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ABSTRACT Transfer Learning (TL) is a methodology that allows the re-train of a Machine Learning (ML)
algorithm (like Neural Networks or NN’s) for a new task with the advantage of the previous training acquired
knowledge; with this methodology, it is possible to train NNs for a new task even if the data is scarce.
The present study uses this approach to train NNs to classify Electroencephalography (EEG) signals that
include Movement/Imagery (MI), first with a publicly available data set and then using it to validate the
training process of a small dataset of acquired data. The first part of the article describes the methodology
for acquiring EEG signals that imitated the information found in the publicly available dataset Physionet
Motor/Imagery. The second part compares the training process for NNs. The first NN is a Bidirectional
Long-Short Term Memory (BiLSTM) trained from scratch with the Physionet dataset, and the second NN
is a CNN called SqueezeNet trained following the TL method with the small acquired dataset, reaching an
accuracy of 91.25% in the BiLSTM with the scratch method and an accuracy of 92.33% with the transfer
learning method for the EEG MI signal classification.

INDEX TERMS BCI, EEG signal processing, machine learning, transfer learning, motor/imagery.

I. INTRODUCTION
Electroencephalography (EEG) is the study of electrical brain
activity. It is measured through electrodes placed on the
scalp surface and then recorded [1]. These electrical signals
are associated with communication between neurons and
different body parts [2], depending on electrode position in
the scalp associated with a brain region, a specific brain
function, or neuron connectivity. These records also could
reflect the activation of neurons during the execution of a
function or the response to external stimuli.

Because of the many advantages of the EEG signals [3]
like cost and their capacity to represent the neurocognitive
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process, this study is gaining space in developing the Brain-
Computer Interfaces(BCIs). BCIs are systems that allow
the connection between a person and the environment
using the analysis of the electrophysiological response
through the acquisition and encoding of physiological [4]
signals like Electroocoulography (EOG), Electromyography
(EMG), Electroencephalography (EEG), etc. The use of
BCI technology is increasing with applications in a wide
field of action like gaming, arts, and health applications
[5]. In the BCIs for health applications, some fields that
benefited from their use are the fields of diagnosis and
rehabilitation. Diagnosis or Medical Diagnosis is a task
related to the process of characterization of the signs and
symptoms [6] and causes human diseases for their subsequent
treatment. On the other hand, rehabilitation is a collection
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of clinical methods focused on offering solutions to several
disability conditions and improving the body functions that
could contribute to a person’s social re-integration [7].
These two concepts are closely related because rehabili-
tation is in constant need of professionals for diagnosis
and assistance to revise the medical procedures taken to
restore the patient’s functions and improve their quality
of life quality, and the application of good rehabilitation
measures allows the evolution of a medical diagnosis and
the treatment of the health conditions. For example, these
systems are used in upper limb rehabilitation [8], helping
patients to visualize their progress through the recording and
display of EEG signals in computerized systems, promoting
the continuity of the treatment and avoiding abandoning
therapy.

The analysis of EEG signals possibilities to find trigger
signals for BCI technologies because EEG reflects the mental
state and can capture the brain dynamics [9] like the differ-
ence between imaginary and real motor movement patterns.
Motor Imagery (MI) are signals related to the cognitive
process (imagination) of executing a movement (such as
grasping or stomping) without the muscular activation [10].
Nowadays, the use of Machine Learning (ML) algorithms

has made the signal analysis task easier. These algorithms
apply statistical techniques using computational tools to
predict values of a function [11]. This estimation is known
as ‘‘learning’’ and can do diverse tasks, as mentioned
before, like classification, clustering, ranking, etc., and is
useful to cope with a large amount of data. According to
the input information and their designated task ( type of
estimation or learning), these algorithms can be divided into
supervised, unsupervised, and reinforcement learning [12].
Examples of these ML algorithms are Neural Networks(NN)
[13], Linear Discriminant Analysis [14] Decision trees (DT)
[5], Support Vector Machines (SVM) [15], Kean-Nearest
Neighbor(KNN) [5].

Of all the previously mentioned algorithms, NNs have
gained popularity in the rehabilitation field [16] due to
their ability to generalize information (prediction) with large
size of training data, their training time, and accuracy
compared with otherML algorithms. The NNs are algorithms
inspired by the structure and function of biological neurons,
imitating the interconnection to process information. Each
NN consists of nodes (computational units) arranged in
layers (commonly the input, hidden state, and output layers)
interconnected with each other. The connection is called
weight, and the numerical value of the weight reflects the
relation between the input and the output. The sum of the
operation between the weight and the input is evaluated by a
function(like the sigmoid function) that contains a threshold,
depending on the value of the comparison between them,
which will be the generated output.

The process when the networks are pondering the depen-
dencies between the input, the threshold, and the output is
known as ‘‘training’’. After this training process, the NNs
can calculate the weights of the inputs that will trigger a

response; this is the prediction phase. NN possesses different
architectures with different characteristics, advantages, and
disadvantages. For example, Convolutional Neural Networks
(CNN) are NNs that possess a layer with a convolution
operation. The convolution operation is the application of
a filter matrix after the input layer that will be tuning
in the training phase; this type of operation has had
good results in image processing [17]. On the other hand,
Recurrent Neural Networks (RNN) are networks that possess
the capacity to give context to the output by creating a
cycle between the input and the output and are widely
used in machine translation (an automatic translation of
a text) from their capacity to process information from
a sequence (such as sentences) [18], making predictions
more accurate. A sub-type of RNN architecture can also
‘‘store’’ information by having a memory block or memory
cell; these are the Long-short-term memory (LSTM) NNs.
This RNN architecture is distinguished from others by
having a memory block that allows them to ‘‘remember’’
information, which made it useful for recent works in EEG
classification [19].
One technique that helps to copewith problems ofMachine

Learning where the input data could be insufficient to feed an
algorithm (becauseML algorithms are greedy) is the Transfer
Learning technique. Also called Inductive Transfer, Transfer
Learning (TL) is defined as ‘‘a situation where what has been
learned in one setting is exploited to improve generalization
in another setting’’ [20]. Transfer Learning enables reusing
existing knowledge of a previously trained algorithm for a
new related task like classification or pattern recognition [21].
This technique has advantages like improving the baseline
performance, reducing the overall learning time because the
model does not learn from scratch but for a pre-trainedmodel,
and improving the final performance. For example, at [22],
is described as a transfer learning technique used to train a
deep learning model called EEGNet [23], which is described
as a compact CNN focused on EEG-based BCIs. At this
work, the CNN is re-training with two small datasets, the
BCI Competition III IIIa and the BCI Competition IV. The
first of the two datasets contains four classes of MI EEG
signals of left and right hands, feet, and tongue movements
for three subjects. The second dataset is a classical dataset
involving 4 MI samples of nine subjects’ left and right hands,
feet, and tongue movements. For the obtaining of features,
the Filter Bank Common Spatial Patterns(FBCSP) was used,
and lasso regularization was used for regularization. The
results for the classification task of this work were 88.89%
average accuracy for the BCI Competition III IIIa and 81.34%
average accuracy for the BCI Competition IV. Another work
involving the transfer learning process is the one found at
[24]; this work describes using the BCI Competition IV 2a
dataset containing MI information for the classification task.
To this set it was applied spatial filtering, frequency filtering,
a data augmentation process, and a Continuous Wavelet
Transform(CWT) were before fed the implementations of
three hybrid models of NN’s: the first is a CNN/LTSM with
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a final accuracy of 86%, the second a Resnet-50-LSTM with
an accuracy of 90% and finally an Inception v-3-LSTM with
an accuracy of 92%.

The present work discusses the classification of MI EEG
signals using two different NNs, a Bidirectional Long-
Short Term Memory(BiLSTM) NN and a CNN architecture
called SquezeeNet, with two training techniques: training
an algorithm from scratch and using the transfer learning
process. Also, the difference in their performance is discussed
using the classification of a small dataset of MI signal
information acquired in the present research as a validation
method.

The paper is organized as follows: Section II provides
information about the Materials and Methods used in
the present. This section describes the publicly available
dataset used for training, and the process followed to
generate our dataset with a limited number of subjects.
Also describes the methodology for pre-processing, feature
extraction, feature selection, normalization, and the archi-
tectures and characteristics of the classification algorithms.
Section III exposes the present results, remarking on the
differences in various performance metrics of the differ-
ent ML algorithms implemented used for the MI EEG
classification and the differences in the training process
(scratch and TL). Section IV discusses the impact of the
present results according to the founding at state of the
art and the recommendations for further studies analysis.
Finally,V presents some conclusions derived from the
present and outstanding points inferred from the performance
metrics.

II. MATERIALS AND METHODS
Because the EEG signals are the reflection of the continuous
and oscillating brain activity, the signals need to be processed
and analyzed to capture this non-stationary information. The
pre-processing allows the EEG signals to be easier to read
and impact the performance of the algorithms [25]. Also, the
methodology followed for the feature extraction is relevant
to the class (class in ML is a label that is assigned to a
data cluster that has similar characteristics)composition for
the different ML algorithms and the classification process.
Because the ML algorithms work through the generalization
of new examples, the use of two different sources of data
allows us to verify the learning process of the algorithms
and also the methodology for the acquisition of signals.
This section will describe the different followed processes
(that can be seen in Figure 1) consisting of the description
of the datasets, the pre-processing done at the signal, the
features extracted, the selection of the information relevant
to the system, and the classification achieved using different
algorithms and techniques, to validate the learning process of
ML algorithms, with the acquisition of new data that could
be used as new information for the generalization process of
the algorithms.

As materials, the present work used a Dell Inspiron 15
3000 with an AMD A9-9425 processor, two cores, a Radeon

FIGURE 1. Flowchart of the methodology followed for EEG MI signal
classification at the present.

R5 graphic card, a RAM size of 8GB and DDR4 SDRAM
with a Windows 10 operative system, and an RB2020a
version of the Matlab software. Also implemented some
algorithms using the Python Anaconda distribution and the
Spider IDE that has pre-loaded many scientific packages like
Matplotlib, Numpy, etc.

A. DATASETS
This subsection will explain how are composed the datasets
used in the present. Because EEG MI information is related
to the brain regions associated with the movement, six
EEG channels that could reflect this information were
selected. Figure 2 highlights in the 10/20 system of electrode
positioning the selected channels (Fc3, Fc4, Cz, Cpz, Fcz, and
Fpz) according to their position in the sensorimotor area of
the brain associated with the motor activities.

FIGURE 2. 10/20 Electrode positioning system with selected channels
highlighted. These channels were choose according to the motor area
associated with movement activities in the present.

1) PUBLIC DATASET
In the present is used, the Physionet Motor/Imagery Dataset
[26]. This public dataset used in previous works like [19],
[27], and [25] contains records of EEG signals. As previously
mentioned, these records were taken using the BCI2000
software and 64 channels. These records consist of 1500 one
and two-minute EEGs obtained from 109 subjects. Each
subject performed 14 experimental runs (or trials): two
one-minute baselines (first with open eyes, then with eyes
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closed) and three two-minute length runs of each of the
four tasks:

• Task 1 (open and close left or right fist).
• Task 2 (imagine opening and closing left or right fist).
• Task 3 (open and close both fists or both feet).
• Task 4 (imagine opening and closing both fists or both
feet).

Figure 3 represents the final composition of the dataset,
which includes 109 experimental subjects, 14 trials of the four
tasks with three repetitions for movement, and imagination of
the movement of two minutes of duration each.

FIGURE 3. Public dataset (Physionet Motor/ Imagery) composition of the
full dataset divided by task, trials, and subjects.

2) GENERATED DATASET
This data set was acquired by recording EEG signals using
a system for the g.tec company called g.GAMMAsys. This
system is designed to record EEG signals through a cap with
active, non-invasive electrodes. This cap is connected to a
g.GAMMAbox, which is the link between the electrodes and
the biosignal amplifier (g.USBamp). Some of their technical
specifications are that the equipment possesses a battery
supply of 9V (from a 110 V of AC and a 60 Hz power line),
a DC Filter of 10 kHz, etc. The g.GAMMAbox used in the
present allows for connecting up to 16 different electrodes,
but only six were used with a reference channel. These six
channels were previously mentioned and found in Figure 2.
This systemwas selected for themedical grade records and its
ability to reduce the artifacts in the records, the fast electrode
montage, and the multi-channel recordings.

The present dataset was obtained under the Helsinki
Declaration [28] and with the signed consent of the par-
ticipants in the study and during two days of trials. First,
the cap was allocated with the electrodes in the volunteers’
scalp. This cap is connected to the previously mentioned
g.GAMMAsys (g.GAMMAbox and the amplifier) and the
system are connected to a computer to save the records using
the g.tec software. Once the equipment was placed, the trials
were realized. Four subjects performed eight experimental
trials of one-minute recording with open eyes and then one
minute with eyes closed and three trials of twominutes length
of each of the two tasks:

• Task 1. An image appears on the screen and indicates
the movement of the right, left fist, or both fists with
a color and a word. The subject opens and closes the
corresponding fist or fists until the target disappears.
Then, the subject relaxes. ( Open and close left or right
fist. )

• Task 2. An image appears on the screen and indicates
with a color and aword the imagination of themovement
of the right, left fist, or both fists. The subject imagines
opening and closing the corresponding fist or fist until
the target disappears. Then, the subject relaxes. (Imagine
opening and closing left or right fist.)

At [26], it was described that the stimulus to perform the
MI was a visual stimulus, so the subjects were conditioned to
perform or imagine the movement under visual stimuli. The
obtained EEG records have a sample rate of 256 Hz.

Because the EEG records obtained were few and to secure
the performance of the ML algorithms, it was decided to
record three minutes of the movement task and then do a
data augmentation process, where the signal was segmented
according to the following:

• Fragments of 45 seconds of the signals of movement and
imagination of the movement

• Fragments of 5 seconds of a duration of the signals that
correspond to the Baseline

With the data augmentation process, the available infor-
mation for the ML feed is comparable to taking a sample of
10 subjects from the Physionet dataset. Figure 4 represents
the composition of the data acquired with a total of 8 trials
(two for Baseline, three of three minutes of real movement,
and three for imagination of movement) per subject.

FIGURE 4. Acquired dataset composition of the dataset divided by task,
trials and subjects.

B. PRE-PROCESSING
The pre-processing stage was carried out using the same steps
for both datasets, using the EEGLab plug-in for Matlab. The
processes applied to the signals were the following:

The processes applied to the signals were the following:
• Virtual location of the corresponding channels under the
10/20 system.

• A baseline removal for reference purposes was used.
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• A noise filter was applied to deal with the noise
that could be found in the original signal. The Noise
filter is a digital bandpass filter that has a frequency
related to the frequency of the electrical supply; in
the North American area where the signals have been
acquired(both the Physionet Dataset and the Generated
Dataset), this frequency corresponds to approximately
60Hz, in another world region, could be for example
50Hz like in Europe.

• AHigh-Pass filter, with a value of 0.5Hz range of cutoff,
was used to cope with frequencies that could interfere
with the baseline.

C. FEATURE EXTRACTION
For the feature extraction and feature selection tasks, previous
works explore different approaches, like the use of the
pre-processed signal with statistical algorithms for feature
extraction [29], the premeditate absence of a feature selection
task [30], and the use of different time-domain characteristics
in combination with feature selection algorithms like [31].
The present approach comprises the following processes:
the pre-processing of the previous data acquired (Physionet
Dataset and Acquired dataset), feature extraction (with a
time-frequency and entropy approach), and feature selection
(with filter approach) before a classification process with the
NNs. These NNs feed with numerical values like [32] and
graphical information like [24].

1) POWER BANDS
The EEG records have an amplitude of approximately
100 µV and a 50-100 Hz range. This second value reflects
the information at the frequency domain, and by examining
this domain, it could be assessed the state of brain activity [4].
Frequency bands are the interval of energy at that domain.
These intervals have an upper limit and a low limit, and the
information that could be reflected depends on these limits.
These bands are Delta (work below 4 Hz), Theta (4-7Hz),
Alpha (8-13 Hz), Beta (14-50 Hz), Gamma (above 30Hz),
and work below from 4Hz to above 30Hz [9].
At [33], it is indicated that the bands that are involved in

the MI are the alpha, beta, and gamma bands. The present
work also extracted information on an alphoid band (in the
range of the alpha band) called Mu because this band is
related to motor activity and the imagination, realization, and
observation of both motor activities and motor intentions.

At present, the Average Band Power is calculated as one
single number that summarizes the given frequency band’s
contribution to the signal’s overall power.

2) SIGNAL REPRESENTATION FEATURES
One of the most important processes in the EEG signal
analysis discipline is the one related to the features that could
be obtained to reflect the information of a signal. Previous
studies describe the interaction between brain regions [34],
others on the interaction of brain and physical stimuli
[35], etc. The feature extraction process allows converting

a raw signal into numerical features that make it easier to
process the great amount of data in the datasets and improve
the performance of ML algorithms, which helps reduce
the dataset without losing information. There are many
techniques and approaches for feature extraction according
to the domain of the information that will be discussed. The
common domains found in the literature are the time domain,
the frequency domain, and the combination of the two called
time-domain techniques [36].

The present study extracted five features under the domain
criteria: Power Spectral Density (PSD) is under the spectral
information as the Spectral Entropy and the Shannon Entropy,
and two Time-Frequency transformations using a Discrete
Wavelet Transform (DWT) and Spectrograms.

Firstly, PSD is defined as the rate at which motor units
are fired. Many other features can obtained by applying
a mathematical analysis of PSD [36]. The mathematical
expression of PSD is given for Equation 1 that is a repre-
sentation of the Discrete-time Fourier Transform (DTFT) of
the auto-correlation sequence of the signal, that is one of the
definitions of the PSD:

φ (ω) =

∞∑
k=−∞

r (k) e−iωk (1)

where φ(ω) is the average signal power over the frequencies
being ω a real number that represents the frequency of the
signal,

∑
∞

k=−∞
is the condition that needs to be fulfilled to

be a discrete-time sequence that establishes that the sequence
is a discrete-time sequence only if is summable, r(k) is the
autovariance function or the function that allows to calculate
the co-variance in different periods where k is an integer that
has units of cycles/samples and e−iωk is the approximation of
the Discrete-Time Fourier Transform of the signal.

Entropy is a measure of uncertainty [37]; this uncertainty is
translated as the number necessary to represent information,
in the present case, the number of bits necessary to represent
the signal. This measure possesses many approaches for its
calculation. In the case of Shannon Entropy, this calculation
combines the wavelet decomposition with a measure of the
coefficients by a determined scale and is widely used for
non-stationary signal analysis like EEG. The calculation is
determined by a mass function observed at Equation 2.

xi =
xi∑N
i=1 ·xi

(2)

where x represents a discrete random variable, i the possible
outcomes in the probabilistic space, and

∑
Ni=1·xi represents

the average amount of information that could be represented
in the same considering all the expected outcomes.

Another calculation of the entropy is called Spectral
Entropy [37], which is a measure of the signal’s spectral
power distribution based on the Shannon entropy calculation,
where the normalized power distribution in the frequency
domain is the probability distribution. This is calculated by
Equation 3, and the obtained value can be used as an estimate
for voicing/unvoicing decision; it is expected that sub-bands
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that are flatter will have higher entropy and the sub-bands
where a formant will have low entropy.

H = −

N∑
i=1

xi log 2 · xi (3)

where the sum is taken over all values that the random
variable can take.

A DWT is the decomposition of the signal into a set of
basis functions based consisting of contractions, expansions,
and translations of a mother function 8(t), called the wavelet
[38]. This type of transform [39] aims to represent a discrete-
time series as a set of coefficients. This transformation can be
represented as a filter back of one high pass and a low pass
component. The equation that relates to this is:

dk = (−1)k CL−k (4)

where dk represents the row vector of signal information C
is the applied filter vector, and the operation expresses the
multiplication necessary for a vector transformation.

The spectrograms representing information at three axes
[40] in an image were taken to feed the TL algorithm, which,
as previous works like [24], is a CNN.
The features previously mentioned were extracted for four

tasks at present: two tasks related to the real movement of the
upper limbs (hands) and two for the imagery movement. Each
of these tasks was repeated for three trials of each dataset’s
subjects, the public one and the generated one. Figure 5
represents the extracted features for the Physionet dataset,
with an approximately final number of over 72,000 features
to classify with 36,000 points for each of the proposed classes
(movement and inactivity).

FIGURE 5. Composition of the physionet dataset in terms of trials and
extracted features.

D. NORMALIZATION
Normalization is used in previous works like [41] to
improve dataset management by identifying relationships
between variables within the same dataset. Different types of
normalization exist; at present, the most common one is max-
min normalization. In this normalization, the greatest value in
a group is transformed into a one, and the smaller value into
a 0. This is a re-scaling and changes the distance between
the min and max values without losing the mathematical

distribution and relationship between data. The Equation5
represents the re-scaling process for data to any interval (in
this case [0, 1]), where [a b] is the interval to re-scale, and this
allows to preserve the Z-scores of the data.

XRescaled = a+ [
X − minX

maxX −minX
](b− a) (5)

where X is the value to normalize, minX is the smaller value
of the cluster, and maxX is the maximum value of the cluster
found in the database.

E. FEATURE SELECTION
The Feature Selection process, also called ‘‘dimension
reduction’’ [36] allows to establish the relationship between
features (independence or co-dependency) and outstand the
ones that could apport more information to a class or are
more probably- like that improve the models. It has been
seen in numerous previous studies (for example [42], and
[33]) that using system-important features improves the
performance of various ML algorithms in the training stage
and reduces computational time. Because the Physionet is
a high-dimensional dataset that will be compared with the
information of a small dataset, it is necessary to search
for that information to improve the performance of the
ML algorithms and reflect the relevant information for the
classification process. For dimensionality reduction, different
approaches exist (like genetic algorithms, subset selection,
the manual filter, the correlation through indices, etc.); one of
the most used approaches is metaheuristics (an optimization
procedure that uses heuristics as a search basis). This
approach contains methods that are focused on reducing
the irrelevant information to classify (the information that
is not related to the goal of the classification)and outstand
the information that could perform better, using algorithms
that can compute the relation between the features in the
high-dimensionality sets. We currently select the filter and
metaheuristic approach to deal with the Physionet dataset and
its high dimensionality.

Before starting with the ML algorithms for feature
selection, an independent evaluation criterion for binary
classification was implemented to select a pair of features
whose evaluation performs better in binary classification.
This evaluation was done through the calculation of the
correlation information of the Z-value, which could be found
in Equation 6 this value is in a range of 0 to 1 when a higher
value expresses statistic significance, where Z corresponds
to the Z-value or Z-score, ρ is the average value of the cross-
correlation coefficient between the candidate feature and all
previously selected features, α is the weight value that sets the
weighting factor. If the value of ρ is close to 1, that means that
the selected values are correlated between them.

Feature Weight = Z × (1 − α × ρ) (6)

The algorithms selected for this task were Minimum
Redundancy Maximum Relevance (MRMR) [43], Linear
Discriminant Analysis [14], and Decision trees [5]. MRMR
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is an algorithm that reduces redundant data within the dataset
and maximizes the relevant information to classify using the
following mathematical formulation that could be seen in
Equation 7 where I represents the mutual information, S is
the set of features, Vs is the relevance of the set andWs is the
redundancy of the mathematical probed features.

Vs =
1
|S|

∑
xϵS

I (x, y), Ws =
1

|S|2

∑
x,zϵS

I (x, z) (7)

The Matlab implementation of this algorithm ranks all
features and returns the indices of features ordered by feature
importance.

The Linear Discriminant Analysis, on the other hand,
is the evolution of a statistical method designed to distinguish
between classes of plant [14] and is defined by the probability
of the joint discrete/categorical variables on their distribution.
The Equation 8 where ŷ is the predicted class, K is the number
of classes, P(k|x) is the posterior probability, and C(y|k) is
the cost of classification of each observation, represents the
way the algorithm is applied to create a hyperplane that could
separate two categories of features, remarking the features
with better performance is the classification task.

ŷ = argmin
k∑

k=1

P̂(k|x)C(y|k) (8)

And the KNN algorithm classifies new values based
on similarity [5]. This independence is calculated through
distance metrics, like Euclidean distance or cosine, etc.,
to find the closest feature. This similarity is achieved using
two centroids, and the distance is measured for all the
observations. This is how the cluster is made; this centroid
moves until the process ends.

F. CLASSIFICATION ALGORITHMS
1) LONG-SHORT-TERM MEMORY
A Long-Short Term Memory or LSTM is a type of Recurrent
Neural Network (RNN) (architecture at Figure 6). The RNNs
are NNs that have a circulation behavior through calculations
(recurrence), meaning that their output depends on the current
input and the previous output. This characteristic brings
context to a classification task [11].

FIGURE 6. Recurrent neural network architecture.

The LSTM [44], comparable to the RNNs, has a recurrence
that allows processing information like the EEG sequences.
This recurrence operation is done by memory cells called
memory blocks(representation at Figure 7). These Memory
cells or blocks are composed of an input gate, forget gate,
and output gate, which are in charge of preserving previous
output states using their feedback connections to store
representations of recent input events and using a threshold to
update information controlling the flow of information inside
the cell block.

FIGURE 7. Memory block of a LSTM.

The input gate decides the information to store in the block
(Equation 9), the forget gate (Equation 10) using the threshold
is in charge of the decision of preservation or not of the
information, passing through the previous hidden state and
the activation function and the output gate (Equation 10)
controls the pieces of information to conserve using the
previous information. At the Equations 9,10,11, the symbols
represent: σ , Wxi represents the weight value in the input,
output or forget gate is the letter in the subscript (‘‘i,’’ ‘‘f’’
or ‘‘o’’) the distinction, Xt is the vector that alludes to the
skip in the time, ht is the hidden state vector, ct is mentioned
as the cell state vector and bi the bias that changes through
the learning process.

i = σ (WxiXt +Whiht−1 +WciCt−1 + bi) (9)

f = σ (Wxf Xt +Whf ht−1 +Wcf Ct−1 + bf ) (10)

o = σ (WxoXt +Whoht−1 +WcoCt−1 + bo) (11)

The LSTM architecture has a sub-type called BiLSTM,
whose most important change is the ability to learn the
information not only in a forward direction but also in a
backward direction, which is useful for learning complete
time series at each time step. The layers’ characteristics can
be seen in Table 1. Besides the Bidirectional LSTM layer,
the architecture used contains a fully connected layer and a
softmax layer, the last one to deal with the gradient descent
problem.

TABLE 1. Characteristics of the Layers at the implemented BiLSTM.
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2) CONVOLUTIONAL NEURAL NETWORK WITH TRANSFER
LEARNING APPROACH
At Transfer Learning, the goal is that the learning acquired
in an algorithm is intended to be used in a new training
process or for a new task. For this technique, there are
different methods; for example, in inductive transfer learning,
the source and target domain are the same but have
different tasks. In Unsupervised Transfer Learning, the
source and target domain data are not labeled, and finally,
in Transductive Transfer Learning, the source and target tasks
are similar, but their domains are different with a source
domain that possesses a lot of labeled data, but the target
domain possesses no one.

This work uses a pre-trained CNN model available at the
Matlab Library. A CNN is an NN architecture that relies as
its name indicates on the convolution operation.

The used CCN model is called Squeeze Net [45]. The
SqueezeNet is comprised of 18 layers and is trained with a
million images from the Image Net database. This is a CNN
intended to preserve the accuracy of another model called
AlexNet [46] with fewer parameters replacing 3 × 3 filters
of the AlexNet model with smaller 1 × 1 filters, decreasing
the number of input channels and downsampling late to the
convolution layers having a large activation map.

The last layers must be modified before re-training the net
with the new information or data set. The layers of interest are
the last convolutional layer (that in Matlab is called conv10),
which in this net model replaces the Fully connected layer
and the classification layer (Classification Layer_predictions
at the present). These layers need to be replaced by new
layers that contain parameters that follow the training options
for the new data and the learning process faster than in the
transferred layers. At the convolutional layer, the parameters
that are suggested tomodify are the filter size to supervise that
has a size that will not delay the training phase, the number
of filters that need to be set as the number of the classes
to train in the present this value needs will be set to three,
that corresponds to the three available classes that in this
case is the identification of the baseline, the real movement
or imaginary movement, the Weight Learn Rate Factor that
changes according to the classes learned, to a major number
of classes this number needs to be bigger instead in this
occasion this number is set to ten as same as the Bias Learn
Factor.

III. RESULTS
This section will expose the different results in feature
extraction, feature selection, and classification with the
different algorithms chosen to classify the MI information.

A. FEATURE EXTRACTION
As mentioned, ten features were extracted: 6 power bands
and four features with Spectrum and time-frequency domain
information. These features will be the input of the LSTM
algorithm.

1) CHANNELS AND POWER BANDS
Each Physionet dataset trial and the signal recording using
g.tec extracted 6 Power Bands with the Average Band Power
calculation: Alpha, Beta, Theta, Gamma, Mu, and Delta.

Figure 8 compares the Alpha Power band with the
non-filtered signal of one trial of the real movement
task.

FIGURE 8. Alpha power band of real movement trial of subject 1.

2) SIGNAL REPRESENTATION FEATURES
• PSD. Figure 9 shows the PSD calculation for a trial
of one of the three tasks: Movement of the upper
limbs, Imagery of the movement, and the Baseline. This
calculation is the normalized version, which implies that
the frequency was changed in their scale, dividing their
original frequency of 256Hz by itself to have a scale
of cycle/sample (in the present, a radian/sample scale)
and to express the power (at db) of the signal. The
image compares the power distribution at each signal’s
frequency domain, pointing out that the Movement
and Imagery PSD have similar frequency components.
Previous works of EEG classification as [33] mentioned
a correlation between imagery and motor signals and
their contribution to the performance of a classifica-
tion task [47]. The relationship between Movement
and Imagery is close to compound the Movement
class.

• DWT. TheDaubechies family was chosen for its calcula-
tion of this feature. This family was chosen because it is
a family of orthogonal wavelets of compact support that
facilitated the analysis of discrete wavelets, particularly
for the detection of features (like in the present) and
for the elimination of noise. Another reason is that
the one that presents the highest number of vanishing
moments, at present, the db5 parameters reflect the
number of vanishing moments(five) because it is useful
for time and frequency localization. In Figure 10, it can
be appreciated that the original signal and the signal with
the DWT. The reconstruction with DWT is shorter in
the time domain but has the same information in the
frequency domain.
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FIGURE 9. Comparison of the power spectral density for one subject and
baseline, real movement and imagery movement.

FIGURE 10. DWT comparison for one trial of movement task a) original
signal for one subject of movement task b) DWT for one subject and
movement task.

• Spectrogram. The Spectrogram was calculated because
it reflects the frequency spectrum information versus
the time in an image [48]. Figure 11 represents a
comparative of the Spectrograms of 1 subject for Real
movement of the two available data sets expressed in
samples vs. frequency.

FIGURE 11. Spectrograms of real movement task for the first subject
a)spectrogram of the physionet data set b)spectrogram of the acquired
dataset.

• Shannon Entropy. Applying the Equation 12 whereH (x)
is the entropy of a discrete variable, P is the probabilities

i is the scale, and the sum is the expression of all the
values that the random variable can take, is calculated
one single value that expresses the entropy measure in
the signal.

H (x) = −

∑
i

P(X = xi) ln (P (X = xi)) (12)

At Figure 12 is represented the obtained values of the
Shannon Entropy Features for the Fc3 and Fc4 channels
of the all available data.

FIGURE 12. Shannon entropy Fc3 and Fc4 channels.

• Spectral Entropy. In the case of Spectral Entropy, it was
calculated for each trial. The algorithm was fed the
mean of each signal spectra. Figure 13, as an example,
compares the original signal for a Baseline trial and their
Spectral Entropy calculation.

FIGURE 13. Spectral entropy comparison of one trial of baseline (eyes
open eyes closed) a)Original signal of a trial of baseline b)Spectral
entropy of the baseline task.

B. FEATURE SELECTION
For the feature selection process, the first implementation
was the raking of the independent evaluation criterion for
binary classification, then was implemented ML algorithms
(MRMR, LDA, Decision Trees, and KNN)in Matlab and
Python environments to revisit whether the change of
the implementation platform will change the outstanding
features for the system or give slight variations in the
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data. These algorithms were fed with the total amount
of obtained characteristics (approximately 72,000) of the
Physionet Dataset; this task ranked 60 features, ten features
for one of the six selected channels into two target classes,
movement and inactivity. The results of each and their
platform or platforms of implementation are described as
follows:

• Ranking evaluation for binary classification. As men-
tioned before, this implementation allows the rank
of the correlation in the features, the independent
features being the ones with a low score, the statistical
independence features, and the ones that represent
the system and have the best performance in binary
classification. Figure 14 represents the first five ranked
features. All the features were ranked, but passing the
first three positions, the classification score dropped to
a half, and passing the tenth position, the score dropped
to values under 10. The first two positions correspond to
the DWT for the Fc3 and the DWT for the Fc4 channels.

FIGURE 14. Binary classification ranking of the top 10 features.

• MRMR. The first ML algorithm that was used in the
feature selection was the MRMR. Previous works like
[43] showed that this algorithm is useful to rank the
best feature in a system, which remarks the co-relation
between different features, and this co-relation gives
a score to the different tested features in a system.
Figure 15 is the rank of the two best-scored features for
the system, which remark the DWT for the Fc3 channel
and the DWT for the Fc4 channel.

FIGURE 15. MRMR ranking (5 features) for the system.

• LDA. For the LDA implementation for feature selection,
the features highlighted previously by the MRMR and
Binary Classification criteria algorithms were probed
with different combinations of the ten first algorithms.
In this process, the two top features in the MRMR
ranking and the binary classification criteria were
the pair that worked efficiently with this algorithm.
Figure 16 presents the classification performance
with LDA for this pair of features corresponding to
the DWT for the Fc4 channel and the DWT for
the Fc3 channel, holding a 95.3% of classification
accuracy.

FIGURE 16. LDA Performing for Fc3 and Fc4 channels.

• Decision Trees and Random Forrest. In the case
of Decision Trees and Random Forrest, both were
implemented in two environments: Python and Matlab.
It was decided to use the DWT of Fc3 and DWT of Fc4
channels pair of features according to the performance
seen at the other implementation.
Figure 17 represents the percentage of Loss of the Ran-
dom Forrest model implementation in Matlab according
to the number of learning cycles used.

FIGURE 17. Random forrest loss according to the number of cycles for
feature selection at matlab implementation.
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The implementations were made in two different
environments to verify that the variation of information
y/o platform for implementation doesn’t change the
performance of the selected features or the performance
of an algorithm. Figure 18 represents a Decision Tree
classification for the two proposed classes with these
features for Matlab.

FIGURE 18. Decision trees classification in matlab implementation.

• KNN. This algorithm was also implemented in Python
and Matlab to verify the classification process in the
two platforms. The clustering of the features to the
selected best pair performs similarly on both platforms.
Figure 19 represents the decision boundary and the
classification points for the KNN algorithm with the
DWT for the Fc3 channel and DWT for the Fc4 channel
features.

FIGURE 19. KNN decision boundary and classification points for DWT for
Fc3 and DWT for Fc4.

At the four algorithms, the features that perform a high
relevance score to the system were the DWT for the
Fc3 channel and the DWT for the Fc4 channel; as
other works remark [49], the DWT feature is useful for
the classification task. Figure 20 compares the decision
boundaries for the LDA, Decision Trees, Random
Forrest, and KNN algorithms.

FIGURE 20. Decision boundarries for DWT for Fc3 and DWT for Fc4
features. a)LDA b)Classification trees c)Random forrest d)KNN.

C. CLASSIFICATION
1) LONG-SHORT TERM MEMORY
To compare the impact of the normalization process on the
performance of the BiLSTM algorithm, it was implemented
two kinds of BiLSTM, one with the remarked pair of features
by the feature selection process (DWT for Fc3 and DWT
for Fc4 channels) with normalization and the same features
without the normalization.

Each of the different implementations has the parameters
seen in Table 2.

TABLE 2. Parameters of BiLSTM network.

In the training phase for the Classification Algorithms
where used the cross-validation process. The implementation
of the cross-validation process is to avoid the over-fitting of
the algorithms. In the case of the Matlab environment, it uses
the k-fold technique, at the present work, the value of K is
five, selected by the size of the data set.

For the training phase of the BiLSTM NN, the data
corresponding to the remarked information by the diverse
algorithms in the dimension reduction or feature selection
process, which is the DWT for channels Fc3 and the DWT
for Fc4 channel, was used. This data corresponds to the mean
value for each trial of the information of 100 subjects. For
each subject, are available 12 trials, corresponding to 6 trials
of Baseline, which is a segmentation of the complete Baseline
to balance the information in the proposed classes (Inactivity
andMovement), three trials for the RealMovement, and three
trials for the ImageryMovement, that made a total of 12 trials
per subject. For the testing set, the information corresponds
to the same 12 trials for the nine subjects. The same algorithm
was implemented twice, being the difference between the first
and second implementations of the Normalization process;
one is carried out with the extracted features without
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the normalization process, and the other with normalized
data.

The performance of thementioned pair of implementations
can be seen in Table 3. This performance is measured through
the test set, is different from the performance in the training
set, and was used as an indicator of overfitting.

TABLE 3. Performance of LSTM implementations.

The best BiLSTM implementation (the one that carried
out an accuracy of 91.25%) has a reported sensitivity of
83.33% with the classification information for the testing
set. Figure 21 represents the Confusion Matrix for the best
implementation of BiLSTM.

FIGURE 21. Confusion matrix for Fc4/Fc3 pair implementation of BiLSTM.

To verify if the information collected is also useful for
doing a binary classification, used four subjects per 12 trials
of the DWT of Fc3 and Fc4 of the acquired data set as
a testing set of the BiLSTM trained with the 12 trials per
100 subjects with the Physionet dataset. Remarking that this
NN was training with the information corresponding to the
DWT for the Fc3 channel, DWT, and Fc4 channel. The results
can be seen in Figure 22 with a reported accuracy of 53.98%
and a sensitivity of 16.67%. This testing set is smaller than the
testing set used in Figure 21 and with the reported accuracy
below the median of the cases available, being a problem of
generalization for the new cases.

2) TRANSFER LEARNING WITH SQUEEZE NET
The transfer learning classification process used a Convolu-
tional Neural Network called Squeeze Net [45]. This CNN
was fed with information on the newly acquired data to
compare the performance of the new data with the Physionet
and the ability to generalize the new SqueezeNet. This infor-
mation comprises images corresponding to Spectrograms of
segments of the original pre-processed signal.

The segments have a duration of 45 seconds for Movement
and Imaginary conditions (the Movement class) with a total
of 90 images. The Baseline (Inactivity class) is composed

FIGURE 22. Confusion matrix for Fc4/Fc3 DWT of g.tec dataset
acquisition.

of fragments of a duration of 5 seconds, with a total of
90 images. The testing set is composed of 10 images of
both classes. To apply transfer learning, we re-train the NN
with the new information. To achieve this, the last layers
correspond to the last convolution and classification layers.
Both parameters were changed to correspond to the binary
classification (Movement and Inactivity classes). Once the
change was made, the training data was divided into 70%
training and 30% validation data.

Then the testing set was probed, with the results seen in
Figure 23 for the acquired dataset, with a mean accuracy
between predictions of 92.23 % and a sensibility of 83.33%.
In the case of the SquezeeNet implementation with the
Physionet dataset, it was found an accuracy of 60.6% and
a sensibility of 83.33% in a test set of the same size as
the acquired dataset implementation, having the Squeezenet
implementation with the acquired dataset best performance
in this case.

FIGURE 23. Confusion matrix for transfer learning testing set for acquired
data.

In the case of Transfer Learning, previous works like [50]
mentioned the difficulty of comparing the implementation of
these algorithms because the input and the output domains
are different. However, the two implementations currently
have the same output domain and can compare the Neural
Networks’ performance, computational time, and available
information. Table 4 referred to the differences between the
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implementation, remembering the classes of the output are
the same.

TABLE 4. Resume of classification algorithms details.

IV. DISCUSSION
A. TRANSFER LEARNING COMPARATIVE
Previous studies like the ones mentioned in [50] remark
on the difficulty of comparing the performance of Transfer
Learning methods because, in some implementations, the
information that changes between the source information
and the target information is the domain, so the original
training information and the output information doesn’t
have enough similarities to be compared. This comparison
is possible because both algorithms have the same output
goal, and the training set is similar in their task and
compoundings. As a result of the performance metrics,
the present portrays a 92.23% accuracy for the binary
classification at the transfer learning approach against the
91.25% accuracy in the BiLATM training, so this proves to be
a good performance in comparison with studies like [51], and
against similar classification task for the SquezzeNet and the
BiLSTM.

B. SAMPLE SIZE
The size of the EEG dataset for the training of ML algorithms
is always a limitation because ML algorithms are greedier,
and the data reported for their training (quantity and quality)
impact their performance, as seen at [31]. The size of the
newly acquired dataset is impacted because the number of
participant volunteers for the present work is small, so the
direct training with the BiLSTM had low performance.
Another inconvenience with the dataset was the restrictions
of the publicly available dataset Physionet because some
of their information is unavailable in their records, like the
specific visual stimuli used to trigger themotor and imaginary
task, so the Motor/Imagery tasks were adapted from the
information portrayed by their protocol.

One of the future directions of the present study is to
take more EEG records to have enough information to
compare a dataset that could be compared with a sample
of the Physionet dataset and improve the performance for
LSTM (in the present new dataset performance for LSTM
was 53.33%) because that reflects performance indicates the
lack of information to train this type of algorithm. Also,

implement other diverse TL algorithms for Physionet and the
newly acquired dataset.

V. CONCLUSION
The contributions of the present works are the comparative
performance of two approaches of ML algorithms for EEG
MI classification and the acquisition of new EEG records
to be compared and classified in them. Because one of
the major requirements for the analysis of the EEG signals
is their quality, another contribution of the present is the
recording of the new data with medical-grade equipment that
imitates the experimental protocol and the reproducibility
of a publicly available EEG dataset. According to [52], the
EEG acquisition systems with the use of gel in the electrodes
(wet electrodes) placed on the scalp, like the one used in
the present, possess a minor quantity of artifacts and better
signal-to-noise radios and have good quality to be analyzed.
Another advantage of using this equipment, according to [53],
is that the user felt less discomfort and was more motivated
to realize the different tasks.

Table 3 is portrayed a comparison of the performance of
the different implementations; this includes the composition
of each algorithm and the performance metrics as accuracy
and sensibility. It is observable that the Transfer Learning
approach has the highest accuracy with 92.23% compared
with the performance of the BiLSTMwith the same dataset as
testing ser that only achieved 53.98% because, as mentioned
in previous the literature, CNN algorithms have a better
performance in the training phase and could generalize with
small data sizes and a little loss of performance compared
with an implementation that occupies a large dataset as the
BiLSTM algorithm trained with the Physionet dataset. On the
other hand, the LSTM approach has a similar performance
to the ones that could be found in the literature with an
accuracy of 91.25%, but in this case, the algorithm used
all the information available to be trained, not only a small
dataset remembering that this type of algorithm is greedier
and needs to be trained with more information. In the
computational time section, the LSTM needs less time to
be trained from scratch than the time required to re-train
the SquezeeNet. Also, the sensibility metric demonstrated
with an 83.33% that both NN generalizes the information
well.

An important factor for the election of an algorithm
designed to achieve certain tasks (like MI classification in
the present) is the available information for the training and
testing phases. The quality and quantity of this information
are elements that directly impact the computational time
of the algorithm. This is because using a high-dimensional
dataset obliges an improvement of the same through
dimension reduction to achieve a good classification with
a short computational time. On the other hand, if the
data augmentation techniques are insufficient to achieve a
dataset idoneous for the training phase with the information
available, a high computational cost could be a good approach
to prevent a performance loss.
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