads V4, V5, and V6. These QRS complexes
exhibit an enlarged size potentially prompting the network
to pay more attention to this region, which could serve as
an indicator of an abnormality. However, the DII long lead’s
interpretability results show sparse attention to different
regions, encompassing the P-wave, QRS complex, and
T-wave, making it challenging to draw any interpretable
conclusion based on this lead.

It is important to note that while Grad-CAM is a popular
technique for interpretability, it still does not provide a clear
and straightforward interpretation of the CNN’s decisions.
The results of Grad-CAM require users to ‘‘interpret’’ them,
making the process somewhat convoluted as ‘‘interpreting
the interpretability technique’’. Moreover, since we need to
configure the activation layer to evaluate in Grad-CAM,
different choices may lead to distinct results and interpreta-
tions for the same ECG example. This inherent variability
limits the reliability of the interpretability method. Given
these limitations, we acknowledge the need for future studies
on specific interpretability methods tailored towards ECG
exams. Addressing these shortcomings would be beneficial
to obtain more transparent and clinically meaningful insights
from deep learning models applied to ECG data.

Furthermore, while incorporating demographic informa-
tion into automatic ECG classification systems has been
suggested [14], our findings indicate that the inclusion
of these variables did not improve results for the classes
examined in this study, as shown in Tables 11, 12, and 13.
Nevertheless, we acknowledge that demographic variables
may hold importance for new classes, and we plan to conduct
further investigations in this area in future studies.

In summary, we have successfully developed a robust and
versatile artificial intelligence image-based ECG classifica-
tion system. This system has been seamlessly integrated into
an end-to-end framework, making it readily applicable in ER
settings for the screening of 12-lead ECG exams.
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